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Individuals are often co-infected with several parasite species, yet measuring
within-host interactions remains difficult in the wild. Consequently, the
impacts of such interactions on host fitness and epidemiology are often
unknown. We used anthelmintic drugs to experimentally reduce nematode
infection and measured the effects on both nematodes and the important
zoonosis Sin Nombre virus (SNV) in its primary reservoir (Peromyscus
spp.). Treatment significantly reduced nematode infection, but increased
SNV seroprevalence. Furthermore, mice that were co-infected with both
nematodes and SNV were in better condition and survived up to four
times longer than uninfected or singly infected mice. These results highlight
the importance of investigating multiple parasites for understanding inter-
individual variation and epidemiological dynamics in reservoir populations
with zoonotic transmission potential.
1. Introduction
Co-infection with both microparasites andmacroparasites is common in the wild
[1,2]. Interactions among parasites co-habiting a host can occur through multiple
mechanisms, including bottom-up (e.g. resource competition) or top-down
(e.g. immune-mediated) processes [3–5]. These interactions can alter both host
and parasite fitness [1,2,6,7], e.g. increasing parasite burdens for a co-infecting
species [8,9], worsening disease pathology [6], altering transmission rates [10]
and ultimately influencing the efficacy of disease control strategies [11].

Disease ecologists commonly assess the consequences of infection in a wild
host by removing a target parasite group using drug treatments [12], butmonitor-
ing the non-target parasite community response is rarer. Some studies have used
perturbation experiments to determine the strength and direction of within-host
parasite interactions by measuring the response of non-targeted parasite species
after treatment [8,9,13]. In African buffalo (Syncerus caffer), animals treated to
remove nematodes were nine times more likely to survive co-infection with the
bacterium Mycobacterium tuberculosis [13]. By contrast, removal of nematodes in
wild rodents has been shown to increase coccidian microparasite infection, poss-
ibly through competitive release [8,9]. These studies show that ignoring the
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broader parasite community may crucially underestimate the
occurrence and importance of within-host interactions. For
interactions between parasites with zoonotic potential or that
severely impair the immune system—as with HIV and the re-
emergence of drug-resistant tuberculosis—the public health
implications can be severe [14]. Mechanistic insights from sys-
tems where experimental approaches are possible will be key
for the understanding of the role of co-infection in natural
populations [15,16].

Small mammals disproportionately serve as reservoir
species for zoonotic diseases [17–20] and are ideal, tractable
systems for experimental studies. Hantavirus pulmonary
syndrome (HPS) is a zoonotic disease caused by Sin Nombre
virus (SNV), endemic in deer mice (Peromyscus maniculatus)
andwhite-footedmice (Peromyscus leucopus) [21,22]. Hantavirus
infection can reduce wild rodent fitness [22,23] and often
co-occurs with other endemic parasites [24,25]. Here, we
experimentally perturbed the taxonomically diverse parasite
communities of deer and white-footed mice, the primary wild
reservoirs of SNV [21]. Nematodes represent keystone parasites
inwithin-host communities because they can interact with other
parasites through the host immune system or through direct
competition for resources in the gastrointestinal (GI) tract
[4,26]. Previous work in this system found that GI nematode
infections were common and interacted with other co-infecting
GI- and ectoparasites [27,28]. We used anthelmintic treatment
to remove nematodes and monitored downstream effects on
SNV infection and host fitness. We show that removal of nema-
tode infections increases the subsequent probability of SNV
seroconversion and that co-infection with nematodes and SNV
conveys condition and survival benefits within this population.
2. Methods
Field experiments were conducted at the Mountain Lake Biologi-
cal Station in southwest Virginia, where populations of deer and
white-footed mice have been monitored for decades [29], and the
parasite community is well-characterized [9,27]. Live-trapping
took place from May/June to August in two temporal replicates
(2010 and 2011) on three spatial replicates of two, 0.5 ha grids
each (8 × 8 trap arrays; 10 m spacing). Each grid set was trapped
for three consecutive nights every two weeks. In each temporal
replicate, randomized anthelmintic treatment was administered
at first capture and repeated fortnightly with a weight-adjusted
oral dose of ivermectin (5 mg kg−1; Eqvalan, Merial, USA) or
control (5% sucrose solution). See the electronic supplementary
material for additional details.

At first capture, individuals were ear-tagged and their
species identified using morphological characteristics [30]. At
each capture, morphometric data (age, sex, weight, reproductive
condition) were recorded. Faecal and blood samples were also
collected fortnightly. The presence/absence and number of eggs
per gram of faeces (a common proxy of infection intensity; EPG)
for nematode species were quantified using a salt flotation tech-
nique [31]. Nematode species were aggregated for analysis
because drug treatment is at the group (nematode) level. Blood
samples were screened for SNV antibodies using standard
enzyme-linked immunosorbent assay (ELISA) protocols and
reagents from the U.S. Centers for Disease Control and Prevention
[32,33]. ELISA results were used to assign infection status based on
seropositivity (presence/absence: threshold of 3 s.d. greater than
negative control) and for positive samples the adjusted optical
density (OD) relative to a negative control (CDC no. 703226) was
used to estimate antibody concentration for statistical analyses.
Additional details are given in the electronic supplementary
material.

