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Abstract: Self-emulsion improves solubility and bioavailability for γ-oryzanol/algae oil, and alginate
beads can be used as controlled release carriers. In this study, self-emulsified alginate beads (SEABs)
were prepared with different weight ratios of self-emulsion treatment (5%, 10%, 15%, 20%, and
30%) with alginate. We found that the microstructure with a surfactant of SEABs had a different
appearance with alginate-based beads. The encapsulation of γ-oryzanol corresponded with the
self-emulsion/alginate ratio, which was 98.93~60.20% with a different formulation of SEABs. During
in vitro release, SEABs had the gastric protection of γ-oryzanol/algae oil, because γ-oryzanol and
emulsion were not released in the simulated stomach fluid. When the SEABs were transferred to
a simulation of the small intestine, they quickly began to swell and dissolve, releasing a higher
content of the emulsion. We observed that the emulsion that formed had a bimodal distribution in the
simulated intestinal fluid as a result of the hydrogel and emulsion droplets, leading to the formation
of large aggregates. These results suggested that γ-oryzanol encapsulation within alginate beads via
emulsification combined with gelation can serve as an effective controlled delivery system.
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1. Introduction

γ-Oryzanol was first isolated in 1954 by Kaneko and Tsuchiya from the unsaponifiable fraction
of rice bran as a crystalline substance; it is mainly composed of esters of trans-ferulic acid with
phytosterols [1,2]. Among these, cycloartenol, β-sitosterol, 24-methylenecycloartenol, and campesterol
predominate. Since then, γ-oryzanol has allowed for the identification of more than 20 ferulic
acid esters of triterpene alcohols and sterols. For industrial procedures, soapstock is the richest
source of γ-oryzanol, with the refining process used to prepare soapstock involving a deacidification
treatment of rice bran oil [3]. γ-Oryzanol has received considerable attention due to its numerous
positive qualities, including the fact that it is anticarcinogenic, anti-inflammatory, antihyperlipidemic,
antidiabetic, and neuroprotective [1,2,4]. Previous studies have shown that γ-oryzanol is safe in terms
of subacute toxicity, chronic toxicity, teratogenicity, and developmental toxicity [4,5]. DHA was a
popular nutritional with the consumer market in view of the clear evidence of the health benefits,
including development of the eyes and brain, antihyperlipidemic, antihypertensive, anti-inflammatory,
and antiarrhythmic effects [6]. The rate of DHA biosynthesis is low and insufficient to meet the
physiological demands of humans, of which dietary intake is the primary source. Algae oil is a
commercially successful alternative via microalgae fermentation, which has high amounts of DHA,
shortens growth, and has good sensory and safety profiles [6,7].
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According to the Biopharmaceutical Classification System (BCS), the bioavailability of
pharmaceuticals delivered orally is influenced by their solubility and intestinal permeability. The BCSII
includes low-solubility groups that cause drug absorption via the gastrointestinal tract to be the
limiting factor in terms of bioavailability, which can be useful in achieving suitable blood levels [8,9].
Emulsion formulations have the potential to enhance the solubilization of BCSII drugs. The solubility
and bioavailability of BCSII drugs can be improved with certain kinds of delivery systems, such as
those involving microencapsulation, nanoemulsion, solid lipid nanoparticles, and self-emulsifying
drug-delivery systems (SEDDS). Self-emulsifying drug-delivery systems are composed of a given
drug, oils, surfactants, and sometimes co-solvents. Self-emulsifying drug-delivery systems consist of
emulsion concentrates, but they are not themselves emulsions [8]. However, when they are subjected
to mild agitation in the aqueous environment of the stomach, they easily form stable emulsions.
Self-emulsifying drug-delivery systems have been marketed in the form of liquid or semisolid
products, but these forms have a few shortcomings, especially in terms of the manufacturing process.
These shortcomings have led to the development of SEDDS in solid-dosage forms, which besides
offering improved solubility, also offer further advantages over liquid forms, such as minimizing
gastrointestinal tract irritation without lowering drug bioavailability [8,10]. In the market, SEDDS
formulations of Tretinoin, Cyclosporin A, and Saquinavir have already been introduced as commercial
products [9]. Emulsification combined with gelation has been suggested as an alternative means
of encapsulating several compounds, including sensitive or hydrophobic biologicals. Together,
emulsification and gelation provide an inert environment, which allows the embedded drugs to
maintain greater biological activity and to have strong stability for the duration of their shelf
life [9,11,12].

