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Clump sequencing exposes the spatial expression
programs of intestinal secretory cells
Rita Manco1,4, Inna Averbukh1,4, Ziv Porat 2, Keren Bahar Halpern1, Ido Amit 3 & Shalev Itzkovitz 1✉

Single-cell RNA sequencing combined with spatial information on landmark genes enables

reconstruction of spatially-resolved tissue cell atlases. However, such approaches are chal-

lenging for rare cell types, since their mRNA contents are diluted in the spatial tran-

scriptomics bulk measurements used for landmark gene detection. In the small intestine,

enterocytes, the most common cell type, exhibit zonated expression programs along the

crypt-villus axis, but zonation patterns of rare cell types such as goblet and tuft cells remain

uncharacterized. Here, we present ClumpSeq, an approach for sequencing small clumps of

attached cells. By inferring the crypt-villus location of each clump from enterocyte landmark

genes, we establish spatial atlases for all epithelial cell types in the small intestine. We

identify elevated expression of immune-modulatory genes in villus tip goblet and tuft cells

and heterogeneous migration patterns of enteroendocrine cells. ClumpSeq can be applied for

reconstructing spatial atlases of rare cell types in other tissues and tumors.
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Many tissues such as the liver, the intestine, and the
kidney, are composed of structured anatomical units1.
Spatially varying concentrations of oxygen, nutrients,

and morphogens along these units dictate distinct gene expres-
sion signatures for cells residing at different spatial coordinates, a
phenomenon termed “zonation”1. Approaches to spatially
reconstruct zonation patterns combine scRNAseq with spatial
expression profiles of landmark genes characterized by RNA
in situ hybridization2–6. An alternative approach, when no prior
knowledge of landmark gene candidates exists, entails the spatial
measurements of the complete transcriptome of small tissue
regions, isolated using laser capture microdissection (LCMseq)7.
While these approaches successfully reconstruct the zonation
patterns of the major cell types in a tissue, rare cell types are more
challenging, since their transcript contents are diluted in the
spatial measurement techniques.

A recent approach for sequencing pairs of attached cells
enabled reconstructing the zonation patterns of liver endothelial
cells, by utilizing the landmark genes of their attached
hepatocytes8. This approach relies on the prospective isolation of
mixed pairs, requiring unique surface markers for the cell types of
interest, markers which do not generally exist. Reconstructing
zonation patterns of rare tissue cells, therefore, remains an open
challenge.

In the small intestine, epithelial cells operate in repeating crypt-
villus units (Fig. 1a). Crypt-harboring stem cells and progenitors,
supported by a Paneth cell niche, continuously divide to generate
differentiated cells9. Around 90% of the differentiated epithelial
cells are absorptive enterocytes. LCMseq-guided single-cell
reconstruction revealed profound zonation of enterocyte gene
expression along the villus7. Additional secretory epithelial cell
types include mucus-producing goblet cells10,11 (~8%), hormone
producing enteroendocrine cells12 (~1%) and chemosensory tuft
cells13,14 (~1%). These rare cell populations are important for the
protection of the tissue and for communication with other stro-
mal cell types and with other organs15. Using a reporter mouse
model, Clevers and colleagues reconstructed the temporal
expression programs of enteroendocrine cells along the crypt-
villus axis12, however, zonated expression patterns of goblet and
tuft cells are unknown.

To overcome the limitations in reconstructing spatial expres-
sion profiles of rare cells, we present ClumpSeq, an approach for
sequencing small clumps of attached tissue cells. Sequencing
clumps increases the capture rate of rare cell types without the
need for antibody enrichment, and utilizes the spatial information
of the major tissue cell type. We use this approach to reconstruct
spatial maps of all intestinal secretory epithelial cell types along
the crypt-villus axis, revealing zonated immune-modulatory
programs and heterogenous migration patterns.

Results
ClumpSeq enables reconstructing spatial expression patterns
of rare cell types. ClumpSeq entails the sub-optimal dissociation
of the epithelium into small clumps of 2–10 cells (Fig. 1a, b,
Supplementary Fig. 1a, b) and sequencing of these clumps using
scRNAseq protocols. Analysis of clumps increases the capture
rate of rare epithelial cells, while avoiding the need for dedicated
surface markers and for massive numbers of sequenced cells. The
enterocyte transcriptome in each clump enables inferring the
clump location along the crypt-villus axis (Fig. 1c). Such infor-
mation facilitates extracting large panels of spatially-varying
landmark genes that are specific to the rare secretory cell type of
interest, enabling spatial reconstruction of their entire tran-
scriptome by integrating single-cell data (Fig. 1d).

We applied sub-optimal tissue dissociation using EDTA
without the addition of commonly used dissociation enzymes
(“Methods”) and stained for DNA content using Hoechst dye. We
used fluorescence-activated cell sorting (FACS) to select clumps
based on the DNA content (Fig. 1b, Supplementary Fig.1b). We
sorted the clumps into 384-well plates and applied the MARS-seq
protocol16 for sequencing their transcriptomes. The resulting
clumps exhibited zonation patterns, as evident by the distinct
expression in different clumps of the crypt (Fig. 2a), bottom villus
(Fig. 2b), mid-villus (Fig. 2c) and villus tip enterocyte genes
(Fig. 2d). In addition to these zonated enterocyte genes, many
clumps exhibited mRNAs of secretory genes, attesting to the
successful capture of goblet cells (Fig. 2e), enteroendocrine cells
(Fig. 2f), tuft cells (Fig. 2g) and Paneth cells (Fig. 2h). The fraction
of cells with secretory transcripts was significantly higher in the
larger clumps compared to the 2-cell clumps (Fig. 2i–l,
Mann–Whitney p < 10−6, Supplementary Fig. 1c). The expression
of villus tip markers and crypt markers were strongly anti-
correlated (Fig. 2m, RSpearman=−0.82, p < 10−6), and Paneth
cells markers were almost exclusively found in crypt clumps
(94.6%, Fig. 2n). To further verify that single cells do not form
clumps in solution, we demonstrated that the percentages of
clumps immediately after tissue dissociation and after 3 h of
incubation had little variation (clumps dissociation protocol,
7.79% of clumps at time 0 h vs 7.95% of clumps after 3 h, p=
0.12, Supplementary Fig. 2). Thus, the sequenced clumps consist
of cells that were attached in the tissue, rather than dissociated
cells that have come into contact after tissue dissociation.

We developed a geometric algorithm for classifying the clumps
into their cell-type constituents (Fig. 2o, Supplementary Fig. 3a,
“Methods”). We reconstructed the location of each clump using
enterocyte landmark genes (Supplementary Fig. 3b–d, Supple-
mentary Data 1, Supplementary Data 2)7. We next used
scRNAseq datasets12,17,18 to identify genes that are expressed at
high levels in the secretory cells of interest and at low levels in
enterocytes. The transcripts of these genes in clumps likely
originate from secretory cells rather than from enterocytes.
Among these secretory cell-specific genes, we identified sets of
landmark genes that decreased or increased in expression from
the crypt bottom clumps toward the villus tip clumps (“Methods”,
Supplementary Data 1). These constitute secretory landmark
genes that can be used for single-cell reconstruction (“Methods”,
Supplementary Figs. 4–6).

