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Abstract: Improving a vehicle driver’s performance decreases the damage caused by, and chances
of, road accidents. In recent decades, engineers and researchers have proposed several strategies
to model and improve driving monitoring and assistance systems (DMAS). This work presents
a comprehensive survey of the literature related to driving processes, the main reasons for road
accidents, the methods of their early detection, and state-of-the-art strategies developed to assist
drivers for a safe and comfortable driving experience. The studies focused on the three main elements
of the driving process, viz. driver, vehicle, and driving environment are analytically reviewed in
this work, and a comprehensive framework of DMAS, major research areas, and their interaction is
explored. A well-designed DMAS improves the driving experience by continuously monitoring the
critical parameters associated with the driver, vehicle, and surroundings by acquiring and processing
the data obtained from multiple sensors. A discussion on the challenges associated with the current
and future DMAS and their potential solutions is also presented.

Keywords: advanced driving assistance systems; aggressive and gentle driving; collision avoidance;
distraction detection; fatigue detection; driving style recognition; vehicle detection and tracking

1. Introduction

1.1. Background and Motivation

Transportation plays a vital role in individual and social welfare, the economy, and quality of
life. Its benefits, however, are not a free lunch. Society pays in terms of money (for vehicles’ purchase,
operational, and maintenance costs), social and ecological costs (resource utilization, exhaust and
noise pollution, traffic jams), fatal or harmful traffic accidents, and so on. There are several measures
to improve the quality of the modern transportation system at each level of society ranging from
government policies to individual drivers’ performance [1]. A major objective of such improvements
is called Vision Zero, which envisions a future where no one is seriously injured or killed in a road
accident [2]. Vision Zero has a broader spectrum, however, this work will concentrate on the studies
and systems developed to enhance road safety and driver performance. A significant portion of road
accidents is attributed to drivers’ inattention and aggressive behavior [3,4]. According to reports [5–7]
of the World Health Organization (WHO), every year approximately 1–1.24 million people are killed
while 20–50 million people are injured on the roads across the world. Moreover, if the current tendency
lasts for a decade, an increased rate as high as 60–70% of road accidents could make it the 5th main
cause of death by 2030. In monetary terms, the costs involved in road accident damages are estimated at
more than half a trillion USD, which makes nearly 2% of the gross national product (GNP) of advanced
economies, 1.5% of GNP of medium income countries, and 1% of GNP of low-income countries.
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In addition to driving safety, another emerging concept in vehicular technology is the comfort of
the drivers. A driver’s mental and physical stress are studied in several studies (e.g., [8–11]) with the
aim of providing a relaxed and comfortable driving experience. To achieve the target of safety and
comfort, understanding and modeling of the driving environment which includes vehicle, driver, and
surroundings has become a popular topic in multiple research areas. In fact, the topic is not confined
in a specific field, but it overlaps among neuroscience, psychology, behavior science, signal and image
processing, automotive engineering, artificial intelligence, control theory, and so on. During the last
three decades, various comprehensive models are proposed to describe how these multiple research
areas interact with each other. It is notable that driving safety and comfort are both important subjects
and, despite inconsequential differences, the two topics cannot be entirely separated.

The objective of driving monitoring and assistance systems (DMAS) is to keep an eye on the
driving status of a driver and to provide necessary assistance for safe and comfortable driving. Such
systems assist drivers by easing their control efforts, reinforcing their sensing power, warning them
in case of mistake, and so on. Depending on their functionalities, there are various names for such
automation systems such as intelligent vehicle control systems, advanced driver assistance systems,
collision avoidance systems, driver’s inattention monitoring systems, and so on. This work considers
all such system as DMAS. Typically, driving assistance and monitoring systems go side by side and are
mostly considered under the same concept. The subtle difference between the two can be realized as
the driving monitoring system understands the driving situation, and assistance systems assist the
drivers to handle the situation. Alternatively, the monitoring systems are more focused on safety while
assistance systems have more to do with the drivers’ comfort [12,13]. Moreover, the terminology used
for vehicles equipped with such systems is also diverse (e.g., intelligent vehicles, cognitive vehicles,
and smart vehicles). Please note that this work does not concentrate on driverless or fully autonomous
vehicles, though several ideas developed under the umbrella of DMAS serve as the foundation stone
for fully autonomous vehicles.

1.2. Contribution and Organization

This work provides a comprehensive survey of DMAS taking into account the three main elements
of the driving process (i.e., driver, vehicle, and driving environment). Intuitively, the topic is so
wide and deep that no single paper can provide an in-depth analysis of all the research work being
conducted in this field. This work, however, intends to benefit the researchers and interested readers
by providing a comprehensive framework about the basic understanding of DMAS, major research
areas and their interaction, and challenges arising in this field. For the interested readers, other survey
papers and references provided in this paper can serve as additional resources on specific topics or on
the areas remained unreported in this work. This paper is organized as follows:

• Basic concepts related to driving process and problems associated with a driver’s distraction,
fatigue, and driving style are discussed in Section 2.

• Section 3 provides a survey of the driver-focused studies and explains the systems and techniques
developed to detect a driver’s distraction and fatigue.

• A discussion on modeling and recognition of driving style behavior is provided in Section 4. These
studies are mainly vehicle-oriented as the data used for driving style recognition is extracted from
sensors installed on the vehicle.

• In Section 5, a review is presented on the models and systems developed to avoid collision by
detecting other vehicles. Therefore, this section focuses on the driving environment.

• A review of systems developed to enhance a driver’s perception of comfortable driving experiences
and DMAS available in modern vehicles is presented in Section 6. Moreover, a brief description of
future trends in DMAS is also provided in the same section.

• Section 7 concludes this survey.
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2. Basic Topics Associated with Driving

2.1. Driving Process

Driving is a dynamic process whose key elements are driver, vehicle, and driving environment
(e.g., traffic, road signs, and pedestrians) as shown in Figure 1. The primary function of a driver
is to remain aware of the environment, make decisions, and perform the actions [14]. In Figure 1,
these stages of the driving process are shown where situation awareness is considered to be the
most complicated stage. In [14], situation awareness is modeled as a three-level process consisting of
perception of the elements in the environment within a volume of time and space, comprehension of
their significance, and projection of their impact in the near future. A driver’s ability to accurately
perceive multiple items in parallel requires attention in the perception phase, and situation awareness
mainly depends on it. In addition to its application in the later stages of Decision and Actions, attention
is necessary to take in and process the available indications. The importance of a driver’s active
attention increases in a vibrant and complex driving environment for the sake of life and property
safety. That is why a continuous monitoring of the driver’s attention is a primary concern for safe
driving and has been an active research area for decades. To ensure driving safety after the inattentive
behavior of a driver is identified, various countermeasures are adopted depending on the nature and
intensity of the inattention. The main reasons for road accidents that account for more than 90% of
total accidents are summarized as [15]:

1. Distraction (ranging from mild distraction to, looked but could not see, status which is a form of
cognitive distraction)

2. Fatigue (this work considers it as a comprehensive term which also encompasses the drowsy
behavior of a driver)

3. Aggressive driving style (which is typically detected by vehicle-related parameters such as sharp
turns, over-speed, and hard braking)
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2.2. Distraction

Driving itself is a serious job. A driver’s engagement in a cognitively demanding parallel task
impacts the driver’s performance. It is reported that distraction is the major cause of road accidents
which accounts for more than half of the total accidents [4,16]. The common types of distracting activities
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include eating or drinking, looking at off-road persons and events, operating in-vehicle-technology,
texting, and listening to a phone [15,17,18]. The major categories of distraction are summarized as
follows with the first two categories being at the early stages of the research [3,4,19]:

• Olfactory distraction
• Gustatory distraction
• Visual distraction
• Auditory distraction
• Biomechanical distraction
• Cognitive distraction

Several metrics, such as gaze patterns and head movements, are proposed and studied in the
literature to detect a driver’s distraction [20,21]. The pattern of looking ahead changes when a driver
is involved in a cognitively demanding task other than driving. The studies in [22,23] show that
an analysis of gaze pattern can discriminate between focused and distracted driving, and provides
a relative measure of cognitive involvement (i.e., either task is easy or difficult). In [24,25], it is
reported that distracted drivers mostly keep looking directly ahead and have lesser glances at traffic
signals and area around the intersections. Moreover, the study in [25] reported shrinkage of the visual
field by 13.6% and 7.8% during a counting task of high and average difficulty levels, respectively.
A reduction in saccades per minute indicates a reduced exploration of driving surroundings (including
complete unawareness of some areas and tasks at times) and lower glance frequency for distracted
drivers [26]. It is shown that distraction, cognitive workload, and features of eye movement (saccade,
smooth pursuit, and fixation) are interlinked [27]. Saccades are quick actions that occur when visual
attention transfers from one point to another. Smooth pursuit occurs when a viewer visually follows
a traveling object. Fixation happens when a spectator’s eyes are almost stationary. Since saccade
distance decreases with an increase of task complexity, saccade is used as a helpful index for mental
workload measurements [28].

On the other hand, head movements increase as the cognitive workload of a driver increases. It
is reasoned that the increased head movements are compensatory actions of the driver to acquire a
broader field of view [29]. According to [29], the status of the cognitive distraction of drivers can be
appropriately detected with the help of standard deviation of head and eye movements. The study
in [30] reveals that—frequent glances at an object far way and off-road results in increased visual
distraction; blink frequency increases with cognitive distraction; and, the concentration of gaze and
reduced rate of saccades are symbols of visual and cognitive distraction for a driver. As reported
in [31], three parameters, viz. standard deviation of lane position, glance duration of head-off-road,
and eyes-off-road glance time are crucial indicators of visual distractions.