Ferulate, one of the functional groups in γ-oryzanol, provide antioxidative capacity, and enhance
the stabilization of algae oil. Simultaneously, γ-oryzanol and algae oil lead synergistic effects on
cardiovascular disease. The application of γ-oryzanol in medical and functional food systems may
be limited by its low water solubility, poor bioavailability, and rapid metabolism. In this study, we
designed a SEDDS for γ-oryzanol/algae oil, with alginate beads used as carriers. We then evaluated
the release characteristics in the gastrointestinal tract of the γ-oryzanol/algae oil contained in the
self-emulsified alginate beads (SEABs). More specifically, we measured its particle size, turbidity,
γ-oryzanol amount, and antioxidant capacity.

2. Results and Discussion

2.1. Physical Characteristics

Oil was one of the essential excipients in the SEDDS formulation, not only because it can solubilize
marked amounts of γ-oryzanol and facilitate self-emulsification, but also, and primarily, because it can
increase the fraction of γ-oryzanol transported via the intestinal lymphatic system, thereby increasing
its absorption from the gastrointestinal tract [8,9]. In this study, the γ-oryzanol containing SEABs
comprised 60% algal oil (which contained 40 mg of γ-oryzanol per mL), 24% Tween 80, and 16% Span
80. We used algal oil because it provides the most “natural and functional” basis for excipients. In our
previous studies, the n-3 PUFA of algal oil was 30.3 g/100 g, and they have excellent oxidative stability
(Ea: 96.8 kj/mol) [7]. The Tween and Span used as non-ionic surfactants are generally recognized as
safe, and the acceptable daily intake set by WHO is 25 mg/kg of body weight [8]. In addition, they are
more compatible with biological systems and less affected by pH and ionic strength. γ-Oryzanol/algae
oil self-emulsion was assessed using the self-emulsification test, the results of which indicated that the
spontaneity, homogeneity, and dispersibility of the self-emulsion were good. The appearance of the
emulsion formulation was milky, while the z-average and polydispersity index (PDI) of the droplets
were 149 nm and 0.246 (data not shown).

Alginates are naturally occurring substances that can be considered a form of block polymer, which
mainly consist of mannuronic acid, guluronic acid, and mannuronic–guluronic blocks. The dropwise
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addition of aqueous alginate solution to an aqueous solution containing calcium ions and/or other di-
and polyvalent cations causes the formation of gel in a spherical shape, termed “an alginate bead,”
and such beads have been widely used as drug carriers for oral administration [12,13]. The alginate
bead formation of 5~10% SEABs with varying ratios of γ-oryzanol self-emulsion resulted in spherical
shapes with a narrow size distribution. When a higher load of γ-oryzanol/algae oil self-emulsion
(>15%) was used, the tail became more distinct because of extrusion dripping (Figure 1). The results
resembled those reported by other studies, where varying ratios of hydrogel to oil resulted in
spherical, pear-shaped beads by reductions of interfacial tension, whereas tear-shaped beads, as
well as spherical beads, formed with the lowest surface/volume ratio that were beneficial to the
diffused compounds [14].
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Figure 1. Photographic images of γ-oryzanol/algae oil self-emulsified alginate beads (SEABs) with
different formulations.

The encapsulation, expressed as the percentage of encapsulated γ-oryzanol/algae oil relative to
the self-emulsion used, decreased as alginate concentration increased. We found that γ-oryzanol/algae
oil encapsulation levels of 5%, 10%, 15%, 20%, and 30% SEABs were 98.93%, 73.04%, 68.73%, 66.73%,
and 60.20%, respectively (Table 1). Hydrocolloid was found to improve emulsion stability. This may be
attributable to an increase in the viscosity of the continuous phase surrounding the oil droplets, thus
restricting their movement, or the adsorption/precipitation of the gum in the oil–water interphase
causing a reduction in interfacial tension [14,15].

Table 1. The compositions of γ-oryzanol/algae oil SEABs formulations.

γ-Oryzanol Self-Emulsified Alginate Beads

5% 10% 15% 20% 30%

Composition (%)

algae oil * 3.0 6.0 9.0 12.0 18.0
Tween 80 1.2 2.4 3.6 4.8 7.2
Span 80 0.8 1.6 2.4 3.2 4.8

alginate * 95.0 90.0 85.0 80.0 70.0

Encapsulation (%)

γ-oryzanol 98.93 73.04 68.75 66.73 60.20

Data presented are in mean ± SD (n = 3), with each letter indicating significant variations at p < 0.05. * Algae oil
contained 40 mg of γ-oryzanol per mL; 2.5% alginate aqueous solution.