Tip goblet cells exhibit enriched immune modulatory pro-
grams. We first applied our approach to goblet cells, the most
abundant secretory cell type in the intestine10. Our ClumpSeq
data included 1,140 high-confidence goblet cell -containing
clumps. We extracted 371 landmark genes (Supplementary
Data 1) and used them to infer the position of single goblet cells,
sequenced with the MARS-seq protocol (Supplementary Fig. 7).
We grouped these goblet cells into 5 zones, ranging from crypt
goblet cells to villus-tip goblet cells and computed a zonation
table by averaging the cells within each zone (Supplementary
Data 3, “Methods”). We found that around 30% of the highly
expressed genes in goblet cells were significantly zonated (1187
out of 3967 genes expressed to levels above 5 × 10−5 had zonation
q-value < 0.25, Fig. 3a). We used single-molecule fluorescence in-
situ hybridization (smFISH, Fig. 3b, e, Supplementary Fig. 8) and
the ClumpSeq data (Supplementary Fig. 9a) to validate the
accuracy of our goblet zonation reconstruction (Spearman cor-
relation between the ClumpSeq and single-cell reconstructed
zonation profiles of a validation set, R= 0.6, p= 8 × 10−4,
“Methods”).
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Most genes encoding mucus components exhibited increased
expression toward the villus tip (Fig. 3c). An exception was Agr2,
a gene hypothesized to be secreted in molar quantities with
Muc210, which we found to be inversely zonated toward the crypt.
This finding of an anticorrelated zonation profile supports the
hypothesis that Agr2 may play additional roles in goblet cells, for
example in goblet cell maturation at the crypt19. Our analysis
revealed zonation of ligands, receptors20, and transcription
factors21 in goblet cells (Supplementary Fig. 9b–d), including
tip-enriched expression of the immediate-early genes Jun and
Atf3. Gene sets related to RNA polymerase, splicing and ribosome
were zonated toward the crypt and villus bottom (Fig. 3d,
Supplementary Data 4) largely overlapping the functional
zonation previously measured for crypt and bottom villus
enterocytes7. Goblet genes at the villus tip were enriched in

cytoskeleton and tight junction genes, resembling the structural
changes previously observed for tip enterocytes7 (Supplementary
Data 4). Notably, villus-tip goblet cells exhibited enriched
immune-modulatory programs, including interferon-alpha and
interferon-gamma responses (Fig. 3d, Supplementary Data 4).
Interferon-alpha (IFNα) and interferon-gamma (IFNγ) responses
were also enriched in tip enterocytes, however, the identity of the
tip-enterocyte and tip-goblet cell genes was largely distinct
(Supplementary Fig. 10). Tip goblet cell IFNγ genes included
the immune checkpoint target gene Ido1 (Fig. 3a, e), previously
shown to have immunosuppressive effects22. Tip enterocyte IFNγ
genes included the viral response receptor Ddx5823. The different
clusters suggest that all cells at the tip react to IFNγ, but through
distinct mechanisms that are cell-type specific. Consistent with
these tip programs, the most goblet cell tip-zonated mucus genes
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Fig. 1 Schematic representation of the experimental design. a The intestinal tissue is suboptimally dissociated to generate clumps. b Clumps are enriched
with FACS, based on Hoechst DNA staining; the histogram shows ImageStream quantification of the clumps’ nuclear DNA content (n= 3 mice). Source
data are provided as a Source data file; bottom shows an example of a pair (left) and a 4-cell clump (right). Scale bar, 10 μm. c The position of clumps is
computationally inferred by the enterocyte transcriptome, and spatial landmark genes for specific secretory cells are retrieved. d These are used to infer the
location of single sequenced secretory cells, enabling zonation reconstruction.
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were Muc3 and Muc4 (Fig. 3c), transmembrane mucins that act
as bacterial receptors24. Our zonation reconstruction thus points
to immune-specialization of goblet cells at the tips of the villi.

ClumpSeq reveals zonation of Tuft cell programs. Tuft cells are
rare chemosensory epithelial cells with important functions in
mediating type-2 immunity, most notably against intestinal worm
infections13. Recent work demonstrated diversity of individual tuft
cells17, but spatial heterogeneity of tuft cells along the crypt-villus
axis has not been explored. Our ClumpSeq data included 146 tuft
cell-containing clumps, from which we extracted 352 landmark
genes (Supplementary Data 1). We used these landmark genes to
reconstruct a dataset of 144 single sequenced tuft cells assembled
from previous work17 and 159 tuft cells sequenced with MARS-
seq (Supplementary Data 3, “Methods”). We found that around

17% of the highly expressed genes in tuft cells were significantly
zonated (1240 out of 7360 genes expressed at levels above 5 × 10−5

had q-value < 0.25, Fig. 4a). We used smFISH (Fig. 4b–d, Sup-
plementary Figs. 11 and 13b–d) and ClumpSeq data to validate the
accuracy of our tuft zonation reconstruction (Spearman correla-
tion between the ClumpSeq and single-cell reconstructed zonation
profiles of a validation set, R= 0.62, p= 5 × 10−4, “Methods”).

Tuft cells at the crypt expressed the transcription factor Sox4,
previously shown to be important for Tuft cell specification25.
Tuft cells at the villus tip expressed the fatty acid binding protein
1 (Fabp1) and the succinate receptor 1 (Sucnr1), suggested to act
as a sensor for infectious agents26 (Fig. 4a–d, Supplementary
Fig. 12). Tip tuft cells also expressed Il17rb, the receptor for Il25, a
tuft-specific cytokine that activates type-2 innate lymphoid cells
Th2 immunity27–29 (Fig. 4a, Supplementary Fig. 11), indicating
an autocrine signaling loop.
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Fig. 2 ClumpSeq yields tissue fragments consisting of secretory and non-secretory cells. a–d tSNE plots of sequenced clumps, colored by log10 of
summed expression of zonated enterocyte markers: a the crypt genes Mki67, Ccnb1, Ccnd1, Mcm2, Pcna, and Olfm4; b the bottom villus genes Nlrp6,
Lypd8, Il18, Reg1 and Reg3a; c the mid-villus genes Slc5a1, Slc2a5, Slc2a2, Slc7a7, Slc7a8, Slc7a9; d the villus tip genes Ada,Nt5e and Slc28a2, Creb3l3,
Apoa1, and Apob. e–h tSNE plots highlighting clumps containing secretory cells, marked by black dots. Plots colored by log10 of summed cell type marker
genes (Supplementary Data 7, “Methods”) for e Goblet, f Enteroendocrine, g Tuft and h Paneth cells. i–l Large clumps increase the capture rate of
secretory cells. Shown are violin plots of summed secretory derived transcripts (expressed in over 50% of single secretory cells with a mean over 5 fold
higher than in enterocytes) in pairs compared to larger clumps (Supplementary Data 6) for i Goblet, j Enteroendocrine, k Tuft and l Paneth specific genes.
Only crypt pairs and clumps were used to minimize effects from zonated genes. White circles are medians, gray boxes mark the 25–75 percentiles. Dashed
horizontal lines indicate the median value in the respective single secretory cell type (Supplementary Fig. 7). Numbers show the percent of clumps above
this threshold, which most probably contain the respective secretory cell type. n pairs= 2926, n clumps= 1862, examined over five independent
experiments. m Crypt and villus-tip enterocyte marker genes are not found in the same clumps, indicating the clumps did not form after tissue dissociation.
n Violin plot of log10 of 1+summed paneth markers (Supplementary Data 7) in all large (more than two cells) clumps, stratified by inferred zone. White
circles are medians. Dashed horizontal line indicates the median value in paneth containing large clumps. o Geometric classification of clumps.
Representation of clumps in PCA space based on the type-specific markers summed expression. Enterocyte-only clumps are at the origin, each ray
contains a different secretory cell type (“Methods”, Supplementary Fig. 3e, f, Supplementary Data 7).
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A recent study identified two subsets of tuft cells termed “tuft1”
and “tuft2” with distinct functions17. Tuft1 cells express
neuronal-like genes, whereas tuft2 cells elevate immune pro-
grams, including the expression of Ptgs1, encoding the pros-
taglandin H2 synthase 117. We found that tuft1-specific
transcripts were zonated toward the bottom of the villus, whereas
tuft2-specific transcripts were zonated toward the villus tip
(Fig. 4e, Supplementary Figs. 11, 13).

Enteroendocrine lineages have heterogeneous migration pat-
terns. Enteroendocrine cells are rare intestinal epithelial cells (~1%)
that consist of diverse subtypes of hormone-secreting cells that are
essential for physiological homeostasis. We next applied ClumpSeq
to extract landmark genes for these cells. We extracted 656 enter-
oendocrine landmark genes from our 181 enteroendocrine-
containing clumps (Supplementary Data 1) and used them to

infer the crypt-villus coordinates of single-sequenced enteroendo-
crine cells12 (Supplementary Data 3, “Methods”). We found that
around 35% of the highly expressed genes in enteroendocrine cells
were significantly zonated (1838 out of 5243 genes expressed to
levels above 5 × 10−5 had q-value < 0.25). The zonated expression
patterns conformed with previous observations of crypt-biased
expression of Gcg, Tac130,31, and Reg432, and villus-biased expres-
sion of Sct and Nts30 (Supplementary Figs. 14, 15).