In addition to eye and head movements, other physiological parameters also indicate a driver’s
distraction. The authors of [32] discovered a reproducible effect that a driver’s engagement in a
secondary cognitively demanding work such as talking to another person in the vehicle decreases the
temperature at the tip of the driver’s nose. A consistent increase in skin temperature at the supraorbital
region during visual and cognitive distraction is reported in [33]. The authors of [34] observed that
EEG signals contain information about the mental workload and level of task engagement (to be
explained later).

A driver’s distraction degrades the driving performance, and problems such as unplanned
speed changes, hiccups in vehicle control, and drifting outside the lane edges are associated with
distraction [35]. The author of [36] studied the lane-changing behavior of distracted drivers. The results
reveal an increased delay and reduced frequency of circumspect approach (i.e., checking speed and
mirrors, providing indicators at turns, etc.). Moreover, the effects of visual distraction are not the same
as that of cognitive distraction. Visual distraction disturbs lateral vehicle control and steering ability
of a driver, whereas longitudinal vehicle control is affected by cognitive distraction [37]. Similarly,
the study in [30] reveals that visual distraction is associated with overcompensation and steering



Sensors 2019, 19, 2574 5 of 32

neglect, while under-compensation has a relationship with cognitive distraction. The authors of [24,26]
suggest that hard braking is mainly related to cognitive distraction rather than visual distraction. An
apparent inconsistent result reported in [37] mentions of a driver’s enhanced lateral control ability
while performing a parallel cognitively demanding task. Such observations, however, need further
research with an increased number of participants. Generally, the adverse effects of visual distraction
are more than that of cognitive distraction.

2.3. Fatigue

Fatigue denotes a combination of symptoms like a subjective feeling of drowsiness and
compromised performance, and its concept is different from that of distraction. The European
Transport Safety Council (ETSC) states that fatigue “concerns the inability or disinclination to continue
an activity” [38]. It is notable that despite the considerable research in this field, the term fatigue
still has variation in its definition [39]. Thus, it is not straight-forward to ascertain the percentage
of accidents related to fatigue. However, several studies reveal that 25–35% of driving mishaps are
related to fatigue [40], making it the second major reason for road accidents. According to [41], at least
one out of three drivers admitted that he/she fell asleep or nodded off at least once in his/her driving
career. A driver’s drowsiness is usually caused by mental and central nervous fatigues which are the
most dangerous types of fatigue during driving. The other kinds of fatigue are general physical fatigue
(such as felt after exhaustive manual work) and local physical fatigue (such as in a skeletal muscle).

A fatigued driver undergoes certain physiological and physical phenomena and variations in
body activities. The researchers have used these symptoms to detect the fatigued behavior of a driver.
It is reported that a fatigued driver exhibits a deteriorated performance in steering-wheel control [42],
a decreased rate of the steering-wheel reversal [43], driving without steering tweaking for an extended
time span and a jerky motion afterward [44], movements of the steering wheel are of high amplitude
with a larger standard deviation of angle [45], and low-velocity of steering wheel movements [46]. It is
also discovered that a fatigued driver demonstrates an irregular pattern of vehicle tracking and angular
movement of the steering wheel with a significantly increased range of deviation [47]. As the time of
a specific task increases, fatigue accumulates and ability to follow the lane decreases [42]. Similarly,
maximum lane deviation and count of lane deviations are highly correlated with eye closure rate and
fatigue [48]. The quantitative measures such as standard deviation of lateral position and mean square
of lane deviation are highly disturbed for a driver in fatigued status, and such measures serve as fatigue
indicators [49]. Similarly, a study in [46] revealed that mean deviation in yaw position calculated over
a period of 3-min and variance of yaw deviation is affected by driver’s drowsiness, and these two
measures also make a good indicator for fatigue detection. The effects of fatigue on other parameters
except steering-wheel control are not as prominent. Some studies (e.g., [50]) mention that after the
third hour of driving, the standard deviation of speed increases with a 45 min time interval. However,
according to [46], there is no convincing correlation of fatigue with acceleration or brake as the vehicle
speed changeability depends on several other factors and has no strong correlation with fatigue [51].

An important indicator of fatigue detection known as PERCLOS is associated with the pattern of
eye-blinking which measures the percentage of time when the eye is more than 80% closed [52,53].
Validated through subjective measures and EEG results, PERCLOSE is among the widely accepted
criteria in the field of sleep research [54]. In addition to eye-related activities, other biological and
physiological activities and parameters associated with driver’s fatigue such as electroencephalography
are also utilized in DMAS. A detailed discussion of such parameters is provided later.

Fatigue has appalling effects on driving performance, and behavior of different drivers differs
regarding various driving performance parameters. A summary of symptoms associated with fatigue,
as discussed above and observed in other studies (e.g., [55–57]) is provided as:

• Frequent yawning
• Radically increased eye-blinking frequency
• Burning feeling in the eyes and hard to keep them open
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• Lethargic or relaxed position of hands on steering wheel
• Increased (or sometimes irrationally decreased) response time
• Vehicle wandering between the lanes or out of road
• Nodding off and prompting the body or head from nodding off

• Shallow breathing
• A spontaneous head nod after glancing at side mirrors
• Reduced movement of the head
• Increased frequency of scratching legs, chin, head, and ears
• Turning head to the left to relieve the muscular tension of the neck
• Feelings of depression and irritation

It is intuitive that different drivers must have varying symptoms with a range of variations. Thus,
there is no specific technique to gauge the fatigue level. Moreover, it is reported that numerous factors
affect the physiological waking capacity and raise/lower the fatigue threshold. These factors (such as
taking a shower before driving raises the fatigue threshold, and disturbed sleep or heavy labor lower
this value) expedite or delay the appearance of fatigue effects on the driving process [38–40,58].

2.4. Driving Style

In addition to distraction and fatigue, another main reason for road accidents is the aggressive
driving behavior which is usually observed in the form of ignoring the traffic signals and shortcut
maneuvers. Such practices are predominantly serious to pedestrians, bicyclists, and motorcyclists
who usually do not have much protection [59,60]. It is reported that accident rate due to aggressive or
immature driving is higher in Asian countries compared to other countries [59]. The usual forms of
improper driving behavior include:

• Ignoring speed limits and road conditions
• Opposite side driving
• Driving between two lanes
• Not using the indicator while taking a turn
• Driving when the driver is under the effect of drugs

It is observed that an alert and healthy driver whose physical and physiological parameters are
within the normal ranges may exhibit such aggressive behaviors. Thus, such practices are commonly
detected by vehicle-related parameters such as over-speeding or sharp turns. Therefore, in this
work, the objective of driving style recognition is considered under vehicle-related studies rather
driver-related studies.

Figure 2 provides a comprehensive outlook of this survey paper. With reference to Figure 1,
the studies related to situation awareness-decision emphasize on how a decision is made in specific
situation, whereas execution of the decision is investigated under decision-action related studies. The
(solid, dotted, and dashed) lines show how the research areas involved in DMAS are interconnected.
For example, a fixed gaze or closed eyes for a long period often indicates fatigue and a distracted gaze is
a result of distraction (solid yellow line). Poor steering performance such as larger overshoot indicates
how distraction affects the lateral driving behavior (green dotted line). Moreover, it is observed that
the research areas involved in DMAS are, in general, indiscernible (e.g., an impulsive arm movement
may belong to a sleepy driver (fatigue detection) or maybe an indicator of aggressive driving (driving
style recognition)).
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3. Driver-Focused Studies and Systems

A driver’s attentiveness plays the main role in safe driving. Figure 3 shows the layout of a
typical DMAS designed to improve the driver’s attentiveness. It continuously monitors the parameters
associated with the driver, vehicle, and surroundings by acquiring data from multiple sensors associated
with: (a). The driver’s body, (b) installed inside, and (c) outer side of the vehicle. The acquired data is
then processed to extract the required features based on which decision is made, and conveyed to the
driver as shown in Figure 3. In this section, a survey of those studies and systems is presented that are
related to the driver’s biological and physiological information. This information is acquired from the
human body through intrusive and non-intrusive electrodes and provides decisive clues about the
driver’s attentiveness.
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3.1. Electroencephalogram (EEG)

EEG has a temporal resolution of 0.001 s and a spatial resolution of 20 mm, and is extensively
used in the field of brain activity research. Using the frequency-domain features of EEG data (e.g.,
mean frequency, center of gravity of the EEG spectrum, and energy contents of α, β, θ, δ bands), a
driver’s fatigue can be efficiently detected. Similarly, the time-domain features of EEG data, such as
standard deviation, average value, and the sum of amplitudes’ squares, provide valuable information
related to brain activity. In addition to differentiating between awake and asleep stages, an EEG is also
employed to discern the different sleep stages.

Processing the data derived from the four EEG activities (α, β, θ, and δ), the authors of [61]
proposed a five-level objective sleepiness score criteria which is often used as a validating standard
for drowsiness detection algorithms. In most of the recent studies, the classification of a driver’s
drowsiness state is carried out through modern classification techniques. The authors of [62] predicted
a transition from vigilance to sleepiness by training of support vector machine (SVM) to classify EEG
signals into four major frequency bands. For distinguishing mental fatigue into various levels, a
comparison between a standard multiclass SVM and a probabilistic-based SVM is presented [63] which
shows a better performance of the probabilistic-based multiclass SVM. The study in [64] developed a
linear regression model to assess the sleepiness level. The deployment of this model on 33-channel
EEG signals from the independent component analysis showed an accuracy of 87%.

In addition to fatigue detection, EEG data is also used to estimate the distraction level. In several
experiments (e.g., [65,66]) involving those which required a second-by-second data [34], an association
between EEG data and mental engagement levels is revealed.