Some studies have indicated that alginate-based beads are characterized by a porous and collapsed
structure, and a clear ridge structure indicates strong gelation [16,17]. The use of calcium chloride with
alginate leads to the cross-linking and aggregation of alginate, where the exchange of divalent ions of
calcium during the reticulation process is responsible for the creation of a strong network, leading to a
very strong matrix [18]. Figure 2d shows insoluble calcium salt in a calcium/alginate monomer ratio
to ensure strong bead formation. When hydrogel encapsulates a hydrophobic substance, tiny grains
can be found on the surface of the resulting particles. However, if a surfactant is also used, the grains
have a smoother surface. These characteristics are caused by the sublimation of water crystals from the
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freeze-dried alginate matrix, resulting in void spaces and minor structural shrinkage. The difference
in the treatment of surfactant shown in Figure 2 is that the bead has cracks. The other figure images
show that the varying forms of SEABs had holes in them because of the plasticizing effect of the
surfactant [19].Mar. Drugs 2018, 16, x 4 of 10 
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Figure 2. SEM micrographs of SEABs in (a) non-self-emulsified, (b) 5% SEAB, (c) 10% SEAB, (g) 15%
SEAB, (h) 20% SEAB, and (i) 30% SEAB forms, at 100× magnification. SEM micrographs of SEABs in
(d) non-self-emulsified, (e) 5% SEAB, (f) 10% SEAB, (j) 15% SEAB, (k) 20% SEAB, and (l) 30% SEAB
forms, at 5000× magnification.
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2.2. Release Characteristics

The potential for the controlled release of drugs from polymers has received considerable
attention because controlled release could make it possible to retain the optimal concentration of
a drug at a desired location in the body [12,14,20]. The ideal oral delivery system should overcome
acid-base hydrolysis and enzyme degradation in the gastrointestinal tract, providing local treatment
by delivering the drug as closely as possible to the target site and thereby reducing the incidence of
systemic side effects.

The pharmacological activities of γ-oryzanol correspond to its antioxidant activity [21]. Due to the
presence of the phenolic acids in its composition, its anti-ulcer and anti-inflammatory intestinal
effects are a matter of great interest. In this study, we analyzed the γ-oryzanol release and
1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging of the SEAB when it was placed in simulated
stomach fluid and found that the various forms of SEABs provide similar levels of protection to
γ-oryzanol, given that the differences in γ-oryzanol release are not significant (p < 0.05). However,
there were significant differences in the DPPH scavenging exhibited by the various formulations of
SEABs (Figure 3). Initially, the DPPH scavenging levels of the 5%, 10%, 15%, 20%, and 30% SEABs
were 9.7%, 15.1%, 26.0%, 20.7%, and 35.81%, respectively. When placed in the simulated stomach
fluid, the DPPH scavenging levels increased, reaching their highest levels at 80 min, with those levels
being 33.0%, 35.9%, 40.1%, 41.9%, and 47.7%, respectively, and then decreasing thereafter (Figure 3).
Increasing the surfactant concentration had little impact on the antioxidant activity of the SEAB, a
finding that can be attributed to the effects of the γ-oryzanol [22]. We found that the SEAB, the
protection of the γ-oryzanol amount, was not consistent with DPPH scavenging. We expect that
this is a reversible change of γ-oryzanol, attributable to the constitution of simulated stomach fluid.
Simultaneously, we observed that in the simulated gastric fluid, γ-oryzanol was not detected and the
emulsion was formed (data not shown).
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Figure 3. The release of γ- oryzanol/algae oil SEABs in simulated stomach fluid: (A) γ-oryzanol and
(B) 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging.