A recent work analyzed the temporal expression programs of
single enteroendocrine cells12. The study used a slowly-decaying
fluorescent reporter, driven by Neurog3, a gene that is expressed
in a pulse-like manner in the earliest crypt enteroendocrine
progenitor, providing a time stamp for each enteroendocrine cell
that enables grouping cells according to the time since their
“birth”. We argued that combining these temporal profiles with
our spatial measurements could reveal the patterns of cell

Normalized 
expression

Villus TipBottom

a

d e

c

0

0.5

1

0

0.5

1

2 3

 

Mucus Composition

1

 Ido1 

Sox9

Rpl4

Agr2

Spink4
Slc1a5

Slc38a2

Muc2

Cxcl16

Egfr
Ido1

Crypt Villus Tip

0

0.5

1

Rpl3

0

0.5

1

1.5 Rpl4

0

0.5

1

Muc2

0
0.2
0.4
0.6
0.8

1

Clca1

Crypt Villus Tip
0

0.5

1

1.5

2 Egfr

Crypt Villus Tip
0

0.5

1

1.5 Ido1

-8 -6 -4 -2 0 2 4
Normalized enrichment score

RIBOSOME (K)
RNA POLYMERASE (K)

SPLICEOSOME (K)
GLUTATHIONE METABOLISM (K)

VALINE LEUCINE AND ISOLEUCINE DEGRADATION (K)
MYC TARGETS V2 (H)
PROTEIN EXPORT (K)
APICAL JUNCTION (H)

RENAL CELL CARCINOMA (K)
ENDOCYTOSIS (K)

AXON GUIDANCE (K)
TOLL LIKE RECEPTOR SIGNALING PATHWAY (K)

FOCAL ADHESION (K)
REGULATION OF ACTIN CYTOSKELETON (K)

ABC TRANSPORTERS (K)
IL2 STAT5 SIGNALING (H)

EPITHELIAL CELL SIGNALING IN H. PYLORI INFECTION (K)
MITOTIC SPINDLE (H)

THYROID CANCER (K)
PROSTATE CANCER (K)

NOD LIKE RECEPTOR SIGNALING PATHWAY (K)
LEUKOCYTE TRANSENDOTHELIAL MIGRATION (K)

CELL ADHESION MOLECULES CAMS (K)
TIGHT JUNCTION (K)

EPITHELIAL MESENCHYMAL TRANSITION (H)
ARRHYTHMOGENIC R. VENTRIC. CARDIOMYOPATHY (K)

TGF BETA SIGNALING (H)
B CELL RECEPTOR SIGNALING PATHWAY (K)

P53 PATHWAY (H)
PANCREATIC CANCER (K)

PATHWAYS IN CANCER (K)
LEISHMANIA INFECTION (K)

CYTOKINE CYTOKINE RECEPTOR INTERACTION (K)
INTERFERON ALPHA RESPONSE (H)

BLADDER CANCER (K)
INFLAMMATORY RESPONSE (H)

ADHERENS JUNCTION (K)
INTERFERON GAMMA RESPONSE (H)

TNFA SIGNALING VIA NFKB (H)

51-100
101-150
151-200

# genes

FDR <0.05
SZ > 50

Crypt Villus Tip

Agr2

Muc13

Tff3

Fcgbp

Clca1

Zg16

Muc3a

Muc2

Muc4

Muc3

0

1
10 -4 Sox9

0
5

10 -4 Rpl4

0
0.005
0.01

Agr2

0

0.01

Spink4

0

5

10 -5 Slc1a5

0
1
2

10-4Slc38a2

0

0.01

Muc2

0

1
10 -4 Cxcl16

Crypt Tip
0
1
2

10 -4 Egfr

0

5
10 -3 Ido1

Crypt Tip

ex
pr

es
si

on
 (f

ra
ct

io
n 

of
 m

ax
)

Goblet cell zonation map

Normalized 
expression

Clca1 Ada 

1
2

3

ex
pr

es
si

on
 (f

ra
ct

io
n 

of
 to

ta
l U

M
I)

b Single cell reconstruction
smFISH quantification

Fig. 3 Spatial reconstruction of goblet cells. a Reconstructed zonation profiles based on single goblet cells. Profiles are normalized to their maximum
across zones. Plots on the left show zonation profiles of representative crypt (Sox9, Rpl4, Agr2, Spink4), mid-villus (Slc1a5, Slc38a2) and villus tip (Muc2,
Cxcl16, Egfr, Ido1) genes. Light areas denote the SEM. b Validation of the reconstructed zonation profiles using smFISH. Blue line shows smFISH mean
expression level, red line the reconstructed profile based on the single cell analysis. Light patches denote the SEM. Source data are provided as a Source
data file. c Heatmap of zonation profiles of genes related to mucus composition. Profiles are normalized to their maximum across zones. d Gene set
enrichment analysis53 for hallmark (H) and KEGG (K) pathways (FDR < 0.05), tip enriched sets are in red, bottom enriched sets are in blue. e smFISH
image of zonated genes Clca1 (green) and Ido1. Ada (red) marks the villus tip, blue the DAPI-stained nuclei. Bottom insets show Ido1 mRNAs (gray dots)
increasing from the bottom (1) to middle (2) and tip (3) villus zones. Images representative of n= 10 villi (5/mouse). Scale bar, 50 μm in the stitched
image and 15 μm in the insets.
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migration of different enteroendocrine cell types, identified by the
expression of their characteristic hormones (Fig. 5a). More
specifically, genes that are expressed in crypt cells that have an
“early” time stamp, such as Neurog3 and Sox4, are most probably
transient genes expressed in cells that are migrating out of the
crypt. Genes that are expressed in crypt cells with late time
stamps, would indicate that the cells expressing them are stalling
in the crypt. In contrast, genes that are expressed in villus cells
with similarly late time stamps indicate faster migration of the
expressing cells.

While the correlation between our inferred cryp-villus zone
and the average time-stamp for different genes was significant (R
= 0.4, p < 10−10), different enteroendocrine genes exhibited
distinct behavior in space-time (Fig. 5a). Cells expressing Nts,
Sct, Cck, and Gip showed late time stamps and peaked in
expression at the villus tip (Fig. 5a black-font genes, Supplemen-
tary Fig. 15a). Other genes, including Reg432, the X cell marker
Ghrl, the EC cell marker Tac1, and the L cell markers Pyy and Gcg
had intermediate-late time stamps, yet were confined to the crypt
and villus bottom. This is in line with the previously shown
transdifferentiation of Gcg+ cells into Cck+ and Nts+ cells, and
of Tac1+ cells into Sct+ cells30. Notably, cells expressing the D
cell marker Sst, encoding the hormone somatostatin, exhibited
late time stamps, yet were spatially-confined to the crypt or lower
villus zones (Fig. 5a, Supplementary Fig. 14). We used smFISH to
demonstrate that D cells are indeed enriched in the crypt and
lower villus zones (Fig. 5b, c, Fisher exact test p= 3.8 × 10−5).
The discordant space-time profiles, with crypt retained expression
of relatively late appearing genes, suggest that enteroendocrine
cell types such as L-cells and D-cells have slower crypt-villus
migration rates compared to the Cck+ I-cells and the Gip+ K-
cells. We further used smFISH to validate that Pyy and Afp, two

enteroendocrine genes with late time stamps are enriched at the
crypt and villus bottom (Supplementary Fig. 15b–e). Finally, we
examined the differences in gene expression between D cells,
predicted to migrate slowly, and Tac1+ EC cells and Gcg+ L cells,
predicted to migrate more rapidly30. Gene set enrichment
analysis33 revealed that D cells were enriched in GO programs
related to adhesion and migration (Supplementary Data 9). In
particular, they highly expressed Itbg5 and Emp2, genes involved
in cell-matrix adhesion34,35, Mylk, important for adhesion
disassembly mechanism36, and Csf1 and its receptor Csfr1,
implicated in the formation of unstable interactions37 (Supple-
mentary Fig. 16). The slower migration of D cells may thus be
associated with more stable interactions with the extracellular
matrix, or to more unstable interactions with neighboring
epithelial cells. Future studies will explore whether D cells
transdifferentiate into other enteroendocrine lineages at the villus
tip or rather shed off at lower villus positions.

