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OBJECTIVE — Whole-grain foods are touted for multiple health benefits, including enhanc-
ing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies
(GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting
glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that
whole-grain food intake and genetic variation interact to influence concentrations of fasting
glucose and insulin.

RESEARCH DESIGN AND METHODS — Via meta-analysis of data from 14 cohorts
comprising �48,000 participants of European descent, we studied interactions of whole-grain
intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2
loci) concentrations. For tests of interaction, we considered a P value �0.0028 (0.05 of 18 tests)
as statistically significant.

RESULTS — Greater whole-grain food intake was associated with lower fasting glucose and
insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI
(� [95% CI] per 1-serving-greater whole-grain intake: �0.009 mmol/l glucose [�0.013 to
�0.005], P � 0.0001 and �0.011 pmol/l [ln] insulin [�0.015 to �0.007], P � 0.0003). No
interactions met our multiple testing–adjusted statistical significance threshold. The strongest
SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P � 0.006),
where greater whole-grain intake was associated with a smaller reduction in fasting insulin
concentrations in those with the insulin-raising allele.

CONCLUSIONS — Our results support
the favorable association of whole-grain intake
with fasting glucose and insulin and suggest a
potential interaction between variation in
GCKR and whole-grain intake in influencing
fasting insulin concentrations.
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D iet modification is among the pre-
mier targets for the prevention of
many chronic diseases and has

proven particularly effective for preven-
tion and management of type 2 diabetes.
For example, improvement in dietary
quality, in conjunction with other lifestyle
modifications like increased physical ac-
tivity, was shown to be more effective
than pharmacological treatment in pre-
vention of diabetes in individuals at high
risk (1). Further, lifestyle modification
may mitigate the risk associated with the
strongest known diabetes risk loci (2).
While the existence of environmental in-
fluences on genetic risk (and vice versa,
gene � environment interaction) is gen-
erally accepted, few examples have been
empirically demonstrated and replicated
using population-based or trial data (3).

Measures of carbohydrate source,
quality, or quantity, like whole-grain in-
take, fiber intake, glycemic index, and
glycemic load, are of particular interest in
relation to glucose metabolism and diabe-
tes risk (4). Carbohydrate quality and
whole-grain intake have been tested in re-
cent nested diabetes case-control studies
of diet � gene interaction (5–7). Findings
from these studies, while intriguing, need
replication in studies of larger sample size
and uniform design to more thoroughly
elucidate the relationships among diet,
genetic factors, and diabetes risk (8,9).

Polymorphic regions in the human
genome associated with risk of diabetes
(10,11) and related quantitative traits
(12) have been identified and replicated
in populations of European ancestry. In-
formation on personal genetic risk is al-
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ready being disseminated to individuals
within the general population and touted
for its potential contribution to personal-
ized medicine (13–15), although the un-
derlying clinical utility has yet to be
demonstrated (16,17). Given the poten-
tial for individual genetic risk to be
empirically quantified and rapidly com-
municated, it is of interest to both clini-
cians and the general public to discover if
modifiable characteristics like diet can
mitigate risk in individuals empirically
defined as “high risk” on the basis of
genotype.

The aims of the current cross-sectional
investigation were accomplished through a
multicohort collaboration (18,19) includ-
ing �48,000 individuals of European de-
scent originating from 14 cohort studies
conducted in North America and northern
and southern Europe. Our hypotheses were
that 1) whole-grain food intake is in-
versely associated with fasting glucose
and insulin concentrations and 2) single
nucleotide polymorphisms (SNPs), previ-
ously identified as predictive of fasting
glucose (16 SNPs) and fasting insulin (2
SNPs) concentrations (12), and whole-
grain intake interact to influence these
traits in individuals without diabetes.

RESEARCH DESIGN AND
METHODS — Participants from each
of the 14 cohorts (Table 1; supplemental
Table S1 in the online appendix, available
at http://care.diabetesjournals.org/cgi/
content/full/dc10-11150/DC1) were ex-
cluded if diabetes was present at the time
of glucose and insulin measurement (de-
fined by self-reported diabetes, pharma-
cologic treatment for diabetes, or fasting
glucose concentrations �7 mmol/l), if
consent to genetic research was not pro-
vided, or diet and genotype information
did not meet cohort-specific quality-control
standards (supplemental Tables S2 and S3).
Participants provided written informed
consent, and protocols were approved by
local institutional review boards.