When placed in simulated intestinal fluid, each form of the SEAB exhibited signs of swelling
and erosion. Meanwhile, the aqueous environment produced a reconstituted emulsion of the
γ-oryzanol/algae oil self-emulsion. The γ-oryzanol was solubilized in the oily core and on the
interface of the emulsion structures [23,24]. The turbidity of the intestinal fluid corresponded with the
emulsion formed from the SEAB. At 50 min after being placed in the simulated intestinal fluid, the
5%, 10%, 15%, 20%, and 30% SEABs caused turbidity levels of 14.8%, 14.3%, 22.5%, 40.3%, and 62.0%,
respectively. At 100 min, those levels were 33.2%, 37.1%, 51.2%, 71.7%, and 90.15%, respectively. At
125 min, they were 50.1%, 61.9%, 71.2%, 90.4%, and 98.1%, respectively. We found that the release of
5% and 10% SEABs at 100 min was lower than 50% because of the strong network leading to strong
gelation (Figure 4). With the 5~30% SEABs, we observed the droplet size of the emulsion in the
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simulated intestinal fluid. These particles exhibited a bimodal distribution, with a population of small
droplets of approximately 129~215 nm in size and a population of large droplets of approximately
750~1916 nm in size (Table 2). At sufficiently low hydrogel concentrations, agglutination between
oppositely charged biopolymers and emulsion droplets occurred, leading to the formation of large
aggregates. When fluid secretion and peristalsis occurred, the large droplets in the simulated intestinal
fluid were transformed into small droplets, the γ-oryzanol had to be hydrolyzed enzymatically from
the large droplets, and its emulsification enhanced its enzyme affinity [25].
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Table 2. The droplet size distribution of SEABs in the simulated intestinal fluid.

γ-Oryzanol/Algae Oil SEABs

5% 10% 15% 20% 30%

Droplet Size in 50 min

small droplet 142 215 163 161 163
large droplet 750 1434 1434 1573 1573

Droplet Size in 100 min

small droplet 155 205 163 129 196
large droplet 832 1369 1434 1725 1725

Droplet Size in 125 min

small droplet 129 171 181 171 196
large droplet 823 1916 1892 1807 1782

Data presented are in mean ± SD (n = 8).

The pH responsivity of alginates is high because alginates are molecular polymers that undergo
volume or phase transition when the pH value of the external environment changes. As the test
results of the SEABs indicated (Figure 5), the first phase might result from the negligible dissociation
in simulated gastric fluid during the first two hours. In the second phase, meanwhile, we observed a
burst-like release pattern, because Tween is a non-ionic substance that has a relatively weak interaction
with anionic biopolymer molecules [26].
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3. Materials and Methods

3.1. Materials

Food-grade sodium alginate (low viscosity; 160–200 mPa of 2% solution) and calcium chloride
were purchased from Gemfont Corporation (Taipei, Taiwan). γ-Oryzanol and DPPH were purchased
from Sigma Chemical Co. (St. Louis, MO, USA). Tween 80, Span 80, and other analytical grade
chemicals used in this study were purchased from Chemical Co., Ltd. (Miaoli, Taiwan).

3.2. Preparation of γ-Oryzanol SEAB

To prepare the γ-oryzanol/algae oil self-emulsion, γ-oryzanol (2.4 g) was first added to algal oil
(60 mL), and the mixture was then stirred (400 rpm) until clear. Next, Tween 80 (24 g) and Span 80 (16 g)
were added to the mixture. The γ-oryzanol SEABs were entrapped in calcium alginate (Ca–alginate)
beads through ionotropic gelation in various compositions, as shown in Table 1. Specifically, 50 mL of
alginate and γ-oryzanol self-emulsion were extruded through a coaxial bead generator (Unit-Varj1,
Nisco Engineering AG, Switzerland) and then dripped into a calcium chloride gelling solution to form
the γ-oryzanol self-emulsion, Ca–alginate beads. The tip of a needle was fixed at 10 cm above the
surface of the gelling bath. The gelling solution was gently stirred with a magnetic stirrer (100 rpm) to
prevent the beads from sticking together. After 30 min of bead formation in the gelling bath, the beads
were collected by filtration and rinsed sequentially with distilled water and 95% ethanol.

3.3. Encapsulation Efficiency

In the next step, 200 mg of SEABs were ground in a mortar and dispersed with isopropanol
(10 mL) in a volumetric flask, and then stirred at 500 rpm for 1 h. The solution was then filtered
through a 0.45-mm filter. The γ-oryzanol content was determined using UV-visible spectrophotometry
at 327 nm [27]. The drug-entrapment efficiency was determined using the following formula:

Encapsulation efficiency (%) = γ-oryzanol in low-gelation alginate/γ-oryzanol in SEAB × 100
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3.4. Scanning Electron Microscopy

The microstructures of the SEABs were observed with an SEM (Model ABT-150S, Topcon Corp.,
Tokyo, Japan). The samples were placed on a double-sided adhesive tape fixed on an aluminum stub.
The samples were then covered with a gold-palladium coating (Model JBS-ES 150, Ion Sputter Coater,
Topcon Corp., Tokyo, Japan). The accelerating potential was 15 kV.