The main limitation of EEG-based drowsiness detection systems is associated with EEG data
collection for which the electrodes are placed on the head. Due to its complex arrangement and
influence on the driver’s performance, this arrangement is not practical for real life driving. However,
other alternatives, such as in-ear EEG electrodes, are also available in the market [67].

3.2. Electrocardiogram (ECG)

The ECG produces a graph of the electrical activity of the heart on a voltage versus time scale.
The information collected through ECG signals such as heart rate, heart rate variability, and respiration
rate provides valuable information related to driver’s fatigue as explained below:

1. Heart Rate (HR): A reduction in HR or the number of heart beats per minute is reported in [68,69]
for persons moving from attentive to a sleepy state. Similarly, a decrease in HR is reported during
long drives at night [50]. Moreover, a driver’s emotions, mental activity, and body exertion also
affect HR [70,71].

2. Heart Rate Variability (HRV): HRV is the change in the time interval between two successive heart
beats, and is also known as RRI. The activities of the autonomous nervous system (ANS) change
due to fatigue or stress and can be efficiently detected by HRV [72–74]. The studies show that a
reduction in HRV is observed as workload increases, indicating a negative correlation between
HRV and workload. It is notable that certain activities are mentally easy and physically hard,
whereas several activities are mentally hard and physically easy. Typically, during the second
type of activities, HR increases and HRV decreases [72,75]. Apart from the HRV pattern, the
power spectral analysis of HRV also provides valuable information for drowsiness detection [69].
According to studies on ECG data, HRV receives the priority for early fatigue detection. The
instantaneous deviation observed in time-domain ECG signal is the main drawback of HRV [76],
which is resolved by its time-frequency analysis [77].

3. Respiration Rate (RR): RR is the count of breaths exhaled and inhaled in one minute. The
authors of [78] tried to establish a link between drowsiness and RR according to which RR
starts to fall with the initialization of drowsiness and sets in, and continues to fall until sleep
onset. However, this observation did not receive consensus. For example, the study in [76]
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experimented 34 participants but did not find any significant variations in the respiratory cycle
due to sleepiness. It is observed that non-contact ECG measurements require a close proximity to
the driver; otherwise the accuracy of results is compromised [78].

3.3. Electrooculography (EOG)

Used for recording eye movements, EOG provides a measure of the corneo-retinal standing
potential between the front and the back of the human eye which typically ranges from 0.05–3.5 mV [79].
The resulting signal is called the electrooculogram. Eye activities, such as eye movement and blinking,
change this potential difference and result in a variation of the EOG signal [61,80]. For example, a blink
is detected when the contact between the eye’s upper and lower lids lasts for about 200–400 ms, and a
microsleep is detected if the eye remains closed for more than 500 ms [61,81].

The drowsiness of a driver can either be detected by (i) eyelid movement-based indicators (such
as amplitude, duration, and frequency of blinking); and (ii) eyeball movement-based indicators (such
as slow eye movement and rapid eye movement). A brief description of the most commonly used
eye-related parameters used in the field of drowsiness research is presented as follows [79,81–84]:

• Blink Duration: Blink duration is a measure of the total time (ms) from the start to the end of
a blink.

• Blink Frequency: It is the number of blinks in a minute. An increased blink frequency is an
indicator of drowsiness.

• Blink Amplitude: It provides the measure of electrical potential during a blink. Blink amplitude is
measured by EOG electrodes and its typical range is 100–400 µV.

• PERCLOS: The proportion of time during which the eyes remain at least 80% closed in one minute.
• Lid Reopening Delay: The time taken from full closure of lid to the start of its reopening. Its

duration is a few milliseconds for an awake person, and it increases during drowsiness and
extends to several hundred milliseconds during a microsleep.

• Eye Ball Movement: The eyeball movements take place when eyeball moves from its point of
fixation. This phenomenon is also used as an indicator of drowsiness.

The placement of EOG electrodes assumes particular importance when collecting EOG data.
The farther the electrodes from the eyes, the more vulnerable is the accuracy of the collected EOG
signal [85,86]. Moreover, attaching electrodes near the eyes is disturbing for drivers. Further, drowsiness
detection schemes based on blink behavior are strongly person-dependent. For mentally retarded
persons, such schemes may not work well as they may perform more numbers of blinks in wakeful
conditions or their eyes may remain open even in drowsy conditions [84].

3.4. Electromyography (EMG)

EMG is a technique for evaluating and recording the electrical signal generated from muscle
contraction [87–89]. The studies reveal that there is a link between EMG amplitude and muscle
fatigue as the amplitude of EMG signals decreases gradually with fatigue. The analysis of EMG data
provided in [90–94] establishes a correlation between muscular fatigue and drowsiness. During muscle
contraction, a shift in center frequency component is observed towards the lower spectral band [95,96].

The major drawback of the EMG signal lies with its random and complex nature and dependency
on the biological and structural properties of the muscle [79,97].

3.5. Electro-Dermal Activity (EDA)

EDA, previously also known as galvanic skin response (GSR), provides a measure of skin
conductance which changes due to the secretion of sweat gland. Sympathetic arousal of ANS controls
the secretion of the sweat gland. During drowsiness, the activity of the parasympathetic nervous
system is triggered which reduces sweating. Consequently, the resistivity of skin increases and skin
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conductivity decreases [93,98,99]. In this way, EDA provides a measure of drowsiness. However, this
technique is highly sensitive to atmospheric humidity and temperature.

3.6. Skin Temperature (ST)

ST is maintained within a certain range by the thermoregulation system of the human body. The
ST measurement methods measure the temperature of the skin surface which varies with the level of
drowsiness. In [100], for example, five levels of drowsiness are described by measuring the temperature
of nasal skin, forehead temperature, and tympanum temperature. The first two measurements are
based on ST, whereas the last measurement represents the core temperature of the human body (i.e.,
the working temperature of the body organs).

3.7. Hybrid Techniques

The already discussed parameters have certain benefits and limitations in comparison to one
another. So, trusting on a single parameter to detect drowsiness may lead to erratic results. Hence,
to increase the accuracy of the detection system, several studies utilize a combination of multiple
parameters for drowsiness detection. A few examples of such studies are—the work in [74] used a
combination of data from breathing frequency and HRV; the work in [76] used a combination of data
from RRI, HRV spectral power, RR, EEG band power, and EMG; the authors of [78] exploited HR,
HRV, and blinking and breathing rate information; the study in [93] combined EDA and EMG data;
the authors of [101] utilized EEG energy and band power, HRV spectral components, and sample
entropy; the study in [102] utilized ECG entropy and EEG spectral power; the work in [103] combined
the information obtained from PERCLOS and EEG band power.

A summary of studies related to the driver’s attention monitoring based on biological and
physiological parameters is provided in Table 1.

Table 1. A summary of studies related to the driver’s attention monitoring based on biological and
physiological parameters.

Study Area Signal Typical Range Correlation with Fatigue Detection
Accuracy References Commercially Available

SensorsPositive Negative

Fatigue detection ECG 50 µV–50 mV [71]
0.05 Hz–100 Hz

Heart rate
96% (30

volunteers)
[71,72,75,101,

104]

Omron, Flex Sensors, EPI mini,
Alivecor System and ECG Check,

Ambulatory ECG, Drypad
Sensors, NeuroSky’s Dry Sensor,

Quasar sensors

HRV

HF VLF, LF, LF/HF

RR

Fatigue and
distraction
detection

EEG 2 µV–10 µV [71]
10 Hz–2 kHz

α, θ Bands
Powers β Band Power

96.7% [105]
(6 volunteers)

[106–110]
Drypad Sensors, Imotive

Headset, MindWave Headsets,
NeuroSky’s Dry Sensor, Quasar

Sensors, Flex Sensors
P300 Latency P300 Amplitude

Entropy

Detection of
alertness

EOG
0.05 mV–3.5 mV

[61]
0.1 Hz–100 Hz [71]

Blink Duration

81.7% (20
volunteers)

[89,111–115]

SMI Eye Tracking Glasses,
NeuroSky’s Dry Sensor, Google
glass, Comnoscreen, ASL Eye

Tracking Glasses

Blink Frequency
Time

Lid Reopening

Blink
Amplitude

PERCLOS

Eye Movements

Fatigue detection EMG 20 µV–10 mV [71]
10 Hz–10 kHz

EMG
Amplitude 94% [67] (4

volunteers)
[67,91,96–98,115,

116]
SX230, Neuronode, NeuroSky’s
Dry Sensor, Trigno Mini Sensor,

Quasar SensorsCentre frequency shift towards
lower frequency region

Fatigue detection EDA 10 kΩ–10 MΩ
1.76 V–0.14 V Skin Resistance EDA 80% [101] (13

volunteers) [117] Shimmer 3, Empatica wristband,
Grove — GSR

Fatigue detection ST 89.6◦F–95◦F [118] ST [118] YSI 400 Series Temperature
Probe, MAXIM30205



Sensors 2019, 19, 2574 11 of 32

4. Vehicle-Focused Studies and Systems

Understanding the driving style through vehicle-associated parameters is an important topic
of DMAS which helps in providing improved on-road safety, economic mobility, and a greener
environment. Moreover, knowledge of driving style is also mandatory for the development of future
DMAS and autonomous transportation systems [119–121]. Recognition of driving style is a complex
multidisciplinary topic influenced by several environmental (e.g., weather, season, time of the day,
and lighting condition) and human (e.g., age, gender, and behavior) factors. It is notable that DMAS
that assists drivers during certain events are typically designed while considering average driver
characteristics. Though the calibration accommodates for a wide range, yet, it cannot adapt to the precise
singularities of a specific driver [122–124]. Hence, the future DMAS aims for driver style recognition
to personalize the system performance, enhance safety, and improve the fuel economy [124,125]. A
flowchart of a generic driving style recognition program is shown in Figure 4 as explained below.
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4. Vehicle-Focused Studies and Systems 

Understanding the driving style through vehicle-associated parameters is an important topic of 
DMAS which helps in providing improved on-road safety, economic mobility, and a greener 
environment. Moreover, knowledge of driving style is also mandatory for the development of future 
DMAS and autonomous transportation systems [119–121]. Recognition of driving style is a complex 
multidisciplinary topic influenced by several environmental (e.g., weather, season, time of the day, 
and lighting condition) and human (e.g., age, gender, and behavior) factors. It is notable that DMAS 
that assists drivers during certain events are typically designed while considering average driver 
characteristics. Though the calibration accommodates for a wide range, yet, it cannot adapt to the 
precise singularities of a specific driver [122–124]. Hence, the future DMAS aims for driver style 
recognition to personalize the system performance, enhance safety, and improve the fuel economy 
[124,125]. A flowchart of a generic driving style recognition program is shown in Figure 4 as 
explained below. 
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Figure 4. Design of a generic driving style recognition program.