Characterization of
whole-grain intake
Daily servings of whole-grain foods were
estimated in each cohort as the sum of
daily servings of whole-grain items in-
cluded on food frequency questionnaires
(FFQs) (11 cohorts), a lifestyle question-
naire (1 cohort), reported during multiple
24-h recalls (1 cohort), or recorded in
7-day dietary diaries (1 cohort). Breakfast
cereals containing �25% whole grain or
bran by weight were considered whole
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grain when brand name information and
corresponding industry-provided ingre-
dients were available (20). In cohorts
where food reference portions were given
alongside frequency options (i.e., semi-
quantitative FFQ), the reference portion
was assigned as one serving. In cohorts
where food items were quantified in daily
grams, uniform weights were assigned as
one serving on a food-by-food basis. (de-
tails in supplemental Table S2).

Genotyping, fasting glucose, and
insulin quantification: assessment of
other relevant variables
Cohort-specific methods for genotyping,
fasting glucose and insulin quantification,
and assessment of other participant char-
acteristics, as well as allele frequencies at
each locus are described in supplemental
Tables S3, S4, and S5. The SNPs used in
the present analysis were associated (P �
5 � 10�8) with fasting glucose and/or
fasting insulin in a previous meta-analysis
of genome-wide association studies with
independent replication (12); 15 SNPs
were associated with only fasting glucose,
1 SNP with only fasting insulin, and 1
SNP with both fasting glucose and insulin
(listed in Table 3). Fasting glucose and
insulin were quantified by enzymatic
methods and radioimmunoassay, res-
pectively.

Statistical analysis
Glucose was analyzed without transfor-
mation and insulin was natural log trans-
formed before analysis. �-Coefficients
from regression analyses are presented for
(ln)insulin. For descriptive purposes, co-
hort mean insulin concentrations were
back transformed and presented as geo-
metric means with 95% CIs.

Cohort-specific analyses
Each cohort provided �-coefficients and
SEs for the following linear regression
models: 1) association between daily serv-
ings of whole-grain foods and fasting glu-
cose or fasting insulin concentrations, 2)
interactions between daily servings of
whole-grain foods and 16 SNPs for fasting
glucose concentrations, and 3) interac-
tions between daily servings of whole-
grain foods and 2 SNPs for fasting insulin
concentrations. To evaluate associations
of whole-grain intake with fasting glucose
and insulin concentrations, we used the
following four linear regression models
(listed in Table 2 and defined in supple-
mental Table S6; linear mixed-effects
models were used to account for familial
correlation among participants in the Fra-
mingham Heart Study and the Family
Heart Study): model 1, age (years, contin-
uous), sex, energy intake (kcal/day, con-
tinuous) plus field center (in the Health,
Aging, and Body Composition Study; the

Cardiovascular Health Study; the Athero-
sclerosis Risk in Communities Study; the
Family Heart Study, and the Invecchiare
in Chianti [Aging in the Chianti Area]
Study) and population substructure (by
principal components in Framingham
Heart Study and Family Health Study);
model 2, model 1 plus lifestyle character-
istics; model 3, model 2 plus select dietary
factors; and model 4, model 3 plus BMI.
For the interaction analyses, we used
model 1 covariates. In accordance with an
additive model where the SNPs were
uniformly modeled for the glucose- or
insulin-raising allele, the interaction re-
gression coefficients represent the differ-
ence in the magnitude of the whole-grain
association (per one daily serving) with
glucose (mmol/l) or (ln) insulin (pmol/l)
per copy of the glucose- or insulin-raising
allele.