Zone-specific interactions between epithelial and mesenchymal
cells. The zonated expression programs we identified
using ClumpSeq suggested that secretory cells might be inter-
acting with other zonated small intestinal cell types. Both
enterocytes7 and mesenchymal cells38 were shown to exhibit
strongly zonated gene expression signatures. We, therefore,
sought to identify potential zone-dependent interactions. We
analyzed a database of ligands and receptors20 and identified pairs
in which a ligand was enriched in one cell population and the
matching receptor was enriched in another (Supplementary
Data 10). We further examined ligand-receptor pairs enriched in
either the crypt or bottom villus zones (Supplementary Fig. 17a)
or in the villus tip zone (Supplementary Fig. 17b). Our analysis
revealed classic interactions such as crypt telocyte Rspo genes and
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Fig. 4 Spatial reconstruction of tuft cells. a Reconstructed zonation profiles based on single tuft cells. Profiles are normalized to their maximum across
zones. Plots on the left show zonation profiles of representative crypt (Sox4, Ccnd1, Nrep, Stmn1), mid-villus (Ctsa, Cdx1) and tip (Sucnr1, Fabp1, Il17rb,
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(c) tuft cell. Tuft cells were identified using Dclk1 (red). Scale bar 15 μm. d Quantification of Fabp1 smFISH experiment. P value was calculated by
Mann–Whitney U test two-sided. n= 20 cells were examined over 2 mice. Red lines are medians, black boxes are 25–75 percentiles. Whiskers extend to
the most extreme data point within 1.5× the interquartile range (IQR) from the box. Source data are provided as a Source data file. eMean max-normalized
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23245-2

6 NATURE COMMUNICATIONS |         (2021) 12:3074 | https://doi.org/10.1038/s41467-021-23245-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


crypt enterocyte Lgr5 and Lgr4, as well as signaling from tuft cells
through the zonated ligands Inhbc, Dll3 and Ccl5 as well as sig-
naling by zonated enteroendocrine cells (Supplementary
Fig. 17a). The tip zone included the autocrine Il25-Il17rb circuit
operating in tuft, as well as signaling from K enteroendocrine cells
through the zonated Efna1, Ccl28, and Gip (Supplementary
Fig. 17b).

Discussion
ClumpSeq leverages the spatial information of the abundant cell
types in a tissue to extract large sets of landmark genes for rare
cell types. The ability to sort large clumps of up to 10 cells
increases the capture rate of the rare cells, thus making it unne-
cessary to use specialized cell-type specific surface markers for
enrichment, markers that often do not exist. With larger clumps,
the probability to contain more than two cell types increases, e.g.
goblet cells and tuft cells in the same clump. While this was
negligible in our study, the reconstruction algorithms can be
readily adapted to take this into account by extracting landmark
genes from a pool of secretory cell-type specific genes that are not
expressed by both enterocytes and other secretory cells.

Recently, Gehart et al. uncovered distinct kinetics for different
subtypes of enteroendocrine cells as well as different frequencies
between crypts and villi30. Using ClumpSeq, we were able to

provide more detailed spatial information along the villus axis.
For example, while Gehart et al. demonstrated that D cells have a
late time-stamp and that Sst expression is higher in the villi
compared to the crypts, we showed that along the villus, D cells
are enriched at the villus bottom and that D cell frequency and Sst
expression decreases toward the villus tip. Somatostatin inhibits
the secretion of other hormones, such as Cck39. Moreover, using
our ligand-recpetor analysis we found that most enteroendocrine
cells express the somatostatin receptors (Supplementary Fig. 17a).
Stalled D cells in the villus bottom might therefore serve to
prevent the secretion of some of these hormones specifically at
the lower villus zones.

While ClumpSeq directly provides the zonation profiles of cell-
type specific genes, its real power of discovery emerges when
using the two-step approach of first identifying a set of cell-type
specific landmark genes to be used for reconstructing a genome-
wide spatial single-cell atlas of the rare cell type (Fig. 1). This
enables identifying zonated patterns of genes that are expressed in
more than one cell type. An example is Fabp1, a gene that is
highly abundant in enterocytes and peaks at the mid-villus zone,
but is also zonated in tuft cells toward the villus tip. The
expression of Fabp1 in clumps is dominated by the zonation of
enterocytes, yet the tuft cell zonation emerges when recon-
structing single sequenced tuft cells with the ClumpSeq-identified
tuft cell landmark genes (Fig. 4b-d).
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Our zonation results indicated that both goblet cells and tuft
cells express immune-modulatory programs at the villus tip. We
further showed that the neuronal-like tuft1 program is zonated
toward the crypt and villus bottom, whereas the immune-related
tuft2 program is zonated toward the tip. It will be important to
utilize lineage tracing mouse models, such as in Beumer et al.30 to
examine whether these zonated cell states represent continuous
trans-differentiation or rather distinct lineages that settle in dif-
ferent crypt-villus coordinates.

Recently, two powerful methods were developed for measuring
spatial information with single-cell resolution, Slide-Seq40 and
High-definition spatial transcriptomics (HDST41). Similarly to
ClumpSeq, both methods need to be integrated with scRNAseq
datasets in order to properly analyse the rare cells of interest.
However, pre-requirements differ, as Slide-seq and HDST both
work on fresh-frozen slides and require barcoding beads on a
glass surface, while ClumpSeq uses freshly dissociated tissue with
the clumps sorted in 384-well capture plates. Unlike Clumpseq,
the spatial transcriptomics methods sequence thin tissue sections
that often do not include complete cells, potentially posing
challenges in the characterization of individual rare cell types.

ClumpSeq can be applied to diverse tissues and cell types, for
example, the analysis of lung goblet and tuft cell diversity in
spatially-distinct airways42,43 and the zonation patterns of pan-
creatic endocrine cells along the radial islet axis44. ClumpSeq
could also be adapted to assess the range-dependent effects of
developmental organizers45 and tumor signaling centers46, thus
expanding the toolbox of single cell biology beyond single cells
and pairs.

Methods
Mice and tissue. All mouse experiments were approved by the Institutional
Animal Care and Use Committee of the Weizmann Institute of Science and per-
formed in accordance with institutional guidelines (Protocol number 13000419-2).
Experiments were conducted on 8–12 weeks old C57BL/6 mice, obtained from
Envigo. Mice were housed at 4–5 per cage, maintained at a constant temperature of
22 ± 2 °C and humidity of 55 ± 15%, exposed at all times to a 12 h light/12 h dark
cycle and had access to food and water ad libitum. All experiments were performed
on the same region of the Jejunum. Mice were sacrificed by cervical dislocation.

Cell dissociation
Clumps dissociation. The Jejunum was harvested, flushed with cold 1× DPBS,
laterally cut, and incubated for 20 min on ice in a 10 mM EDTA solution. After-
ward, the tissue was cut into 1 cm pieces, moved in a pre-warmed 10 mM EDTA
solution for 5 min and shaked vigorously at the end of the incubation time. Dis-
sociated cells were collected and filtered through a 100 μm cell strainer. Cells were
spun down at 300 × g for 5 min at 4 °C. Pellet was resuspended and incubated for
nuclear staining for 5 min at RT in a solution of DMEM+ 10% FBS+ 10 mM
HEPES+Hoechst 33342 (15 μg ml−1). To prevent the cells from pumping out the
Hoechst dye, Reserpine (5 μM) was also added. Cells were resuspended in PBS and
Alexa Fluo 488 Zombie Green (BioLegend) was added at a dilution of 1:500, to later
enable the detection of viable cells by FACS. Cells were kept in a rotator in the dark
at room temperature for 15 min. After spinning down (500 × g. for 5 min at 4 °C),
cells were resuspended in FACS buffer (2 mM EDTA, pH 8, and 0.5% BSA in 1×
PBS) at a concentration of 106 cells in 100 μl.