4.1. Definition of the Objective

The first step in a typical driving style recognition model is to define the objectives of the program.
In the majority of the models, the primary objective is based on safe driving behavior. Other objectives
may include fuel economy and behavioral analysis as shown in Table 2.
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Table 2. A survey of work related to driving style recognition.

Levels Description of Levels Objective Inputs Reference
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The next step is to define the number and type of classification levels. The driving style 
classification levels, which are also associated with classification criteria, recognition algorithm, and 
input signals, are broadly categorized into the following two categories: 

1. Discrete Classes: Driving styles are often categorized into discrete classes on the basis of selected 
driving parameters and extracted features as shown in the initial rows of Table 2. These classes 
are defined at the design stage of the classification algorithm and encompass all values of input 
parameters to produce a multifactor classification. Titles or labels of the classes are based on the 
classification objective, such as safety or fuel economy. Applications related to safety define 
classes and assume title based on aggressive or gentle behavior of the driver, while fuel-related 
classification generally uses terminology such as efficient or economical. With the increased 
research in this field, it is expected that further classification criteria and labeling titles will 
increase. 

2. Continuous Scale: Instead of discrete classes, this classification style takes into account a higher 
number of clusters through continuous indexing. To produce the output, it is possible to use a 
threshold-based algorithm that converts the continuous values into finite classes [136,144]. The 
classification approach of continuous indexing has been adopted in recognition of driving styles 
related to safety, behavioral analysis, and fuel economy as shown in Table 2. The work in [144] 
classifies driving style in a range of (−1, 1) whereas 0 represents a neutral driving style with 
gentle and aggressive styles at the corners. An aggressive driver tends to drive the vehicle in a 
risky manner, ignoring speed limits, improper car-following, changing lanes erratically, and 
hasty turns. Similarly, a driving style classification is developed in [141–143,145] based on 
vehicle efficiency calculated through fuel consumption. 

4.3. Information Collection 

The information is collected through instrumentation installed inside as well as outside the 
vehicle (e.g., inertial measurement units, differential GPS, and radar). As shown in Table 2, the data 

Safety Speed, fuel consumption,
accelerometer, throttle [123,126–132]

3

Sensors 2019, 19, x FOR PEER REVIEW 12 of 32 

 

4.1. Definition of the Objective 

The first step in a typical driving style recognition model is to define the objectives of the 
program. In the majority of the models, the primary objective is based on safe driving behavior. Other 
objectives may include fuel economy and behavioral analysis as shown in Table 2. 

Table 2. A survey of work related to driving style recognition. 

Levels Description of Levels Objective Inputs Reference 

2 
 

Safety 
Speed, fuel consumption, 

accelerometer, throttle 
[123,126–132] 

3 
 

Safety 
Brake, throttle, car 

following 
[129,133–135] 

4 
 

Safety Jerk [136] 

4 
 

Behavioral 
analysis 

Sharp turn, acceleration, 
deceleration 

[137,138] 

5-7 
 

Behavioral 
analysis 

Acceleration, speed [139] 

4 
 

Behavioral 
analysis 

Personality features [140] 

(−1,1)  
Fuel 

economy 
Kinetic energy, accelartion, 

speed 
[141–143] 

(−1,1)  

Behavioral 
analysis, 

safety 
Brake, speed, turn [144] 

4.2. Classification Levels 

The next step is to define the number and type of classification levels. The driving style 
classification levels, which are also associated with classification criteria, recognition algorithm, and 
input signals, are broadly categorized into the following two categories: 

1. Discrete Classes: Driving styles are often categorized into discrete classes on the basis of selected 
driving parameters and extracted features as shown in the initial rows of Table 2. These classes 
are defined at the design stage of the classification algorithm and encompass all values of input 
parameters to produce a multifactor classification. Titles or labels of the classes are based on the 
classification objective, such as safety or fuel economy. Applications related to safety define 
classes and assume title based on aggressive or gentle behavior of the driver, while fuel-related 
classification generally uses terminology such as efficient or economical. With the increased 
research in this field, it is expected that further classification criteria and labeling titles will 
increase. 

2. Continuous Scale: Instead of discrete classes, this classification style takes into account a higher 
number of clusters through continuous indexing. To produce the output, it is possible to use a 
threshold-based algorithm that converts the continuous values into finite classes [136,144]. The 
classification approach of continuous indexing has been adopted in recognition of driving styles 
related to safety, behavioral analysis, and fuel economy as shown in Table 2. The work in [144] 
classifies driving style in a range of (−1, 1) whereas 0 represents a neutral driving style with 
gentle and aggressive styles at the corners. An aggressive driver tends to drive the vehicle in a 
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Safety Brake, throttle, car
following [129,133–135]

4

Sensors 2019, 19, x FOR PEER REVIEW 12 of 32 

 

4.1. Definition of the Objective 

The first step in a typical driving style recognition model is to define the objectives of the 
program. In the majority of the models, the primary objective is based on safe driving behavior. Other 
objectives may include fuel economy and behavioral analysis as shown in Table 2. 

Table 2. A survey of work related to driving style recognition. 

Levels Description of Levels Objective Inputs Reference 

2 
 

Safety 
Speed, fuel consumption, 

accelerometer, throttle 
[123,126–132] 

3 
 

Safety 
Brake, throttle, car 

following 
[129,133–135] 

4 
 

Safety Jerk [136] 

4 
 

Behavioral 
analysis 

Sharp turn, acceleration, 
deceleration 

[137,138] 

5-7 
 

Behavioral 
analysis 

Acceleration, speed [139] 

4 
 

Behavioral 
analysis 

Personality features [140] 

(−1,1)  
Fuel 

economy 
Kinetic energy, accelartion, 

speed 
[141–143] 

(−1,1)  

Behavioral 
analysis, 

safety 
Brake, speed, turn [144] 

4.2. Classification Levels 

The next step is to define the number and type of classification levels. The driving style 
classification levels, which are also associated with classification criteria, recognition algorithm, and 
input signals, are broadly categorized into the following two categories: 

1. Discrete Classes: Driving styles are often categorized into discrete classes on the basis of selected 
driving parameters and extracted features as shown in the initial rows of Table 2. These classes 
are defined at the design stage of the classification algorithm and encompass all values of input 
parameters to produce a multifactor classification. Titles or labels of the classes are based on the 
classification objective, such as safety or fuel economy. Applications related to safety define 
classes and assume title based on aggressive or gentle behavior of the driver, while fuel-related 
classification generally uses terminology such as efficient or economical. With the increased 
research in this field, it is expected that further classification criteria and labeling titles will 
increase. 

2. Continuous Scale: Instead of discrete classes, this classification style takes into account a higher 
number of clusters through continuous indexing. To produce the output, it is possible to use a 
threshold-based algorithm that converts the continuous values into finite classes [136,144]. The 
classification approach of continuous indexing has been adopted in recognition of driving styles 
related to safety, behavioral analysis, and fuel economy as shown in Table 2. The work in [144] 
classifies driving style in a range of (−1, 1) whereas 0 represents a neutral driving style with 
gentle and aggressive styles at the corners. An aggressive driver tends to drive the vehicle in a 
risky manner, ignoring speed limits, improper car-following, changing lanes erratically, and 
hasty turns. Similarly, a driving style classification is developed in [141–143,145] based on 
vehicle efficiency calculated through fuel consumption. 

4.3. Information Collection 

The information is collected through instrumentation installed inside as well as outside the 
vehicle (e.g., inertial measurement units, differential GPS, and radar). As shown in Table 2, the data 

Safety Jerk [136]

4

Sensors 2019, 19, x FOR PEER REVIEW 12 of 32 

 

4.1. Definition of the Objective 

The first step in a typical driving style recognition model is to define the objectives of the 
program. In the majority of the models, the primary objective is based on safe driving behavior. Other 
objectives may include fuel economy and behavioral analysis as shown in Table 2. 

Table 2. A survey of work related to driving style recognition. 