Meta-analyses
We used an inverse variance–weighted
meta-analysis with fixed effects to esti-
mate summary effects (METAL software
[http://www.sph.umich.edu/csg/abecasis/
metal/index.html] for whole-grain � SNP
interaction tests; and Stata 11.0, Stata
Corporation, College Station, TX, for
whole-grain outcome associations) and
assessed heterogeneity by the I2 index
(21). Bonferroni correction was used to
determine the level of statistical signifi-

Table 2—Meta-analyzed association between daily whole-grain intake and fasting glucose and fasting insulin in 14 cohorts

n

Regression coefficient (� �95% CI	
representing expected change in

fasting glucose [mmol/l] per
one-daily-serving–greater

whole-grain intake) P n

Regression coefficient (� �95% CI	
representing expected change in
fasting insulin �{ln}pmol/l	 per

one-daily-serving–greater
whole-grain intake) P

Model 1: age, sex, energy intake,
field center, or population
structure* 48,723 �0.019 (�0.022 to �0.015) �0.0001 34,201 �0.021 (�0.025 to �0.017) �0.0001

Model 2: model 1 
 education
level, physical activity, alcohol
intake, and smoking status† 48,207 �0.013 (�0.017 to �0.010) �0.0001 34,108 �0.022 (�0.026 to �0.017) �0.0001

Model 3: model 2 
 red or
processed meat, fish,
vegetables, fruit, coffee, nuts,
and seeds‡ 46,985 �0.012 (�0.016 to �0.008) �0.0001 33,993 �0.016 (�0.021 to �0.011) �0.0001

Model 4: model 3 
 BMI§ 46,928 �0.009 (�0.013 to �0.005) �0.0001 33,937 �0.011 (�0.015 to �0.007) 0.0003

*Energy intake was not estimated in the Age, Gene/Environment Susceptibility-Reykjavik Study cohort. Field center was included as a covariate in the Health, Aging,
and Body Composition Study; the Cardiovascular Health Study, the Atherosclerosis Risk in Communities Study, the Family Heart Study, and the Invecchiare in
Chianti (Aging in the Chianti Area) Study. Principal components were used to adjust for population structure in the Framingham Heart Study and the Family Heart
Study. †Education level and physical activity were defined uniquely by cohort. Smoking status was characterized as current, former, or never in 12 cohorts and as
current or not current in 3 cohorts (Framingham Heart Study; Age, Gene/Environment Susceptibility-Reykjavik Study; Uppsala Longitudinal Study of Adult Men).
Education level, smoking status, and alcohol intake were not adjusted in the Gene-Diet Attica Investigation on Childhood Obesity cohort (fifth and sixth graders).
‡Most cohorts included each of dietary covariates listed in the table as servings per day or grams per day; exceptions are noted in the online supplement. §BMI was
modeled as a continuous variable in all cohorts (kg/m2).

Whole-grain and genetic loci meta-analysis
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cance; with 16 tests for glucose and 2 for
insulin, we used � � 0.05/18 � 0.0028.

The sample sizes for the whole-grain
associations with fasting glucose ranged
from 48,723 to 46,928 in models 1 and 4,
respectively, and for fasting insulin, sam-
ples ranged from 34,201 to 33,937 in
models 1 and 4, respectively. The sample
sizes for the whole-grain � SNP interac-
tion analyses for fasting glucose ranged
from 40,776 for rs11558471 to 48,323
for rs4607517 and rs174550, with sam-
ples sizes for the other 13 SNPs between
those values. The sample sizes for the
whole-grain � SNP interaction analyses
for fasting insulin was 29,078 for rs35767
and 33,784 for rs780094. Post hoc esti-
mates of study power are provided in sup-
plemental Fig. S1.

RESULTS — Table 1 summarizes the
basic demographic characteristics of the
14 contributing cohorts. The mean self-
reported daily whole-grain intake was

lowest in Mediterranean regions and
highest in northern European regions.
Variation did not appear to correspond to
measurement method (FFQ vs. 24-h re-
calls versus dietary records) (supplemen-
tal Fig. S2).

Associations of whole-grain intake
with fasting glucose and insulin
concentrations
With adjustment for sex, age, and energy
intake, greater whole-grain intake was asso-
ciated with lower fasting glucose and insu-
lin concentrations. For each one-daily-
serving– greater intake of whole-grain
foods, fasting glucose concentrations were
0.019 units lower (� [95% CI]: �0.019
mmol/l [�0.022 to �0.015], P � 0.0001)
(Fig. 1A; Table 2) and fasting insulin con-
centrations were 0.021 units lower (� [95%
CI]: �0.021 [ln] pmol/l [�0.025 to
�0.017], P � 0.0001) (Fig. 1B; Table 2).
Results from models 2–4 were similar (Ta-
ble 2), showing only slight attenuation in

the regression estimates (Table 2; see also
supplemental Figs. S3 and S4 and supple-
mental Table S7).