Single cell isolation. To obtain single cell suspension, rather than clumps, the tissue
was incubated for 10 min on ice in a 10 mM EDTA solution, before to be cut in
small pieces and moved for other 10 min in a pre-warmed 10 mM EDTA solution.
The tissue was shaked vigorously every 2 min. Cells were filtered through a 70 μm
cell strainer and spun down at 300 × g for 5 min at 4 °C. Cells were resuspended in
FACS buffer and stained with combination of APC-anti-Epcam (1:100, BioLegend,
118214) and PE/Cy7-anti-CD45 (1:1000, Biolengend, 103114) or APC-anti-Epcam
and PE/Cy7-anti-CD24 (1:100, BioLegend, 101821). FcX blocking solution (Bio-
Legend) was added at a dilution of 1:50.

Clumps and single-cell sorting. Single cells and clumps were sorted with SORP-
FACSAriaII machine with BD FACSDIvaTM software (BD Biosciences) using a
100 μm nozzle. For clumps sorting, dead cells were excluded using the Zombie
green staining and clumps were sorted based on Hoechst histogram (Fig. 1b,
Supplementary Fig. 18a). For single cell sorting, dead cells were excluded on the
basis of 500 ng/ml Dapi incorporation. Sorted cells were negative for CD45 and

positive for Epcam (Supplementary Fig. 18b). To enrich for enteroendocrine cells,
cells were gated on CD45- Epcam+ CD24+. Since tuft cells express CD4517, to
enrich for those, cells were gated only on Epcam+ CD24+ (Supplementary
Fig. 18c).

Cells and clumps were sorted into 384-well MARS-seq cell capture plates
containing 2 μl of lysis solution and barcoded poly(T) reverse-transcription (RT)
primers for single-cell RNA-seq. Barcoded single cell capture plates were prepared
with a Bravo automated liquid handling platform (Agilent) as described
previously16. Four empty wells were kept in each 384-well plate as a no-cell control
during for data analysis. Immediately after sorting, each plate was spun down to
ensure cell immersion into the lysis solution, snap frozen on dry ice and stored at
−80 °C until processed.

MARS-Seq library preparation. Single cell libraries for both single cells and
clumps were prepared, as described in Keren-Shaul et al.16 Briefly, mRNA from
cells sorted into MARS-Seq capture plates were barcoded and converted into
cDNA by reverse transcription reaction and pooled using an automated pipeline.
The pooled sample was cleaned using 0.9X SPRI beads and then linearly amplified
by T7 in vitro transcription. The resulting RNA was fragmented and converted into
sequencing-ready library by tagging the samples with pool barcodes and Illumina
i7 barcode sequences during ligation, reverse transcription, and PCR. Each pool of
cells was tested for library quality and concentration was assessed as described in
Keren-Shaul et al.16 Machine raw files were converted to fastq files using bcl2fastq
package, to obtain the UMI counts. Using STAR (v.2.5.3a) reads were aligned to the
mouse reference genome (GRCm38.84) using zUMI packge4547 with the following
flags that fit the barcode length and the library strandedness: -c 1-7, -m 8-15, -l 66,
-B 1, -s 1, -p 16.

scRNAseq data processing. For each single cell or clump and for each gene we
performed background subtraction. The background was calculated for each 384-
well plate separately, as the mean gene expression in the four empty wells. After
subtraction, negative values were set to zero. We used Seurat v3.2 package in R
v3.6.1 and R studio v1.2.2019 to cluster the clumps and single cell RNAseq datasets,
retaining only clumps or cells containing at least 200 genes. We used Seurat to
regress out cell-cell variation driven by the fraction of mitochondrial genes. For
clumps, we excluded clumps with over 30% mitochondrial genes. Clustering was
based on PCA dimensionality reduction using the first 18 PCs, and a resolution
value of 1.

For single cells, cells with either total UMI counts lower than 200 or higher than
7000 or total gene counts lower than 150 or higher than 1500 or mitochondrial
content of over 40% were removed. Cell clustering was based on PCA
dimensionality reduction using the first 25 PCs and a resolution value of 0.1. We
used cell type-specific markers to interpret the single cell clusters: Epcam in the
epithelial cells clusters, Ptprc in immune clusters, Muc2 in the goblet cluster, Dclk1
in the tuft cluster, Chga in the enteroendocrine cluster (Supplementary Fig. 7).

ImageStream analysis. Cells were imaged by an Imaging Flow Cytometer (Ima-
geStreamX Mark II, AMNIS corp. - part of Luminex, TX, USA). Data were
acquired using a ×40 lens, and lasers used were 405 nm (10 mW), 488 nm
(100 mW), 642 nm (100 mW), and 785 nm (5 mW). Data were analyzed using the
manufacturer’s image analysis software IDEAS 6.2 (AMNIS corp.). Images were
compensated for spectral overlap using single stained controls. Viable cells were
first gated as negative for the dead cell marker Zombie-Green. To eliminate out-of-
focus cells, cells were further gated using the Gradient RMS and contrast features
(measures the sharpness quality of an image by detecting large changes of pixel
values in the image). Then, cell were gated for single cells and cell clumps according
to their area (in μm2) and aspect ratio (the Minor Axis divided by the Major Axis
of the best-fit ellipse). To distinguish between large cells and small clumps with
similar size, the circularity feature was used (the degree of the mask’s deviation
from a circle, calculated as the average distance of the object boundary from its
center divided by the variation of this distance)—high circularity was correlated
with large cells rather than cell clumps. This was calculated using the Object cell
mask (segments images to closely identify the area corresponding to the cell, by
distinguishing it from the background), to better delineate cell morphology. To
distinguish between pairs and larger clumps, objects were gated according to the
area and aspect ratio (normalized for intensity) of the Hoechst staining. To validate
that cell clumps contain more than one EpCAM positive cell, two features were
calculated—the area of the EpCAM staining divided by the bright-field area, and
the distance between the geometrical centers of the EpCAM staining and the
bright-field image, using the Delta Centroid XY feature. Clumps with higher area
ratio and lower distance were eventually chosen.

Single molecule FISH and quantification. Jejunum was harvested, flushed with
cold 1× DPBS, laterally cut and then fixed in 4% formaldehyde for 3 h, incubated
overnight with 30% sucrose in 4% formaldehyde and finally embedded in OCT in
the form of swiss-rolls. 7 µm thick sections of fixed Jejunum were sectioned onto
poly L-lysine coated coverslips and used for smFISH staining. Probe libraries were
designed using the Stellaris FISH Probe Designer Software (Biosearch Technolo-
gies, Inc., Petaluma, CA). The intestinal sections were hybridized with smFISH
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probe sets according to a previously published protocol48. Briefly, tissues were
treated for 10 min with proteinase K (10 µg/ml Ambion AM2546) and washed
twice with 2× SSC (Ambion AM9765). Tissues were incubated in wash buffer (20%
Formamide Ambion AM9342, 2× SSC) for 5 min and mounted with the hybridi-
zation buffer (10% Dextran sulfate Sigma D8906, 20% Formamide, 1 mg/ml E.coli
tRNA Sigma R1753, 2× SSC, 0.02% BSA Ambion AM2616, 2 mM Vanadyl-
ribonucleoside complex NEB S1402S) mixed with 1:3000 dilution of probes.
Hybridization mix was incubated with tissues overnight in a 30 °C incubator.
SmFISH probe libraries (Supplementary Data 5) were coupled to Cy5, TMR or
Alexa594. After the hybridization, tissues were washed with wash buffer containing
50 ng/ml DAPI for 30 min at 30 °C. DAPI (Sigma-Aldrich, D9542) was used as
nuclear staining. All images were performed on a Nikon-Ti-E inverted fluorescence
microscope using the NIS element software AR 5.11.01. All images were taken as
scans extending from villus tip to crypt bottom using ×100 magnifications, hence
several fields of view were stitched together to cover the whole crypt-villus unit.
Stitching was performed with the fusion mode linear blending and default settings
of the pairwise stitching plugin in Fiji49.

Quantification of smFISH was done using ImageM48. Goblet cells were
manually segmented based on Muc2 or Clca1 expression. Each transcript
quantification was based on at least 5 entire villi from at least 2 mice. Tuft cells
were manually segmented using Dclk1 mRNA expression. Results were based on at
least 20 cells from bottoms and tips of villi and from at least 2 mice.
Enteroendocrine cells were identified based on the expression of the specific gene
measured. Each villus was divided into bottom, middle and tip as follow: Ada+ area
is defined as “villus tip”, the remaing villus length is divided equally in two zones,
middle and bottom. Fisher exact test was calculated on the number of crypt-villus
units with and without cells expressing the analyzed gene. mRNA concentration
(number of mRNA per unit volume, for low abundance genes) or mRNA signal
intensity (mean background-subtracted intensity in segmented unit, for high
abundance genes) was computed per cell.