Levels Description of Levels Objective Inputs Reference 

2 
 

Safety 
Speed, fuel consumption, 

accelerometer, throttle 
[123,126–132] 

3 
 

Safety 
Brake, throttle, car 

following 
[129,133–135] 

4 
 

Safety Jerk [136] 

4 
 

Behavioral 
analysis 

Sharp turn, acceleration, 
deceleration 

[137,138] 

5-7 
 

Behavioral 
analysis 

Acceleration, speed [139] 

4 
 

Behavioral 
analysis 

Personality features [140] 

(−1,1)  
Fuel 

economy 
Kinetic energy, accelartion, 

speed 
[141–143] 

(−1,1)  

Behavioral 
analysis, 

safety 
Brake, speed, turn [144] 

4.2. Classification Levels 

The next step is to define the number and type of classification levels. The driving style 
classification levels, which are also associated with classification criteria, recognition algorithm, and 
input signals, are broadly categorized into the following two categories: 

1. Discrete Classes: Driving styles are often categorized into discrete classes on the basis of selected 
driving parameters and extracted features as shown in the initial rows of Table 2. These classes 
are defined at the design stage of the classification algorithm and encompass all values of input 
parameters to produce a multifactor classification. Titles or labels of the classes are based on the 
classification objective, such as safety or fuel economy. Applications related to safety define 
classes and assume title based on aggressive or gentle behavior of the driver, while fuel-related 
classification generally uses terminology such as efficient or economical. With the increased 
research in this field, it is expected that further classification criteria and labeling titles will 
increase. 

2. Continuous Scale: Instead of discrete classes, this classification style takes into account a higher 
number of clusters through continuous indexing. To produce the output, it is possible to use a 
threshold-based algorithm that converts the continuous values into finite classes [136,144]. The 
classification approach of continuous indexing has been adopted in recognition of driving styles 
related to safety, behavioral analysis, and fuel economy as shown in Table 2. The work in [144] 
classifies driving style in a range of (−1, 1) whereas 0 represents a neutral driving style with 
gentle and aggressive styles at the corners. An aggressive driver tends to drive the vehicle in a 
risky manner, ignoring speed limits, improper car-following, changing lanes erratically, and 
hasty turns. Similarly, a driving style classification is developed in [141–143,145] based on 
vehicle efficiency calculated through fuel consumption. 

4.3. Information Collection 

The information is collected through instrumentation installed inside as well as outside the 
vehicle (e.g., inertial measurement units, differential GPS, and radar). As shown in Table 2, the data 

Behavioral analysis Sharp turn, acceleration,
deceleration [137,138]

5–7

Sensors 2019, 19, x FOR PEER REVIEW 12 of 32 

 

4.1. Definition of the Objective 

The first step in a typical driving style recognition model is to define the objectives of the 
program. In the majority of the models, the primary objective is based on safe driving behavior. Other 
objectives may include fuel economy and behavioral analysis as shown in Table 2. 

Table 2. A survey of work related to driving style recognition. 

Levels Description of Levels Objective Inputs Reference 

2 
 

Safety 
Speed, fuel consumption, 

accelerometer, throttle 
[123,126–132] 

3 
 

Safety 
Brake, throttle, car 

following 
[129,133–135] 

4 
 

Safety Jerk [136] 

4 
 

Behavioral 
analysis 

Sharp turn, acceleration, 
deceleration 

[137,138] 

5-7 
 

Behavioral 
analysis 

Acceleration, speed [139] 

4 
 

Behavioral 
analysis 

Personality features [140] 

(−1,1)  
Fuel 

economy 
Kinetic energy, accelartion, 

speed 
[141–143] 

(−1,1)  

Behavioral 
analysis, 

safety 
Brake, speed, turn [144] 

4.2. Classification Levels 

The next step is to define the number and type of classification levels. The driving style 
classification levels, which are also associated with classification criteria, recognition algorithm, and 
input signals, are broadly categorized into the following two categories: 

1. Discrete Classes: Driving styles are often categorized into discrete classes on the basis of selected 
driving parameters and extracted features as shown in the initial rows of Table 2. These classes 
are defined at the design stage of the classification algorithm and encompass all values of input 
parameters to produce a multifactor classification. Titles or labels of the classes are based on the 
classification objective, such as safety or fuel economy. Applications related to safety define 
classes and assume title based on aggressive or gentle behavior of the driver, while fuel-related 
classification generally uses terminology such as efficient or economical. With the increased 
research in this field, it is expected that further classification criteria and labeling titles will 
increase. 

2. Continuous Scale: Instead of discrete classes, this classification style takes into account a higher 
number of clusters through continuous indexing. To produce the output, it is possible to use a 
threshold-based algorithm that converts the continuous values into finite classes [136,144]. The 
classification approach of continuous indexing has been adopted in recognition of driving styles 
related to safety, behavioral analysis, and fuel economy as shown in Table 2. The work in [144] 
classifies driving style in a range of (−1, 1) whereas 0 represents a neutral driving style with 
gentle and aggressive styles at the corners. An aggressive driver tends to drive the vehicle in a 
risky manner, ignoring speed limits, improper car-following, changing lanes erratically, and 
hasty turns. Similarly, a driving style classification is developed in [141–143,145] based on 
vehicle efficiency calculated through fuel consumption. 

4.3. Information Collection 

The information is collected through instrumentation installed inside as well as outside the 
vehicle (e.g., inertial measurement units, differential GPS, and radar). As shown in Table 2, the data 

Behavioral analysis Acceleration, speed [139]

4

Sensors 2019, 19, x FOR PEER REVIEW 12 of 32 

 

4.1. Definition of the Objective 

The first step in a typical driving style recognition model is to define the objectives of the 
program. In the majority of the models, the primary objective is based on safe driving behavior. Other 
objectives may include fuel economy and behavioral analysis as shown in Table 2. 

Table 2. A survey of work related to driving style recognition. 

Levels Description of Levels Objective Inputs Reference 

2 
 

Safety 
Speed, fuel consumption, 

accelerometer, throttle 
[123,126–132] 

3 
 

Safety 
Brake, throttle, car 

following 
[129,133–135] 

4 
 

Safety Jerk [136] 

4 
 

Behavioral 
analysis 

Sharp turn, acceleration, 
deceleration 

[137,138] 

5-7 
 

Behavioral 
analysis 

Acceleration, speed [139] 

4 
 

Behavioral 
analysis 

Personality features [140] 

(−1,1)  
Fuel 

economy 
Kinetic energy, accelartion, 

speed 
[141–143] 

(−1,1)  

Behavioral 
analysis, 

safety 
Brake, speed, turn [144] 

4.2. Classification Levels 

The next step is to define the number and type of classification levels. The driving style 
classification levels, which are also associated with classification criteria, recognition algorithm, and 
input signals, are broadly categorized into the following two categories: 

1. Discrete Classes: Driving styles are often categorized into discrete classes on the basis of selected 
driving parameters and extracted features as shown in the initial rows of Table 2. These classes 
are defined at the design stage of the classification algorithm and encompass all values of input 
parameters to produce a multifactor classification. Titles or labels of the classes are based on the 
classification objective, such as safety or fuel economy. Applications related to safety define 
classes and assume title based on aggressive or gentle behavior of the driver, while fuel-related 
classification generally uses terminology such as efficient or economical. With the increased 
research in this field, it is expected that further classification criteria and labeling titles will 
increase. 

2. Continuous Scale: Instead of discrete classes, this classification style takes into account a higher 
number of clusters through continuous indexing. To produce the output, it is possible to use a 
threshold-based algorithm that converts the continuous values into finite classes [136,144]. The 
classification approach of continuous indexing has been adopted in recognition of driving styles 
related to safety, behavioral analysis, and fuel economy as shown in Table 2. The work in [144] 
classifies driving style in a range of (−1, 1) whereas 0 represents a neutral driving style with 
gentle and aggressive styles at the corners. An aggressive driver tends to drive the vehicle in a 
risky manner, ignoring speed limits, improper car-following, changing lanes erratically, and 
hasty turns. Similarly, a driving style classification is developed in [141–143,145] based on 
vehicle efficiency calculated through fuel consumption. 

4.3. Information Collection 

The information is collected through instrumentation installed inside as well as outside the 
vehicle (e.g., inertial measurement units, differential GPS, and radar). As shown in Table 2, the data 

Behavioral analysis Personality features [140]

(−1,1)

Sensors 2019, 19, x FOR PEER REVIEW 12 of 32 

 

4.1. Definition of the Objective 

The first step in a typical driving style recognition model is to define the objectives of the 
program. In the majority of the models, the primary objective is based on safe driving behavior. Other 
objectives may include fuel economy and behavioral analysis as shown in Table 2. 

Table 2. A survey of work related to driving style recognition. 

Levels Description of Levels Objective Inputs Reference 

2 
 

Safety 
Speed, fuel consumption, 

accelerometer, throttle 
[123,126–132] 

3 
 

Safety 
Brake, throttle, car 

following 
[129,133–135] 

4 
 

Safety Jerk [136] 

4 
 

Behavioral 
analysis 

Sharp turn, acceleration, 
deceleration 

[137,138] 

5-7 
 

Behavioral 
analysis 

Acceleration, speed [139] 

4 
 

Behavioral 
analysis 

Personality features [140] 

(−1,1)  
Fuel 

economy 
Kinetic energy, accelartion, 

speed 
[141–143] 

(−1,1)  

Behavioral 
analysis, 

safety 
Brake, speed, turn [144] 

4.2. Classification Levels 

The next step is to define the number and type of classification levels. The driving style 
classification levels, which are also associated with classification criteria, recognition algorithm, and 
input signals, are broadly categorized into the following two categories: 

1. Discrete Classes: Driving styles are often categorized into discrete classes on the basis of selected 
driving parameters and extracted features as shown in the initial rows of Table 2. These classes 
are defined at the design stage of the classification algorithm and encompass all values of input 
parameters to produce a multifactor classification. Titles or labels of the classes are based on the 
classification objective, such as safety or fuel economy. Applications related to safety define 
classes and assume title based on aggressive or gentle behavior of the driver, while fuel-related 
classification generally uses terminology such as efficient or economical. With the increased 
research in this field, it is expected that further classification criteria and labeling titles will 
increase. 