Interactions of whole-grain intake
and SNPs with respect to fasting glucose
and insulin concentrations. The strongest
identified interaction was between whole-
grain intake and rs780094 (in GCKR) in
association with fasting insulin concen-
trations (�interaction � SE: 0.009 [ln]
pmol/l � 0.003, P � 0.006). Translated,
this interaction regression coefficient in-
dicates that greater whole-grain intake
had a weaker insulin-lowering effect in
the presence of the insulin-raising C al-
lele. For example, in individuals carrying
one copy of the insulin-raising C allele,
the lower insulin concentration observed
in association with greater whole-grain
intake would be reduced by 0.009 units
(that is, 0.010 units lower insulin in asso-
ciation with one daily whole-grain serving
instead of 0.019 units lower). Corre-
spondingly, in individuals carrying two

Table 3—Meta-analyzed interactions between daily whole-grain intake and genotype for select SNPs for fasting glucose and fasting insulin in
14 cohorts*

SNP Nearest gene

Glucose- or
insulin-raising

allele/other
allele

Number of
cohorts n

Regression coefficient for
interaction between daily

servings of whole grains � SNP
for fasting glucose (mmol/l)

I2 (95%
uncertainty

interval)
(%)� SE P

Glucose-related SNP
rs340874 PROX1 C/T 13 43,527 �0.0011 0.0030 0.71 0 (0–57)
rs780094 GCKR C/T 14 48,303 0.0040 0.0027 0.13 0 (0–55)
rs560887 G6PC2 C/T 13 43,488 �0.0001 0.0032 0.98 0 (0–57)
rs11708067 ADCY5 A/G 13 43,555 0.0039 0.0036 0.28 24 (0–61)
rs11920090 SLC2A2 T/A 13 43,451 0.0006 0.0043 0.89 0 (0–57)
rs2191349 DGKB/TMEM195 T/G 13 43,561 �0.0044 0.0029 0.13 0 (0–57)
rs4607517 GCK A/G 14 48,323 0.0002 0.0035 0.95 0 (0–55)
rs11558471 SLC30A8 A/G 10 40,776 �0.0007 0.0034 0.84 0 (0–62)
rs7034200 GLIS3 A/C 13 43,362 0.0015 0.0029 0.60 0 (0–57)
rs10885122 ADRA2A G/T 13 43,391 0.0082 0.0044 0.06 0 (0–57)
rs4506565 TCF7L2 T/A 12 45,911 0.0004 0.0030 0.88 51 (6–75)
rs11605924 CRY2 A/C 13 43,567 �0.0016 0.0029 0.58 0 (0–57)
rs7944584 MADD A/T 13 43,361 0.0049 0.0033 0.14 0 (0–57)
rs174550 FADS1 T/C 14 48,162 �0.0027 0.0028 0.34 32 (0–64)
rs10830963 MTNR1B G/C 13 43,433 0.0028 0.0035 0.42 32 (0–65)
rs11071657 C2CD4B A/G 13 42,500 0.0035 0.0031 0.26 0 (0–57)

Insulin-related SNP

Regression coefficient for
interaction between daily

servings of whole grains � SNP
for fasting insulin �(ln)pmol/l	

rs780094 GCKR C/T 14 33,784 0.0091 0.003 0.006 1 (0–36)
rs35767 IGF1 G/A 13 29,078 0.0022 0.005 0.69 0 (0–57)

*Regression coefficient for interaction between daily servings of whole grains � SNP for fasting glucose (mmol/l) and fasting insulin �(ln)pmol/l	, adjusted for age,
sex, energy intake (not in the Age, Gene/Environment Susceptibility-Reykjavik Study), and field center (Health, Aging, and Body Composition Study; the
Cardiovascular Health Study; the Atherosclerosis Risk in Communities Study; and the Invecchiare in Chianti �Aging in the Chianti Area	 Study) and population
structure by principal components in the Framingham Heart Study and the Family Heart Study.
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copies of the insulin-raising C allele, the
lower insulin concentration observed in
association with greater whole-grain in-
take would be reduced by 0.018 units
(that is, 0.001 units lower insulin in asso-
ciation with one daily whole-grain serving
instead of 0.019 units lower). After cor-
rection for multiple hypothesis testing,
none of the interactions between whole-
grain intake and the preselected SNPs (in-
cluding rs780094) met our a priori cut
point for significance (P � 0.0028) (Table
3 and supplemental Figs. S5 and S6).