All statistical analyseswere conducted in R v. 3.6.0 [34].We first
investigated factors driving natural SNV and nematode infections
prior to experimental perturbations by fitting generalized linear
mixed-effects models (GLMMs) using the package ‘glmmTMB’ to
SNV (both presence/absence and antibody concentration) or
nematodes (both presence/absence and intensity (EPG)) for all
first capture events. Models were fitted with binomial (logit link;
SNV and nematode presence/absence), Gaussian (SNV OD-posi-
tive only) or negative binomial (log link; nematode intensity,
infected only) error distributions. We included the following
fixed effects: year (factor: 2010/2011), Julian date of capture (con-
tinuous, scaled to mean = 0/s.d. = 1), sex (factor: male/female),
age (factor: sub-adult/adult), species (factor: P. leucopus/P. manicu-
latus) and body weight (continuous, grams). Nematode presence
(factor: 0/1) was included in SNV models to test for influence of
nematode presence prior to treatment.

We then tested the relationship between SNV and GI nema-
todes by fitting GLMMs to the same response variables detailed
above, using data from all captures and including additional
fixed effects of treatment (factor: ivermectin treated/control),
nematode infection status (factor: present/absent) and an
interaction of treatment with timepoint (factor: pre-/post-
treatment). Additional model details are given in the electronic
supplementary material.

Finally, we investigated the effects of drug treatment and SNV–
nematode co-infection on host body weight, as a proxy of the
condition, and recapture duration (number of days known alive)
as a proxy for survival using a GLMMwithGaussian and negative
binomial error distributions, respectively. The following fixed
effects were included for both models: year, sex, age, species, treat-
ment (all as described above), and infection status (factor, 4-level:
none, SNV only, nematode only, co-infected). Body condition
models included additional effects of reproductive status and a
random effect of individual ID, while survival models included
additional fixed effects of weight and trap session across both
years (continuous, 1–11) to account for skewed observation
times. Grid (6-level factor) was included as a random effect in all
models to account for variation across spatial replicates.
3. Results
Four hundred and nine individuals were captured in total
(n2010= 186; n2011= 223, table 1). Prior to anthelmintic treatment,
SNV prevalence was 10.3% and GI nematode prevalence was
28.4%. Mouse sex, body weight and capture date were the
primary determinants of both SNV infection probability and
antibody concentration before treatment (table 2). Males (sex,
male: infection probability—β = 0.89, s.e. = 0.39, p = 0.022;
titre—β = 0.11, s.e. = 0.06, p = 0.09) and larger mice (weight (g):
infection probability—β = 0.11, s.e. = 0.05, p = 0.015; titre—β =
0.02, s.e. = 0.01, p = 0.048) were more likely to be infected with
SNV, while infection probability declined later in the summer
(Julian date (scaled): infection probability—β =−0.51, s.e. =
0.21, p = 0.013; titre—β =−0.12, s.e. = 0.03, p < 0.001). There
were no significant predictors of nematode infection probability
at first capture (table 2), and only time of season was a signifi-
cant predictor of nematode infection intensity (Julian date
(scaled): β = 0.90, s.e. = 0.26, p < 0.001), where EPG increased
throughout the summer.

Anthelmintic treatment reduced nematode infection prob-
ability (77.0% reduction) and intensity (89.8% reduction)
(ivermectin, treated : timepoint, post-treatment: probability—
β =−2.17, s.e. = 0.61, p < 0.001; intensity—β =−5.21, s.e. = 0.91,



Table 1. Field experiment population characteristics.

co-infection status

first capture, no. individuals subsequent captures, no. captures (no. individuals)

none nem. only SNV only co-infected none nem. only SNV only co-infected

host factors males adult 70 39 12 8 37 (29) 27 (20) 3 (2) 4 (2)

sub-adult 60 19 6 3 12 (10) 6 (5) 0 0

females adult 51 37 6 4 36 (27) 29 (17) 5 (2) 6 (1)

sub-adult 62 25 3 4 9 (6) 4 (4) 0 2 (2)

total no. individuals 243 120 27 19 72 46 4 5
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p < 0.001) (figure 1a,b). By contrast, SNV infection probability
increased following anthelmintic treatment (54.5% increase,
probability—β = 1.61, s.e. = 0.74, p = 0.029). SNV antibody
levels were also greater following treatment; however, this
was not significant (table 2). Nematode infection probability
was also associated with body weight, where larger mice
were more likely to be infected (table 2). As in pre-treatment
models, capture date was a predictor of nematode infection
intensity, and body weight and capture date were significant
predictors of SNV infection probability and antibody concen-
tration (table 2). Finally, sub-adult mice had higher SNV
antibody response compared with adult mice (table 2).