2. Continuous Scale: Instead of discrete classes, this classification style takes into account a higher 
number of clusters through continuous indexing. To produce the output, it is possible to use a 
threshold-based algorithm that converts the continuous values into finite classes [136,144]. The 
classification approach of continuous indexing has been adopted in recognition of driving styles 
related to safety, behavioral analysis, and fuel economy as shown in Table 2. The work in [144] 
classifies driving style in a range of (−1, 1) whereas 0 represents a neutral driving style with 
gentle and aggressive styles at the corners. An aggressive driver tends to drive the vehicle in a 
risky manner, ignoring speed limits, improper car-following, changing lanes erratically, and 
hasty turns. Similarly, a driving style classification is developed in [141–143,145] based on 
vehicle efficiency calculated through fuel consumption. 

4.3. Information Collection 

The information is collected through instrumentation installed inside as well as outside the 
vehicle (e.g., inertial measurement units, differential GPS, and radar). As shown in Table 2, the data 

Fuel economy Kinetic energy,
accelartion, speed [141–143]

(−1,1)

Sensors 2019, 19, x FOR PEER REVIEW 12 of 32 

 

4.1. Definition of the Objective 

The first step in a typical driving style recognition model is to define the objectives of the 
program. In the majority of the models, the primary objective is based on safe driving behavior. Other 
objectives may include fuel economy and behavioral analysis as shown in Table 2. 

Table 2. A survey of work related to driving style recognition. 

Levels Description of Levels Objective Inputs Reference 

2 
 

Safety 
Speed, fuel consumption, 

accelerometer, throttle 
[123,126–132] 

3 
 

Safety 
Brake, throttle, car 

following 
[129,133–135] 

4 
 

Safety Jerk [136] 

4 
 

Behavioral 
analysis 

Sharp turn, acceleration, 
deceleration 

[137,138] 

5-7 
 

Behavioral 
analysis 

Acceleration, speed [139] 

4 
 

Behavioral 
analysis 

Personality features [140] 

(−1,1)  
Fuel 

economy 
Kinetic energy, accelartion, 

speed 
[141–143] 

(−1,1)  

Behavioral 
analysis, 

safety 
Brake, speed, turn [144] 

4.2. Classification Levels 

The next step is to define the number and type of classification levels. The driving style 
classification levels, which are also associated with classification criteria, recognition algorithm, and 
input signals, are broadly categorized into the following two categories: 

1. Discrete Classes: Driving styles are often categorized into discrete classes on the basis of selected 
driving parameters and extracted features as shown in the initial rows of Table 2. These classes 
are defined at the design stage of the classification algorithm and encompass all values of input 
parameters to produce a multifactor classification. Titles or labels of the classes are based on the 
classification objective, such as safety or fuel economy. Applications related to safety define 
classes and assume title based on aggressive or gentle behavior of the driver, while fuel-related 
classification generally uses terminology such as efficient or economical. With the increased 
research in this field, it is expected that further classification criteria and labeling titles will 
increase. 

2. Continuous Scale: Instead of discrete classes, this classification style takes into account a higher 
number of clusters through continuous indexing. To produce the output, it is possible to use a 
threshold-based algorithm that converts the continuous values into finite classes [136,144]. The 
classification approach of continuous indexing has been adopted in recognition of driving styles 
related to safety, behavioral analysis, and fuel economy as shown in Table 2. The work in [144] 
classifies driving style in a range of (−1, 1) whereas 0 represents a neutral driving style with 
gentle and aggressive styles at the corners. An aggressive driver tends to drive the vehicle in a 
risky manner, ignoring speed limits, improper car-following, changing lanes erratically, and 
hasty turns. Similarly, a driving style classification is developed in [141–143,145] based on 
vehicle efficiency calculated through fuel consumption. 

4.3. Information Collection 

The information is collected through instrumentation installed inside as well as outside the 
vehicle (e.g., inertial measurement units, differential GPS, and radar). As shown in Table 2, the data 

Behavioral analysis, safety Brake, speed, turn [144]

4.2. Classification Levels

The next step is to define the number and type of classification levels. The driving style classification
levels, which are also associated with classification criteria, recognition algorithm, and input signals,
are broadly categorized into the following two categories:

1. Discrete Classes: Driving styles are often categorized into discrete classes on the basis of selected
driving parameters and extracted features as shown in the initial rows of Table 2. These classes
are defined at the design stage of the classification algorithm and encompass all values of input
parameters to produce a multifactor classification. Titles or labels of the classes are based on
the classification objective, such as safety or fuel economy. Applications related to safety define
classes and assume title based on aggressive or gentle behavior of the driver, while fuel-related
classification generally uses terminology such as efficient or economical. With the increased
research in this field, it is expected that further classification criteria and labeling titles will increase.

2. Continuous Scale: Instead of discrete classes, this classification style takes into account a higher
number of clusters through continuous indexing. To produce the output, it is possible to use a
threshold-based algorithm that converts the continuous values into finite classes [136,144]. The
classification approach of continuous indexing has been adopted in recognition of driving styles
related to safety, behavioral analysis, and fuel economy as shown in Table 2. The work in [144]
classifies driving style in a range of (−1, 1) whereas 0 represents a neutral driving style with
gentle and aggressive styles at the corners. An aggressive driver tends to drive the vehicle in
a risky manner, ignoring speed limits, improper car-following, changing lanes erratically, and
hasty turns. Similarly, a driving style classification is developed in [141–143,145] based on vehicle
efficiency calculated through fuel consumption.

4.3. Information Collection

The information is collected through instrumentation installed inside as well as outside the vehicle
(e.g., inertial measurement units, differential GPS, and radar). As shown in Table 2, the data acquired
about speed, fuel consumption, acceleration, throttle, braking power and frequency, throttle, jerk, sharp
turn, and deceleration, helps in defining the driving style. Similarly, event related information, such as
the speed at roundabouts, sharp turns, and car-following, is also used in classification algorithms.
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4.4. Selection of Input Variables

Another step for driving style recognition is to determine the variables required to be monitored
for the selected classification algorithm. Identifying the correct signals is a key factor as further
processing and results are based on it. However, no general agreement is found on the recommended
set of signals for a certain task in the literature [140]. This disagreement results in the variety of driving
style recognition models for the driver’s behavioral analysis, fuel economy, and safety enhancement as
shown in Table 2.

4.5. Classification Algorithm

Development of the driving style recognition algorithms is based on the input signals and
classification method and levels. These algorithms are usually based on machine learning techniques
and methods based on directives (e.g., fuzzy logic, rule-based) as shown in Figure 4. Typically, a
complete driving style recognition program incorporates a combination of various techniques. For
example, the first data is processed through a machine learning technique, and then a rule-based
classification is applied to produce the output result. Main categories of algorithms proposed in the
literature are summarized as follows:

• Fuzzy logic (e.g., [125,134,146–148])
• Adaptive fuzzy logic (e.g., [129])
• Rule-based (e.g., [126,136,140,141,143,149])
• Supervised learning (e.g., [128,130,131,135,144])
• Unsupervised learning (e.g., [133,150,151])
• Combination of different techniques (e.g., [152])

5. Driving Environment-Focused Studies and Systems

In addition to observing a driver’s focus, DMAS also detect and track the surrounding vehicles and
pedestrians to enhance the driver’s attentiveness and to avoid any possible collisions. Conventionally,
various inert systems are available in the vehicles for decades that reduce the level of mutilation during
and after a collision. Airbags, crumple zones, seatbelts, and laminated windshields are examples of
such systems. However, in this section, a survey of those vigilant sensors and systems is provided
which use vehicle detection and tracking technology to reduce the risk and damage of an accident.
These systems provide the driver with information about vehicles in proximity, their gap, and relative
velocities. This information is extracted with the help of passive and active sensors which acquire
nearby traffic data, and then apply vehicle detection and tracking algorithms to this data. When an
imminent collision is estimated, these systems warn the driver and/or prepare the necessary systems,
such as brake and steering, for a safe exit. Figure 5 shows the typical installation place and field
of work of these sensors. The sensors used for vehicle detection are broadly categorized into the
following categories.Sensors 2019, 19, x FOR PEER REVIEW 14 of 32 
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5.1. Passive Sensors

Passive sensors acquire data in a nonintrusive way as they receive signals without emitting them.
These sensors work on the principles of sound and light detection. Examples of acoustic sensor and
optical sensors are provided in [153] and [154,155], respectively. Based on the acoustic signal, a scheme
for real-time detection and tracking of an approximating vehicle is proposed in [153]. In the first
step, it employs a gradient method to extract the robust spatial features from noisy acoustical data.
At the later stage, the acquired spatial features are processed through sequential state estimation to
produce the output. The proposed scheme was verified with practical acoustic data. The work in [156]
proposed a comprehensive design of an acoustic detection prototype hardware to sense nearby traffic
by estimating road congestion using noise as a negative feature of the urban roads. After sampling the
road noise, it is processed to compute important parameters such as vehicle speed. The speeds are
estimated using honks data and implementing differential Doppler shifts. The acquired parameters
were transmitted to a remote server every minute. The traffic condition on the road was determined by
a remote processor using values of these parameters.

Optical sensors use single [157], multiple [158,159], or stereo cameras [160] to track the approaching
and preceding vehicles. The cameras are mounted inside the vehicle near the back-view mirror and
on the rear-side of the vehicle. In certain applications, more than one camera or pan-tilt-zoom (PTZ)
cameras are required to capture a 180–360◦ view of the surroundings. Due to the poor performance
of normal cameras under low light conditions, infrared (IR) cameras are utilized for night-time
applications [154]. Both monocular and stereo vision signals are utilized for vehicle detection and
tracking, with the typical application of stereo vision for 3-D tracking and localization and monocular
vision for detection. The authors of [161] proposed a scheme for vehicle detection using a classifier
on the monocular plane, an estimation of the ground surface using disparity map, and tracking in
the stereo-vision domain with the help of extended Kalman Filter (KF). In a related work [162], initial
training of AdaBoost detectors for multiple vehicle views was carried out, and then verification of
candidate regions was observed by finding the peaks in disparity range.