CONCLUSIONS — Understanding
how a potentially modifiable dietary char-
acteristic like whole-grain food intake in-
fluences genetic effects on metabolic
homeostasis may help elucidate the ther-
apeutic potential of personalized medi-
cine. We have performed a meta-analysis
evaluating interactions between whole-
grain food intake, an easily modifiable
dietary characteristic with known associ-
ations with fasting glucose, insulin and
diabetes risk, and loci previously identi-
fied as significantly and reproducibly as-
sociated with concentrations of fasting
glucose and insulin (12). This is, to our
knowledge, the largest and most compre-
hensive study of gene � lifestyle interac-
tions conducted to date. In over 48,000
European individuals, we observed ro-
bust associations of whole-grain intake
with fasting glucose and fasting insulin
concentrations, firmly supporting obser-
vations previously made in other, smaller
studies (22–25). The most promising in-
teraction we identified was between

whole grains and variation in GCKR
(rs780094) in association with fasting in-
sulin, where the inverse association be-
tween whole-grain intake and fasting
insulin concentrations was weakened in
the presence of the insulin-raising allele.
However, for the majority of loci studied,
the inverse association of whole-grain in-
take with fasting glucose or fasting insulin
was present regardless of allelic variation
at these loci.

Current findings in the context of
gene � environment interaction
investigations
The polymorphic locus rs780094 lies
near a splice site in intron 18 of the GCKR
gene whose product is a regulatory pro-
tein that inhibits glucokinase, a key regu-
latory step in glucose metabolism that is
influenced by dietary composition (26).
The locus was originally identified in the
Diabetes Genetics Initiative GWAS for tri-
glyceride levels (27). Later, the triglycer-
ide-raising T allele was associated with
lower fasting glucose and insulin concen-
trations (28) and confirmed in a meta-
analysis of several GWAS (12). Fine
mapping of the region for association
with triglyceride levels pinpointed a
Pro446Leu missense variant in GCKR
(28) that is less responsive to regulation
by concentrations of fructose-6-phospate,
resulting in increased liver glucokinase
activity, enhanced glycolysis, and ele-
vated liver malonyl-CoA. The conse-
quence of this metabolic shift manifests in
lower fasting glucose and elevated triglyc-
eride concentrations (29). The mecha-

nism by which whole-grain food intake
improves insulin resistance may involve
glucokinase, and our results suggest that
allelic variation at GCKR could diminish
the beneficial effects of whole-grain foods
on insulin homeostasis, possibly via the
strong effect of GCKR variant on both tri-
glyceride and glucose levels.

No other studied interaction met our
Bonferroni-corrected cut point for statis-
tical significance. Aside from the possibil-
ity that there really is no interaction
between whole grains and these loci, the
null results could still reflect insufficient
statistical power or misclassification in
the quantification of whole-grain intake.
It is also possible that latent interactions
might be observable in acute diet intake
settings, that is, after a whole-grain–
enriched meal where postmeal measures
of insulin sensitivity are obtained.

Previous studies have evaluated inter-
actions between diabetogenic loci and
whole-grain intake or other proxies of
carbohydrate intake or overall dietary
quality. Three nested case-control studies
previously investigated interactions of
whole-grain intake (6), glycemic index/
glycemic load (5), or a Western dietary pat-
tern (7) with TCF7L2 SNPs (rs7903146 (6)
and rs12255372 (5,6) or a genetic risk score
that included a TCF7L2 marker among 10
risk loci (7). All three studies reported sig-
nificant interactions (P � 0.05) between the
TCF7L2 variants and the respective di-
etary factors on diabetes incidence. Un-
like these studies, we found no evidence
of interaction between whole-grain food
intake and the rs4506565 variant (an-