Gene specificity analysis. In order to find genes specific to the intestinal epithelial
cell types, we comprised a table of mean expression of genes across cell types and
the percentage of single cells of each cell type expressing each gene (Supplementary
Data 6). To this end, we analyzed published scRNA-seq data sets7,12,17,18, using cell
type annotations by the papers’ authors. Gene expression measurements (UMIs per
gene) were normalized for each cell by the sum of its UMIs and then averaged
across single cells by type. For enterocytes, we averaged cells from each villus zone
using Moor et al. annotation7. The same single cell data source was also used for
generating the crypt stem cells columns of Supplementary Data 618. For other
secretory cell types: goblet, enteroendocrine, tuft and paneth cells, we used the data
from Fig. 1 of Haber et al.17.

Zonation reconstruction of clumps. UMI counts table for all 5,297 clumps was
exported from Seurat50 and further clumps analysis was performed using
MATLAB (version 2019a). 4,788 clumps with over 500 UMIs were retained and
expression values per gene were calculated as UMIs per gene normalized for each
clump by the total sum of its UMIs.

Enterocyte landmark gene selection. Enterocyte landmark genes for clumps
zonation reconstruction were based on the enterocyte zonation table in Moor
et al.7. There, gene zonation was reconstructed for the crypt and 6 villus zones
(V1–V6) using single enterocytes. Candidate landmark genes were required to
satisfy the following requirements: (1) Abundance—having a mean normalized
expression across zones of 5 × 10−4 or more. (2) Enterocyte specific: having mean
expression in any enterocyte/stem-cell population higher than 10-fold the maximal
mean expression in all secretory cell types and expressed in at least 10% of that
enterocyte population. (3) Zonated—having at least 70% difference between
maximal and minimal expression along the crypt-tip axis.

In order to select an informative set of landmark genes which includes crypt,
mid-villus and villus tip markers, we calculated for all candidate landmark genes
the Euclidean distances to “ideal” land mark profiles as follows: Ideal crypt
landmark profile: expression value 1 in the crypt and 0 for all other zones; Ideal
mid-villus land mark profile: expression value 1 in the middle of the villus (V3) and
0 for all other zones; Ideal tip land mark profile: expression value 1 in the tip and 0
for all other zones. Finally, three lists of enterocyte landmark genes were
comprised: the crypt list with the 30 candidate landmarks with lowest distance
from “ideal” profile 1, the mid-villus list with the 30 candidate landmarks with
lowest distance from “ideal” profile 2 and the tip-villus list with the 30 candidate
landmarks with lowest distance from “ideal” profile 3. If genes overlapped between
the lists, they were assigned to the list of the “ideal” profile they were closest to. The
selected landmark genes are shown in Supplementary Data 1.

Assignment of clumps to zones. Based on Supplementary Data 6, enterocyte
specific genes were defined as genes for which the mean expression in any enter-
ocyte/stem population was higher than 3-fold the maximal mean expression in all
other secretory cell populations, and that were expressed in at least 10% of that
enterocyte population. For comparability between clumps containing different

numbers of enterocytes, these genes were internally normalized: their expression
was divided by the sum total for all enterocyte specific genes in each clump. Note
that the selected landmark genes are a subset of this group of enterocyte specific
genes. 2% of clumps with lowest sums of enterocyte landmark gene expression
were discarded, since they could not be reliably assigned to a zone. The remaining
4690 clumps were assigned a zone using the single cell enterocyte zonation table7 as
a spatial reference as follows.

The expression values of the enterocyte landmark genes in the spatial reference
were normalized by dividing the expression of each gene by its maximal expression
across zones. This resulted in a normalized landmark expression vector for each
zone in the spatial reference. The expression of the enterocyte landmark genes in
the clumps was also normalized by dividing the expression of each gene by its
maximal expression across clumps. This resulted in a normalized landmark
expression vector for each clump. Next, the correlations between the vector of
landmark values for each clump were calculated with that of each of the zones. The
clump was assigned to the zone it correlated most with. A clump-based zonation
table was computed by averaging the expression values for each gene across all
clumps in the zone. P values were calculated with the Kruskal–Wallis test
(implemented in the MATLAB function kruskalwallis). q values were calculated
using the Benjamini and Hochberg method (implemented in the MATLAB
function mafdr), applied to all genes for which maximal expression across zones
exceeded 5 × 10−6 (Supplementary Data 2).

Selection of cell type-specific classification markers. Classification of clumps
according to their contained cell type was performed separately for pairs and larger
clumps due to differences in relative expression of genes stemming from clumps
size. For cell type classification, we used Supplementary Data 6 to identify cell-type
specific marker genes for secretory cells and enterocytes. For secretory cells, these
included genes with mean normalized expression above 10−4, expressed in over
15% of the single cells and expressed at more than 4-fold higher levels than the
maximal mean expression in all other epithelial cell types (we define this fold-
change as specificity ratio). For each secretory type, all genes meeting these criteria
were ordered by their specificity ratio in descending order and up to 50 first genes
were selected as type markers. Enterocyte markers (used in Supplementary Fig. 3d)
were selected similarly: genes expressed in at least 15% of enterocytes in any zone,
with mean expression at least 4-fold greater in enterocytes than secretory cell types.
The 50 genes with highest fold difference between enterocytes and secretory cells
were selected. The list of cell-type classification markers appears in Supplementary
Data 7.

Geometric classification of clumps. For each secretory cell type (goblet, tuft,
enteroendocrine and Paneth), the expression levels of its classification markers
were summed in each clump. These sums were converted to Z scores by subtracting
the mean and dividing by the standard deviation across clumps. This process
projected the clumps into a 4-dimensional space spanned by the sums of secretory
cell type markers. We next performed principal component analysis on these
shifted and scaled sums (implemented in the MATLAB function pca). This resulted
in three principal components (PCs) that define a 3D position for each clump in
PC space. For each PC, the median was subtracted in order to shift the origin of the
PCs to the origin of axes. In PC space, the clumps were now arranged on four lines
or rays emanating from the origin (Fig. 2o, Supplementary Fig. 3a). Clumps at the
origin, where the sum of all secretory markers were low were enterocyte-containing
clumps (Supplementary Fig. 3e). Clumps at the edge of each ray were the ones for
which the sums of the distinct secretory type’s markers were maximal. Intermediate
clumps contained different contributions of the enterocyte transcriptome and the
secretory cell transcriptome (Supplementary Fig. 3a). Larger clumps were closer to
the origin, since the contributions of enterocytes, the major cell type, were higher in
these clumps (Supplementary Fig. 3f).

We fitted a line to each of the secretory type rays. For the fit, we sorted clumps
according to their distance from the origin and considered only clumps with
distance above the 99 percentile. Fit was performed using a least square fit method
implemented in a custom MATLAB script. Each ray was assigned to the secretory
type, the markers of which peaked along it (Supplementary Fig. 3a). For each
clump, the Euclidean distance from each of the rays was computed and Z scores for
the four distances were calculated.

The farther from the origin of axes a clump was located, the higher it’s sum of
cell type-specific markers, and therefore the lower were the chances to miss-classify
it. The region close to the origin contained clumps that were low in all cell type
marker sums. There, a clump could be close to a particular ray at random. To
minimize miss-classification we therefore sorted the clumps on each ray in
descending order according to the distance from the origin, and included a fraction
that matches the abundance of this cell type in the tissue. To estimate these
abundances, we measured the proportions of each secretory cell type in both crypts
and villi of the jejunum out of all cells (Supplementary Data 8). Measurements were
performed by imaging the tuft cell marker Dclk1, the enteroendocrine cell marker
Chga and the goblet cell marker Clca1. For Paneth cells, data was taken from Elmes
M.J.51. For final thresholds, measured proportions for crypts and villi were
multiplied by 2 for pairs and by 3 for larger clumps, to represent the higher
probability to capture rare events in clumps. Secretory types were assigned only to
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clumps far enough from the origin based on the above-mentioned cell type-specific
thresholds, for crypt and villus clumps separately based on the respective threshold.
Only clumps for which Z-score of distance from closest ray was below −1 were
considered. All other clumps were classified as enterocyte-only clumps.