5.2. Active Sensors

The active sensors first radiate signals and then sense the reflected signals to identify other vehicles
and obstacles. Their examples include radar-based [163] and Laser-based [164] sensors. To detect and
track the obstacles in front of a vehicle, the authors of [165] used Pulse Doppler radar framework
with sensors installed in the front-lower part of a vehicle. The distance between the target and the
vehicle was calculated by examining echoes of radar signals. The developed system’s performance
was also observed at various distance ranges and under different weather conditions. For detection of
an approaching vehicle, a detection scheme based on radar was proposed in [166] which exploited the
sparsity of the cyclic autocorrelation. This scheme showed good simulation results, but its practical
demonstration was not provided. Another study [167] developed a radar-based driver safety system
for an actual multi-lane system using discrete time signal processing. With 200 classification tests, a
high accuracy of 90% was achieved for vehicle speed detection. Moreover, the results for the developed
system under different situations such as low-light conditions which correspond to fog and rain
were satisfactory.

The detection and tracking systems based on Lidar and laser transmit and receive UV, visible, and
IR waves of the EM spectrum. The returning wave collected at the receiver provides information about
the distance of the object. Commonly available 1-D and 2-D Lidar sensors are more economical than
radars. Laser scanners, which are an extended version of laser range finders, adopt the time-of-flight
principle to compute the distance to an object. A scheme for detection and classification of vehicles is
developed in [164] by using a vehicle-mounted Laser scanner. The developed system was tested under
multiple driving conditions (e.g., city and highways traffic) with three different Laser scanners, and
resulted in good accuracy. Advanced laser scanners acquire data with high a scanning rate at a high
spatial resolution. Table 3 provides a summary of the commonly available active and passive sensors.
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Table 3. A survey of sensors applicable in the field of vehicle detection and tracking systems.

Type Typical Range Description
References Specific Sensor

Advantages Disadvantages

Acoustic Variable An economical solution, Real time Omni—directional microphone, Noise sensitive, Short range, Interference problem [153,168] SONY ECM-77B

Radar 175 m
Robust in foggy or rainy day, and during night time, Measure

distance directly with less computing resources, Longer detection
range than acoustic, and optical sensor

Classification issue, More Power consumption
than acoustic and optical sensor, Interference
problem, Higher cost than Acoustic sensors

[163,165,166] Delphi Adaptive Cruise
Control

Laser/Lidar 120 m Independent of weather conditions, Longer detection range than
acoustic and optical sensor, Modern lidar/laser scanners acquire

high resolution and 3D information

More Power consumption than other sensors,
High speed 3D scanners are expensive Road

infrastructure dependency

[164,169,170]
Velodyne HDL-64E Laser
Rangefinder (31D LIDAR)

80 m SICK LMS5l-l0l00 (2D)

Optical (camera) 100 m (day)
l2 m (night)

Accumulate data in nonintrusive way, Higher resolution and wider
view angle, Low cost, easier to install and maintain, Extensive

information in images, Independent of any modifications to the
road infrastructure

Requires more computing resources to process the
images, Image quality depends on lighting and

weather conditions
[154,155,157,158,171,172] SV-625B

Fusion Variable Maximum information of surroundings, Increased system
robustness and reliability, Broadens the sensing capabilities, Expensive, Separate algorithms for each Sensor [153,169,171,173–185] Not Applicable
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5.3. Combination or Fusion of Sensors

The modern trend is shifting towards the application of multiple sensors combined to produce a
comprehensive set of reliable and secure results [178,186,187]. When used as a combination or fusion,
either one sensor detects and the other validates, or both sensors perform detection at the same time
and then validate their results [177,185].

5.3.1. Vision and Radar

Recently, the fusion of vision and radar sensors for vehicle detection and tracking received
increased attention. In this combination, radar is primarily used for evaluating the distance or regions
of interest whereas recognition is performed by pattern recognition algorithms applied to visual data.
As observed in [184], railings’ location was estimated by radar data, and vehicles were detected by the
vertical symmetry attribute of certain region in the images [184]. In other studies [155,159], optical
features of images, such as edge and symmetry, were used to detect vehicles, and KF was implemented
on radar data for ranging and tracking of the vehicles. In [171], the authors used classifiers, such
as Gabor, a histogram of oriented gradients, and Haar on images data to detect the vehicles, and
calculated the range using radar data. The study carried out in [179] analyzed the input image for
salient locations using multiple features such as intensity, orientation, and color. Once the vehicle is
detected, its distance is computed using radar and vision fused data. Similar techniques were adopted
in other studies, such as [183].

5.3.2. Vision and Lidar

Typically, in these experiments, detection and tracking are initially performed using Lidar data, and
then Lidar and camera are simultaneously utilized for classification. Fusion of monocular vision with
Lidar is reported in [178]. In [177], potential obstacles were initially discovered by multi-layer Lidar,
and then a stereo vision system was employed to confirm their existence. The authors of [176] utilized
a multi-sensor scheme using camera, radar, and lidar technologies to acquire widely overlapping
fields of view. The complete assembly consisted of two separate laser scanners, multiple short-range
radars mounted on the vehicles’ sides, and three long-range sensors (i.e., radar, stereo-vision, and laser)
covering the vehicle’s front. Consequently, the obstacle map developed through fusion of multiple
sensors data produced precise and more reliable results than any of individual sensors’ results. Such
an assembly, however, requires a healthy budget.

5.3.3. Vision and Sound

In this combination, direction-of-arrival of other vehicles is estimated through acoustic data
processing whereas target location is calculated using cameras [175].

5.3.4. Radar and Lidar

Though involving higher cost, this combination produces improved detection and tracking results.
For example, in [174], a system based on combined information collected through radar and lidar is
proposed. The state estimation was carried out using Bayesian methods, and tracking data produced
by two independent systems was combined to produce improved results.

5.3.5. Other Combinations

Studies have also proposed other combinations of active and passive sensors. For example, a
combination of sound sensor, radar, stereo and IR camera is proposed in [173] for detection and
monitoring of motorcycles.
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6. DMAS in Modern Vehicles

As explained in Section 2, the driver’s role in the driving process is typically divided into three
activities, viz. situation awareness, decision, and action. High-end models of modern vehicles
are equipped with DMAS which assist the driver in these activities, as shown in Table 4. A brief
survey of literature and systems dedicated to assisting the drivers in safe and comfortable driving is
presented below.

Table 4. A summary of DMAS available in modern vehicles.

Company Technology Category
Monitoring

System/Detection
Parameters/Warning System

Important Features Reference

Audi Audi pre sense (driver
assistance system) Car-based

Far infrared system, Camera,
Radar, Thermal camera/Lane

position, Proximity
detection/Audio, display,

vibration

• Collision avoidance assist
• Sunroof and windows closing
• High beam assist
• Turn assist
• Rear cross-path assist
• Exit assist (to warn door opening

when a nearby car passes)
• Traffic jam assist
• Night vision

[188]

BMW
BMW Drive Assist
(driver assistance

system)
Car-based

Radar, Camera, Thermal
camera/Lane position,

Proximity detection/Audio,
display, vibration

• Lane change warning
• Night vision
• Steering and lane control system

for semi-automated driving
• Crossroad warning
• Assistive parking

[189]

Toyota
Toyota Safety Sense

(Driver moniting
system)

Driver-based
Radar, Charge-coupled

camera/Eye tracking and head
motion/Audio, display

• Advanced obstacle
detection system

• Pre-Collision System
• Lane Departure Alert
• Automatic High Beams
• Dynamic Radar Cruise Control
• Pedestrian Detection

[190]

Mercedez-Benz
Mercedez-Benz

Pre-safe Technology
(Attention assist)

Car-based

Radar, Camera, Sensors on the
steering column/Steering

wheel movement and
speed/Audio, display

• Driver’s profile and behaviour
• Accident Investigation
• Pre-Safe Brake and Distronic

Plus Technology
• Night View Assist Plus
• Active Lane Keeping Assist and

Active Blind Spot Monitoring
• Adaptive High Beam Assist
• Attention assist

[191]

Ford Ford Safe and Smart
(Driver alert control) Car based

Radar, Camera, Steering
sensors/Lane position,

Proximity detection/Audio,
display, vibration

• Lane-Keeping System
• Adaptive cruise control
• Forward collision warning with

brake support
• Front rain-sensing

windshield wipers.
• Auto high-beam headlamps
• Blind Spot Information System
• Reverse steering

[192]

6.1. Assistance in Situation Awareness

Improving a driver’s awareness about the situation is among the basic themes of DMAS. The
necessary information about the driving environment is provided to the driver to make a well-judged
and timely decision [193–201]. In this regard, vision enhancement is a major subject as most
driving-related information is collected through the eyes [202]. Considering the vision systems
which serve as an extension to the human eye, there are two main categories of vision enhancement
techniques:



Sensors 2019, 19, 2574 18 of 32

1. Inside-vehicle screens: A typical example of such systems is the rear-view camera extensively
used for parking. Other examples are infrared cameras which dynamically capture the scenes
ahead of the vehicle, and relay them to the driver in an enhanced form. Display of such infrared
cameras is usually located on top of the dashboard in front of the driver. The inside-vehicle
screens deliver additional information to the drivers that is usually invisible, and sometimes
irrelevant as well. Consequently, it increases recognition burden for the drivers. These displays
always divert drivers’ attention regardless of their position in the vehicle.