Figure 1—Associations between daily whole-grain intake (A) and fasting glucose (B) and fasting insulin in 14 cohorts. A: Regression coefficient (�
[95% CI]) representing expected change in fasting glucose (mmol/l) per one-daily-serving–greater whole-grain intake. B: Regression coefficient (�
[95% CI]) representing expected change in fasting insulin [(ln)pmol/l] per one-daily-serving–greater whole-grain intake. Data are adjusted for
model one covariates: age, sex, energy intake, field center, or population structure (Note: energy intake was not estimated in the AGES cohort; field
center was included as a covariate in Health ABC, CHS, ARIC, FamHS, and InCHIANTI; population structure by principal components in FHS and
FamHS).
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other TCF7L2 marker highly correlated
[r2 0.68–0.917] with rs7903146 in Eu-
ropeans) with respect to either fasting glu-
cose or fasting insulin concentrations. We
cannot exclude interactions between
whole-grain intake and TCF7L2 variants
on diabetes risk, as the mechanisms of
interaction may differ in persons with es-
tablished diabetes. On the other hand,
these previous studies were relatively
small and did not apply conservative cor-
rections for multiple testing, raising the
possibility of false-positive findings.

Strengths and limitations of the
present work
The strengths of our study include its
large sample size, clearly defined a priori
hypotheses, control for multiple testing,
comparable whole-grain definitions
across cohorts, and inclusion of well-
characterized cohorts with diverse under-
lying dietary patterns (i.e., unique
correlation structure of foods), which re-
duces the potential for confounding by
other foods correlated with whole-grain
intake. However, studies such as ours also
have some inherent limitations. For ex-
ample, measurement error in epidemio-
logical studies can seriously impact the
ability to detect small gene � environ-
ment interaction effects (30). The study-
specific interaction regression coefficients
covered a wide range (i.e., we observed
small regression coefficients and large
within-study variances), suggesting that
some random errors may have reduced
study power. Thus, even though our
study is large in relative terms, it may still
lack power to detect small interaction ef-
fects. On the other hand, if too small to be
detected by our analysis, such small inter-
actions might have relatively limited pop-
ulation or clinical relevance. The role of
measurement error in dietary assessment
has been long debated (31), and it is pos-
sible that the influence of genetic factors
on these outcomes may vary according to
whole-grain intake in more well-
controlled clinical settings. Furthermore,
even though sequential adjustment for
putative confounding factors had little
impact on the effect sizes across models,
we cannot exclude the possibility that re-
sidual confounding explains some of our
findings. It may also be that because we
used an overly conservative method for
adjusting for multiple testing, some of our
findings may be falsely negative.

Genome-wide scans typically rank
the most significant effects highest. The
statistical significance of a genotype-

phenotype association is diminished in
the presence of interaction (32). Thus,
loci that interact with other loci or with
environmental factors may be less likely
to rank highly in conventional GWASs
compared with those that have strong
main effects that are not modified by
other exposures. Thus, by examining only
the top main effects from GWAS in the
present study, we may have overlooked
numerous valid gene � whole-grain in-
teraction effects elsewhere in the genome.
Furthermore, because it is unknown
whether the SNPs studied here are the
causal variants, it is possible that stronger
effects attributable to rarer SNPs could
underlie some of the examined loci. It is
worth noting that for some SNPs, we ob-
served a high degree of heterogeneity in
interaction effects across cohorts, sug-
gesting the possibility of multidimen-
sional interactions, which could not be
examined in the present study.

Results of this large, comprehensive
investigation of gene-diet interaction,
suggest that the association of whole-
grain intake with fasting insulin may be
modified by GCKR rs780094. While in-
triguing, the test of interaction did not
meet our conservative Bonferroni-
corrected cut point for statistical signifi-
cance and requires confirmation in other
studies. Our results do show that whole-
grain food intake is similarly and in-
versely associated with fasting insulin and
glucose irrespective of genetic variation
at the other loci studied. Our work coin-
cides with the dawn of a new age in
genetic and nutritional research. Investi-
gations such as ours contribute to a better
understanding of how diet therapy may
(or may not) be individualized to a per-
son’s genetic background. However, to
fully realize this potential, studies will re-
quire more precisely measured exposures
(such as nutritional biomarkers of whole-
grain intake) and should include experi-
mental settings where diet is manipulated
in people of contrasting genetic risk
profiles.
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