We found positive effects of co-infection with SNV and
nematodes on both host body weight as a proxy of host con-
dition (weight (g): β = 3.37, s.e. = 0.89, p < 0.001) and
recapture duration as a proxy for survival (observation
length (days): β = 1.62, s.e. = 0.29, p < 0.001), where co-infected
individuals on average were 3 g (20%) heavier and observed
for four times longer than singly-infected individuals
(figure 2). Weight variation with age was accounted for by
including host age as a fixed effect (age class, adult: β =
5.04, s.e. = 0.35, p < 0.001). We found additional effects of
sex (sex, male: β =−1.11, s.e. = 0.34, p = 0.001) and reproduc-
tive status (reproductive status, active: β = 1.62, s.e. = 0.31,
p < 0.001) on body weight. In survival models, time to first
capture was accounted for by including trap session as
a fixed effect, but this was not a significant predictor of
recapture duration (table S1).

4. Discussion
Efforts to understand the risk of emerging infectious disease
from wildlife reservoirs commonly focus on anthropogenic
or environmental factors that influence contact at the
human–wildlife interface [35–37], while interindividual
variation in susceptibility and transmission potential within
reservoir hosts remains under-studied [38,39]. Within-host
interactions among parasites can shape infection risk and
fundamentally change pathogen virulence and transmission
potential [15], but the influence of co-infection on zoonotic
potential is still poorly understood. Here, we show that the
loss of important nematode parasites drove increased preva-
lence of a zoonotic virus, demonstrating that co-infecting
parasites could be an important mediating factor in trans-
mission among reservoir species. This finding supports the
idea that parasite diversity loss could result in increased zoo-
notic outbreaks [40] and that parasite conservation effects
may be a valuable strategy in zoonotic disease control [41].
Mice that were co-infected with SNV and GI nematodes
had higher body weight and were observed for longer than
uninfected or singly infected individuals, which could alter
disease dynamics by modifying infected individuals’ trans-
mission potential. For example, anthelminthic treatment in
African buffalo (S. caffer) decreased mortality from bovine
tuberculosis (BTB), resulting in an eightfold increase in the
BTB reproductive number within the population [13].
Although hantaviruses are not considered to causemuch path-
ology in rodents, evidence from Peromyscus spp. suggests that
they can result in some associated mortality [22,23]. The
enhanced condition and lifespan observed here may represent
an unexpected benefit of nematode co-infection for wild
rodents infected with SNV. There are some limitations of
body weight as a proxy for body condition and observed
time alive for survival. The condition was not scaled to
length as body length was not available for each time point;
however, we account for all common factors influencing host
size in themodel. For survival, we cannot rule out confounding
effects such as dispersal or interindividual variation in trap-
ping likelihood. Furthermore, a small number of mice (N =
10) survived for multiple years in this study and contributed
disproportionately to observation lengthwithin the co-infected
group. However, previous work suggests that SNV does not
influence dispersal in deer mice [42] and no other host factors
(e.g. sex, age, weight) impacted recapture duration in our
study. We suggest that controlled experiments will be needed
to explicitly test whether and how SNV–nematode co-infection
prolongs survival.

Our observations imply that reducing the nematode
burden creates beneficial conditions for SNV infection, poten-
tially by altering the within-host immune environment. The
immune response to nematodes is typically dominated by a
combination of T-helper cell 2 (Th2) and T-helper cell regulat-
ory (Treg) immune responses [43]. These responses include a
suite of Th2-related cytokines, which are important mediators
of inflammatory responses of the T helper cell 1 (Th1) arm of
the immune system [44], and are better suited to minimize
damage to the host rather than directly clear parasites, result-
ing in chronic infections [45]. Hantaviruses are likewise
chronic in rodents and use a distinct mechanism to achieve
immune evasion to persist and replicate in the absence of
overt disease, whereby the virus may directly mediate sup-
pression of Th1 responses via structural and non-structural
proteins [46]. Protective antibody responses develop two
weeks post hantavirus infection and can remain detectable
throughout a rodent’s life [46]. It is, therefore, possible
that our results represent a reversal of nematode-induced
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Figure 1. Anthelmintic treatment impacts nematode (a,b) and SNV (c,d) infection dynamics. Plots represent raw data for pre- or post-treatment groups. Treated
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immunosuppression following anthelmintic treatment. Given
the infection status of SNV was determined by ELISA assays,
it is also possible that these results reveal an increased
detection probability of SNV due to the higher magnitude
of response in the absence of nematode infection. However,
given the detection of seroconversion is rare and only a
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small number of mice (4%) were detected as seroconverting
in this population, we cannot definitively ascribe this mech-
anism. Alternatively, if chronic nematode infection imposes
energetic costs, removing these parasites could result in
greater host movement and sociality, driving greater SNV
exposure [47,48]. Regardless of underlying mechanisms,
these observed nematode–SNV interactions confirm that
distantly related parasites can be mechanistically linked,
and studies that do not consider co-infection may be missing
an important source of variation in disease ecology [3,15,49].
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