2. Outside-vehicle lighting arrangement: These systems dynamically tweak the intensity and
range of vehicle lights to attain a continuous transition between high/low beam illuminations
or differentiate possible obstructions for the drivers. Marking Light [196] from Volkswagen
is an example of such systems. Comparative to inside-vehicle screens, the outside-vehicle
lighting systems are considered to be more natural and easier for the drivers, but not free of
intrusions [203,204].

Information provided by these systems to the drivers is typically not detected by human eyes (e.g.,
possible pedestrians [201] or additional visual information collected from nearby vehicles [194,199]).
However, inputting this information contains the risk of confusing the driver’s recognition. Occasionally,
this could be very dangerous as the resultant confusion can disorganize the driver’s recognition system
all of a sudden [168,194].

Enhancing the drivers’ awareness in a time of disturbances caused by the weather and environment
is another interesting topic of further research. For instance, detection of raindrops and rain speed
is used in speed adjustment of smart-wipers systems to provide a clear view for drivers during
rain [193,197,198]. Similarly, resolving how to handle the irritating and often dangerous high beam
light glare from the passing vehicles is still an unsolved problem. Introduction of intelligent headlight
adjustment systems [200] seems to be a standard solution. Such a system decreases the intensity of
headlights when other approaching vehicles are identified. However, vehicles without intelligent
headlight adjustment systems still pose the danger to the drivers driving a vehicle with such a system.
The authors’ point of view in this regard is to standardize such a system in future vehicles.

6.2. Assistance in Decision Making

In comparison to situation awareness enhancement, assistance in decision making is the next
level of DMAS as it provides guidance to drivers in a loud and clear manner [205–220]. There is an
increased interest in how a vehicle communicates with its drivers and vice-versa [205–208]. From the
literature survey, the following main categories of decision enhancement systems are identified:

1. Audio system (e.g., voice navigation and warning)
2. Video or visual system (e.g., displays)
3. Miscellaneous (a combination of above two, vibration, etc.)

The audio systems deliver lesser information than video systems in several conditions and
are comparatively less distracting. In general, only rout suggestions such as left or right turns are
efficiently conveyed by audio guidance systems. Additionally, audio warning systems are also useful
for drowsy or drunk drink drivers to convey emergency action orders because of their inattentiveness
to visual warnings.

The visual displays offer more useful information with productive features but also distract the
driver’s attention [209]. An example of such systems is a 3-D navigation system getting increased
popularity. To the authors of this survey, additional experimentation and data are needed to assess the
optimal tradeoff for users of such systems as they augment the drivers’ recognition burden.

Another issue arose due to limited space of the dashboard is how to place, adjust, and organize
the vehicle’s classic meters (e.g., temperature indicator, speedometer) and modern visual displays. As
proposed in [212,213], a multi-function display that represents maximum information by merging
several separate displays and controls into a single graphical user interface will get popularity in future
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vehicles. However, shifting to multi-function displays from the conventional dashboards will certainly
involve additional usage concerns and more challenges in human driver ergonomics [205–208,217].
Similarly, due to the difference in driving conditions (e.g., between highway and city driving [210]),
development of an adaptive interface to accommodate such diversities is still an open challenge.

6.3. Assistance in Action Performing

Recent developments in the field of human-machine interaction and cooperation enable the modern
DMAS to move one step further by assisting the driver in the action performing stage [221–232].
An example of action-assistance is the reverse steering feature offered by Ford as shown in Table 4.
As explained in [221,233], action-assistance has several levels of complexity and driver-vehicle
interaction. The lateral steer-by-wire control system, available in many vehicles, represents a simple
level [222–226,234]. These systems pacify the steering control by filtering out the inaccuracies and
disturbances associated with human driving behaviors. Similarly, the longitudinal brake-by-wire
control analyzes the pattern of an individual driver’s car-following and pedal usage style to offer a
tailored driving experience [227–230,235]. However, appropriate and timely adjustment of DMAS
is a challenge as human drivers slowly and constantly change their driving styles [228]. The higher
level action-assistance type controls include advanced lane departure assistance system [231] and
higher-level brake control system [236].

The time and to what extent DMAS can take control is a hot topic in this research [236–243].
Though the automation of driving process has an attractive side, yet, over trusting it may result
in surprises.

6.4. Future Trends

DMAS have promising safety-enhancing features that simplify the driving process, reduce sources
of driver distraction, and inattention that often lead to accidents. With DMAS support, it is expected
that drivers and passengers will find safer roadways, countering deadly trends in road accidents.
State-of-the-art DMAS shall combine the features and capabilities built on advanced and diverse
technologies. To the best of the authors’ understanding, the future of DMAS lies in the following key
trends [244–248]:

• Connectivity: Communication networks are becoming an integral part of both external and
in-vehicle connectivity as vehicle-related digital-data grows substantially. In addition to their
assistance in crucial systems such as braking systems and tire-pressure monitoring, wireless
networks provide superior flexibility for regular automotive communications protocols. The
development of highly integrated wireless devices offers a flexible foundation for services that
keep drivers informed about vehicle status and road conditions. Moreover, new technologies like
the Internet of Things can connect smart devices with vehicles’ communication system to deliver
more sophisticated services.

• Sensors: DMAS necessitate a wide-ranging set of sensors for monitoring the vehicles’ surroundings
and drivers’ condition. The modern trend is toward signal-chain integration and enhanced sensor
fusion, which combine the output of various sensors to provide more extrapolative information.
For example, by merging sensors’ data from tire-pressure sensors, anti-lock braking system,
acceleration sensors, and electronic-stability control, the researchers are developing systems that
can predict a loss of friction between the tire and the road.

• Embedded vision: Vision systems are critical to identify and track the possible hazards. These
systems provide critical input for high-level warning functions, including unobserved vehicles or
lane drift and support other services such as automatic parking and traffic sign recognition.

• Automotive systems infrastructure: The modern vehicles’ control is significantly dependent on
the increased integration of smart sensors. This situation requires an improved system foundation
in DMAS architectures as well as throughout the vehicle system design. With several processors
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scattered throughout the vehicle, the necessity for a stable design platform is evident, as indicated
in ISO standards [249]. There is a growing list of real-time operating systems, middleware, and
development tools designed to support the ISO 26262 international functional safety standard for
road vehicles.

• Human-machine interface (HMI) design: The success of DMAS eventually lies in distraction-free
interaction for the driver, though improved vision, sensors, and connectivity. For an improved
driving experience itself, the most promising trend is perhaps the application of advanced HMI
technologies. The touchscreen technology may assist drivers when the vehicle is parked or help
passengers. Touch-free HMI systems offer the mechanisms for driver interaction without requiring
hands off the steering wheel.

7. Discussion and Conclusions

The benefits of road transportation for individual and society are accompanied by certain losses
in the form of life, property, and environmental pollution. For decades, there have been several plans,
including DMAS, to improve the driving process and reduce the losses. Based on the literature review,
this work classified three main causes of driving accidents, viz. distraction, fatigue, and aggressive
driving behavior. In this survey, the authors reviewed DMAS in a comprehensive way by considering
factors associated with the driver, vehicle, and driving environment. The driver’s attentiveness is
the primary element for safe driving. Distraction and fatigue are the main causes of road accidents.
The studies reveal that several biological and physiological measurements can accurately detect a
driver’s mental engagement. Similarly, the application of modern classification techniques on the
data obtained from the vehicle’s instrumentation provides a good measure of driving behavior. The
detection of nearby vehicles is also an important feature of DMAS to avoid any possible collisions. The
study areas involved in DMAS are closely interlinked, and it is often hard to draw a clear boundary
between two areas. Similarly, as shown in Figure 6, the models developed for DMAS usually consider
a transition band for drivers when moving from one state to another (e.g., from alert to drowsy). The
modern classification techniques based on machine learning algorithms prove useful in handling
such situations.
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including DMAS, to improve the driving process and reduce the losses. Based on the literature 
review, this work classified three main causes of driving accidents, viz. distraction, fatigue, and 
aggressive driving behavior. In this survey, the authors reviewed DMAS in a comprehensive way by 
considering factors associated with the driver, vehicle, and driving environment. The driver’s 
attentiveness is the primary element for safe driving. Distraction and fatigue are the main causes of 
road accidents. The studies reveal that several biological and physiological measurements can 
accurately detect a driver’s mental engagement. Similarly, the application of modern classification 
techniques on the data obtained from the vehicle’s instrumentation provides a good measure of 
driving behavior. The detection of nearby vehicles is also an important feature of DMAS to avoid any 
possible collisions. The study areas involved in DMAS are closely interlinked, and it is often hard to 
draw a clear boundary between two areas. Similarly, as shown in Figure 6, the models developed for 
DMAS usually consider a transition band for drivers when moving from one state to another (e.g., 
from alert to drowsy). The modern classification techniques based on machine learning algorithms 
prove useful in handling such situations. 
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In addition to alerting a driver on the verge of a mistake, the modern DMAS also offer assistance
at decision making and action taking stages. However, such systems did not receive mass adoption
and are still under research. Before the spread of such systems, however, not only an appropriate
regulatory charter must be defined, but meaningful research is also required. The associated main
challenges are quick and correct decisions by the machines which are typically based on the machines’
programming. The transferring of human drivers’ experience to machine cognition is an important
step in the field.
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The acceptance of these intelligent and vulnerable systems by its end users is not a simple task.
This definitely requires functional reliability, safety, and transparency with respect to autonomous
performance. At the same time, the design of user-friendly ergonomic human-machine interface must
not be ignored. The authors propose that these aspects call for a considerable amount of in-depth
multidisciplinary research for several years.
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