Separation into clumps zonation tables per secretory type. Clumps were
separated by assigned secretory cell types, and the zone was assigned as previously
described, based on enterocyte gene expression. For comparability between clumps
containing different numbers of enterocytes, secretory cell type specific genes were
internally normalized: their expression was divided by the sum of all secretory cell
type specific genes in each clump. Secretory cell type specific genes, out of which a
subset of secretory landmark genes were chosen (below), were defined as genes for
which the mean expression in the secretory cell type was higher than 3-fold the
maximal mean expression in all enterocyte populations and were expressed in at
least 1% among cells in that secretory cell type. Calculation of zonation table
proceeded as previously described for all clumps (Supplementary Data 2).

Use of clumps for single cell zonation reconstructions. For goblet, enter-
oendocrine and tuft cells, we used the clump-based zonation tables to find zonated,
secretory-specific landmark genes. We then used the expression patterns of these
landmark genes to assign single sequenced secretory cells to crypt-villus zones,
grouped them and averaged their expression, thus obtaining zonation tables of all
genes for each secretory cell type. The method we used for single cell recon-
struction is similar for all three secretory types, with slight differences in landmark
gene selection criteria and the spatial resolution of the reconstruction between
goblet cells and the other secretory cell types. The reason for these differences
stemmed from the substantially higher goblet cell abundance in the tissue and
therefore in clumps, compared to other secretory cell. This enabled performing the
reconstruction with finer spatial resolution for goblet cells. For all secretory types,
single cell reconstruction consisted of the following steps, secretory type specific
parameters and variations on this general method are detailed in the next sections:

1. Secretory cell type-specific genes were defined as genes for which mean
expression in the secretory cell type was higher than 3-fold the maximal
mean expression in all enterocyte populations, and that were also expressed
in at least 1% of secretory cells.

2. For comparability between clumps containing different numbers of cells,
these genes were internally normalized: their expression in each clump was
divided by the sum of all secretory cell type-specific genes in that clump.

3. Out of the secretory specific genes in step 1, two groups of zonated
landmark genes were selected: crypt landmark genes, which are zonated
toward the crypt and villus-tip landmark genes, zonated toward the villus
tip. See sections below for detailed description of landmark gene selection
criteria. For each clump of this secretory cell type, the sum of the normalized
expression of the crypt landmark genes (denoted X) and of the tip landmark
genes (denoted Y) was calculated. These sums were than used to calculate a
unit-less spatial coordinate: (1) η= Y/(X+ Y) for each clump. This yielded a
distribution of η values for each zone in secretory cell-containing clumps.

4. For each single secretory cell used for reconstruction, the spatial coordinate
η was calculated as in step 3.

5. In order to assign each single cell to a zone based on it’s η, η limits for the
zones were calculated using an optimization method—reconstruction was
performed using a wide range of possible η limits options (see step 6 for
details). The set of η limits that yielded zonation profiles of secretory specific
genes which best fit the clumps profiles was selected. Specifically, for each
possible set of η limits:

a. We performed single cell zonation reconstruction as described in
steps 7–8

b. For each secretory specific gene (defined in step 1), the zonation profile
in the current reconstruction was compared to the zonation profile in
clumps: the Euclidean distance between the two profiles was calculated
after both were normalized by their maximal values.

c. The median over genes of this distance was calculated and denoted as
MedEuc.

d. The set of η limits yielding the smallest MedEuc was selected as optimal.

6. All η limit sets that were considered in the optimization described in step 5
were calculated as follows:

a. The lowest possible upper bound on η for crypt was set to the median of
η values of crypt clumps—calculated in step 3. We denote this number
as ηmin

b. The resolution of η optimization denoted Dη, was determined.
c. A vector of all considered η limit values, ηVec, was created: a regularly-

spaced vector starting at ηmin and ending in 1, using Dη as the
increment between elements. ηVec elements were therefore: [ηmin, ηmin

+Dη, ηmin+ 2* Dη,…, ηmin+m* Dη] where m= (1 −η min)/Dη).
d. All possible combinations of the elements of ηVec taken Nzones−1

(Nzones is the number of desired zones for the reconstruction) at a time
were calculated. Each such combination is an optional set of η limits,

with a zero added in the beginning and one appended at the end. For
example, if the reconstruction is to be done for 4 zones, each such
optional set of η limits would be: 0, ηVec1, ηVec2, ηVec3,, 1. With ηVec1,
ηVec2, ηVec3 being one of the combinations of ηVec values- such that
ηVec1 < ηVec2 < ηVec3.

e. All sets of η limits which yielded less than 10 single cells in some zone
were discarded and not considered in the optimization described in
step 5.

7. Each single cell was assigned to a zone based on the optimal η limits selected
as described in step 5.

8. The expression values of all the single secretory cells in each zone were
averaged for each gene, to obtain the zonation table of genes in the
secretory cells.

9. P values for zonation per gene were calculated with the Kruskal–Wallis test
(implemented in the MATLAB function kruskalwallis). q values were
calculated using the Benjamini and Hochberg method (implemented in the
MATLAB function mafdr), for all genes for which expression exceeded 5 ×
10−6.

Zonation reconstruction of single goblet cells. Single cells used for zonation
reconstruction were from scRNA-seq experiments on intestinal cells, performed
using the MARS-seq protocol (Supplementary Fig. 7), see scRNA-seq section for
details. Goblet cells were detected based on Seurat clustering50.

We defined the Center Of Mass (COM) of a gene’s spatial expression profile
across the zones 1,2,..N with respective expression values per zone of E1,E2,…EN as:

COM ¼ ∑
N

i¼1
Ei*i= ∑

N

i¼1
Ei ð1Þ

Goblet cell specific landmark genes based on clumps data (steps 3–4 in the
previous section) were selected based on the following criteria:

● Maximal expression across zones in clumps zonation Supplementary
Data 2 >= 5 × 10−5.

● Crypt markers: COM <= 3, expressed in at least 2 clumps in the crypt.
● Tip markers: COM >= 4.7, expressed in at least 2 clumps in the tip

most zone.

This resulted in 309 crypt markers and 62 tip markers listed in Supplementary
Data 1. Single cell reconstruction was performed with 5 zones. Resolution
parameter for optimization- Dη (step 6b in the previous section) was set to 0.05.

Zonation reconstruction of single enteroendocrine cells. Single cells used for
zonation reconstruction were taken from Gehart12. UMI count table for the single
cells was downloaded from Gehart et al.12 (GEO: GSE113561) and parsed in
MATLAB. Expression values per cell were normalized by dividing by the overall
sum of UMI for each cell. Cells marked as excluded in the metadata supplied by
the authors were removed. Enteroendocrine specific landmark genes based on
clumps data (steps 3–4 in previous section) were selected based on the following
criteria:

● Maximal expression in clumps zonation Supplementary Data 2 >= 5 × 10−5.
● Crypt markers: COM <= 1.8, expressed in at least 2 clumps in the crypt.
● Tip markers: COM >= 4.2, expressed in at least 2 clumps in the tip

most zone.

This resulted in 636 crypt markers and 20 tip markers listed in
Supplementary Data 1. Single cell reconstruction was performed with 4 zones.
Resolution parameter for optimization- Dη (step 6b in the previous section) was
set to 0.02.

To obtain the temporal profile of enteroendocrine gene expression (Fig. 5a),
time stamps per cell, which were available in GEO: GSE113561 were used to
equally partition cells into 7 temporal bins, assigning each cell to a distinct
temporal zone. Within each temporal bin, gene expression was averaged over cells
in that bin creating the temporal expression table. P values for temporal profiles per
gene were calculated with the Kruskal–Wallis test (implemented in the MATLAB
function kruskalwallis). q values were calculated using the Benjamini and Hochberg
method (implemented in the MATLAB function mafdr).