3.5. In Vitro Release

The SEABs were evaluated for in vitro drug release in simulated gastrointestinal fluids in
accordance with previous research [14]. Simulated gastric fluid was prepared by adding 2 g NaCl and
6 mL 12 N HCl to 500 mL of distilled water, adjusting the pH to 1.2 by adding 0.01 M HCl, and then
adding distilled water up to 1 L. The simulated intestinal fluid consisted of 0.2 M, pH 6.8 phosphate
buffer. The various forms of SEABs (0.2 g) were suspended in 100 mL of simulated gastric fluid for 2 h,
and then transferred to 100 mL of simulated intestinal fluid for 4 h. The various forms of SEABs were
placed in simulated gastric fluid (or simulated intestinal fluid) at a temperature of 37 ◦C and stirred
with a paddle at under 50 rpm. In the simulated gastric fluid phase, we analyzed the γ-oryzanol
content, DPPH scavenging, and turbidity at regular time intervals. In the simulated intestinal fluid
phase, we analyzed the turbidity and droplet size.

3.5.1. Analysis of γ-Oryzanol Content

The various forms of SEABs were extracted with isopropanol, and the γ-oryzanol content was
determined by UV-visible spectrophotometry at 327 nm.

3.5.2. DPPH Scavenging

The DPPH radical-scavenging activity was detected using the same methods as in previous
research [27]. The various forms of SEABs were extracted with isopropanol dissolved in an ethanol
solution (0.2 mM) containing DPPH radicals. After shaking and incubation for 30 min, the sample was
measured for UV absorbance at 517 nm. The absorbance of a sample (As), a control (where the sample
was replaced with distilled water, Ac), and a blank (Ab) were measured by a spectrophotometer at
517 nm. The DPPH-scavenging activity was calculated with the following equation:

DPPH − scavenging activity (%) = 1 − (As − Ab)/Ac × 100

3.5.3. Turbidity Measurements

The SEABs were gently separated from the simulated intestinal fluid using the same methods as
in previous research [28]. Then, the solution was passed through a 0.45-mm filter, and the permeate
was collected. The turbidity of the aqueous permeate samples was measured at 600 nm.

3.5.4. Droplet Size Measurements

Dynamic light scattering was used to determine the droplet sizes of the emulsions (Zetasizer
Nano-ZS, Malvern, UK). The samples were diluted to a droplet concentration of approximately 1/10,
with an appropriate buffer to prevent multiple scattering effects. The foundation of this technique is
based on the scattering of light by moving particles due to Brownian motion in a liquid. The movement
of the particles was then related to the size of the particles. Each recorded measurement was an average
of eight runs. All the samples were measured at least in duplicate at 25 ◦C. The instrument reports the
mean particle diameter (z-average), PDI range, and size distribution.

3.6. Statistical Analysis

All of the experiments were performed in triplicate, and all the data were expressed in the form
of mean ± standard deviation of the mean. Analysis of variance was conducted with SPSS 10.0 (SPSS,
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Chicago, IL, USA) to analyze the data obtained for the same group. Variances were analyzed using the
Statistical Analysis System (2000) software (SAS Inst., Inc., Cary, NC, USA). To test the significance of
the differences between paired means, Duncan’s multiple range test was used. A confidence level of
p < 0.05 was applied to judge the significance of each difference.

4. Conclusions

The experimental results indicated that the γ-oryzanol/algae oil SEABs were prepared
successfully through emulsification combined with gelation, which improved solubility for
γ-oryzanol/algae oil and the liquid transformed into a solid. The pH responsivity of alginate prevented
the release of γ-oryzanol/algae oil in the upper gastrointestinal tract, while subsequently allowing the
emulsion formulation and release of γ-oryzanol upon the arrival of the beads in the intestinal fluid.
The controlled release of SEABs was influenced by cross-linking them with alginate and emulsification
treatment. Therefore, it can be suggested that SEABs constitute an effective delivery system for the oral
administration of γ-oryzanol/algae oil. In the future, the SEAB production process and formulation
parameters can be easily and successfully applied to various biologicals with a wide range of medical
and pharmaceutical applications.
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