Zonation reconstruction of single tuft cells. Our single cell MARS-seq protocol
yielded mainly villus tuft cells. We, therefore, combined our cells with tuft cells
from Fig. 1 of Haber et al.17. Zonation reconstruction was performed separately for
these two single cell datasets and consequently merged. Tuft cell-specific landmark
genes based on clumps data (steps 3-4 in previous section) were selected based on
the following criteria:

● Maximal expression in clumps zonation Supplementary Data 2 >= 5 ×
10−5.

● Crypt markers: COM <= 1.8, expressed in at least 2 clumps in the crypt.
● Tip markers: COM >= 4.2, expressed in at least 2 clumps in the tip

most zone.
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This resulted in 323 crypt markers and 29 tip markers listed in Supplementary
Data 1. Single cell reconstruction was performed with 4 zones. Resolution
parameter for optimization- Dη (step 6b in previous section) was set at 0.02. The
merged zonation table was calculated as the weighted mean of the two zonation
tables derived separately from the two datasets with the weights reflecting the
relative contribution of each data set per zone in terms of amount of
expressing cells.

The details of the calculation are as follows—for each possible set of η limits:

1. The single cell reconstruction using only cells from our data was computed.
2. The single cell reconstruction using only cells from Haber et al.17 was

computed.
3. For each gene, the mutual zones between data sets were identified. Mutual

zones were defined as zones in which both data sets had 5 or more cells
expressing the gene above the expression threshold, set at 5 × 10−6.

i. If there were no mutual zones-and the gene was expressed only in one
dataset, the expression in that data set was retained for the merged
zonation table.

ii. If both data sets had cells expressing the gene, but without sufficient
overlap in a single zone the gene was excluded from the merged
zonation table.

iii. If there were several mutual zones, the mutual zone in which the data
sets had the most similar amount of expressing cells was selected.

4. For each gene, the zonation expression profile in each data set was
normalized by the value in the mutual zone.

5. These two scaled profiles were averaged with weights per zone. The weights
per dataset per zone were the amount of cells expressing the gene above the
expression threshold (5 × 10−6).

6. Averaged zonation profiles for each gene were re-normalized by dividing by
the maximal value, and re-scaled by multiplying the normalized profiles by
the maximal expression level between the two separate zonation tables.

For the merged zonation table, the p values were calculated per gene as the
minimal p value between the two separate reconstructions. q values were calculated
using the Benjamini and Hochberg method (implemented in the MATLAB
function mafdr).

Validation of single cell reconstructions with clumps. In order to further vali-
date the single cell reconstructions, we computed the correlation of centers of mass
(COM) between single cell and clump-based reconstructions. For this puropose, we
coarse-grained the 7-zone clumps zonation tables into the same number of zones as
the respective single cell reconstruction. These coarse grained zonation tables were
calculated the same way as described for clump to zone assignment, with one
difference: the spatial ref. 7 zonation table was linearly interpolated for the smaller
number of equally spaced zones prior to reconstruction.

For the validation, we chose genes that were not used as landmarks for single-
cell reconstruction and were both highly expressed (above 10−5) and secretory
specific (secretory specific criteria described in step 1 of the single cell
reconstruction algorithm). We further limited ourselves to genes for which the
SEM of reconstruction was small enough for both single cells and clumps based
reconstructions (below 0.4 for goblet and below 0.5 for tuft). This yielded a similar
quantity of genes for goblet and tuft: 30 and 28, respectively.

For Enteroendocrine cells, such validation was infeasible, due to the various
enteroendocrine cell sub-types and their relatively sparse representation in clumps.
Instead, single cell reconstruction of spatial zonation was validated against the
temporal gene expression patterns derived from the same single cells in Gehart
et al.12, resulting in high correlation (R= 0.4, p < 10−10).

Robustness analysis. In order to assess the robustness of the zonation tables to
parameter choices, we reconstructed the single cell zonation tables with modified
parameter values and examined the change in the correlation of the zonation
profiles centers of masses (COM) between the original and perturbed zonation
tables as a function of the size of introduced parameter perturbation. To this end,
we performed the following for all parameters pertaining to clump secretory type
assignment and subsequent single cell reconstructions (Supplementary Data 11):
we selected ~75 linearly spaced values for each parameter within the 0.5–1.5 fold
range. For some parameters, only integer values could be used. For other para-
meters, not the entire 0.5–1.5 fold range yielded reconstructions due to absence of
marker or landmark genes fitting the criteria for these values. For each parameter,
we then generated single cell zonation tables for all the 75 different parameter
values. In order to compare these reconstructions to the original zonation table, we
calculated the Spearman correlation coefficient of the COMs for the expressed
genes (above 5 × 10−6), between each reconstruction and the original. We denote
this quantity for parameter i and perturbed value j− Pij. We then plotted for each
parameter i, the values Pij for j= 1:75. The plotted curves (Supplementary Figs. 4a,
5a, 6a) were smoothened by applying a moving median filter with window size 10.
Due to smoothing, the point (0,1) which indicates that for 0 distance between the
perturbed and original parameter, the Spearman correlation Pij is 1, was sometimes

shifted. We, therefore, reintroduced this point after applying the moving median
filter.

In order to visualize the differences in the zonation profiles of individual genes
between the original and perturbed reconstruction when Pij declines, we selected
for each cell type a representative example of a parameter choice that yielded low
correlation (Pij) and plotted the original and the perturbed reconstructed zonation
profiles for 10 selected genes: 5 crypt genes and 5 tip genes (Supplementary
Figs. 4b, 5b, 6b). The genes shown for these examples were selected as follows:
several gene types were excluded (exclusion criteria below), the remaining genes
were sorted by COM and top 5 (tip) and bottom 5 (crypt) were auto-selected.

Genes were excluded based on the following criteria, considering the original
reconstruction:

1. landmark genes used to generate the original reconstructions.
2. low confidence genes—q value above 0.05.
3. not highly zonated genes—less than 2 fold dynamic range.
4. lowly expressed genes—with maximal normalized expression below 5 × 10−5.

Ligand-receptor analysis. Ligand-receptor analysis was performed similar to
Bahar-Halpern et al.38. We performed the analysis between and within zonated
epithelial and mesenchymal cell types. We used the zonated secretory cell
expression reconstructed with Clumpseq and previously published datasets for
zonated enterocytes and mesenchymal cells7,38. A list of ligand-receptor pairs was
extracted from Ramilowski et al.20 (697 unique ligands and 688 unique receptors).
For each gene g and each cluster c we calculated the average expression xcg . We then
computed a Z-score, Zc

g , representing the enrichment of each ligand and receptor
in each cell type:

Zc
g ¼

xcg �meanðxcg Þ
stdðxcg Þ

ð2Þ

where the mean and standard deviations were compute over all cell types. We next
defined an interaction score as:

Zinteraction ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZC1
L Þ2 þ ðZC2

R Þ2
q

ð3Þ

where ZC1
L is the ligand Zscore for cell type C1, and ZC2

R is the receptor Zscore for
cell type C2. The resulting list of interactions was filtered per fraction of cells
expressing either the ligand or the receptor (>0.05) and the Zinteraction was above 2.

Cytoscape52 was used to visualize bottom and tip interactions. We selected only
ligands and receptors with an average expression of either the ligand or the
receptor above 2 × 10−5 and Zinteraction higher than 5. For interactions that occur at
the crypt or villus bottom zones (Supplementary Fig. 17a), we considered EC, D, L,
X and N enteroendocrine cells and crypt-villus bottom goblet, tuft, enterocytes and
telocytes. For interactions at the villus tip (Supplementary Fig. 17b), EC, I, L and N
enteroendocrine cells and villus tip goblet, tuft, enterocytes and telocytes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data generated in this study hve been deposited in Gene Expression Omnibus with the
accession code: “GSE154714”. Single cell dataset also includes epithelial cells from
“GSE134479”38. Enteroendocrine single cell dataset was acquired from NCBI GEO
dataset browser, with accessions code: “GSE113561”12. All other relevant data supporting
the key findings of this study are available within the article and its Supplementary
Information files or from the corresponding author upon reasonable request. Source data
are provided with this paper.

Code availability
All codes used in this study will be available upon request. All codes are uploaded on
Zenodo (https://doi.org/10.5281/zenodo.4561515).
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