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A B S T R A C T

Cyclooxygenase-2 (COX-2) enzyme inhibitors have not eliminated the necessity for developed drugs not only in
the nonsteroidal anti-inflammatory drug (NSAIDs) area, but also in other therapeutic applications including
prevention of cancer and Alzheimer's disease. A series of novel substituted cyclic imides have been reported as
selective COX-2 inhibitors. To understand the structural features responsible for their activity, a 3D validated
pharmacophore and quantitative structure�activity relationship (QSAR) model have been developed. The values
of enrichment factor (EF), goodness of hit score (GH), area under the ROC curve (AUC), sensitivity, and specificity
refer to the good ability of the pharmacophore model to identify active compounds. Multiple linear regression
(MLR) produced statistically significant QSAR model with (R2

training ¼ 0.763, R2
test ¼ 0.96) and predictability

(Q2
training ¼ 0.66, Q2

test ¼ 0.84). Then, using the pharmacophore and QSAR models, eight authenticated botan-
icals in two herbal medicines and the ZINC compounds database, were virtually screened for ligands to COX-2.
The retrieved hits which also obey lipinski's rule of five (RO5) were docked in the COX-2 3D structure to
investigate their binding mode and affinity. Finally, based on the docking results, nine molecules were prioritized
as promising hits that could be used as leads to discover novel COX-2 inhibitors. COX-2 inhibition of most of these
hits has not been reported previously. Ten-nanosecond molecular dynamics simulation (10-ns MD) was performed
on the initial structure COX-2 complex with ZINC000113253375 and ZINC000043170560 resulted from the
docking. Our utilization of the 3D pharmacophore model, QSAR, molecular docking, and molecular dynamics
simulation trials can be a potent strategy to successfully predict activity, efficiently design drugs, and screen large
numbers of new compounds as active drug candidates.
1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are a commonly
prescribed for their established anti-inflammatory, antipyretic, and
analgesic properties [1]. NSAIDs inhibit cyclooxygenase enzyme (COX),
which mediates the bioconversion of arachidonic acid to inflammatory
prostaglandins (PGs). There are two COX isoenzymes (COX-1 and
COX-2). COX-1 is responsible for the maintenance of physiological ho-
meostasis, while COX-2 is induced in response to pro-inflammatory
conditions.

In spite of their benefits, conventional NSAIDs have significant
gastrointestinal toxicity and irritation since they inhibit both COX-1 and
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COX-2 isoforms. These adverse side effects encouraged the improvement
of selective COX-2 inhibitors as promising gastro protective agents [2].
Later on, the long term use of certain COX-2 inhibitor causes ulcer
exacerbation in high-risk patients, thrombosis, and kidney toxicity. Thus
COX-2 inhibitors are still of interest to researchers and need more work
and improvement in the NSAIDs area [3, 4, 5]. In addition, more in-
vestigations in the role of COX-2 inhibitors in cancer chemotherapy [6, 7]
and neurological diseases such as Parkinson [8] and Alzheimer's diseases
are still needed [9, 10]. Many valuable studies on COX-2 inhibitors have
still published until now, as, these inhibitors are still subject to the in-
terest of researchers worldwide [11, 12, 13, 14, 15, 16, 17].
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Back to NSAIDs area, they are generally used for the treatment of pain
and edema representing the choice of treatment for various inflammatory
diseases such as Rheumatoid arthritis and osteoarthritis [18].

Since these drugs are related to negative side effects, new anti-
inflammatory drugs are needed and complementary and alternative
medicines are being sought [19].

These days about 70% of the world's population relies on herbal drugs
for its primary pharmaceutical care [20]. Natural sources are the most
promising pool for drug candidates as revealed by statistics [21].

Examples of medicinal plants used locally to treat arthritis and related
disorders are Voltarit® and Rheumax®. Voltarit® contains 5 herbs
including Apium graveolens (Celery), Crataegus laevigata (Hawthorn
berries), Curcuma longa (Turmeric), Harpagophytum procumbens (Devil's
claw), and Vaccinium myrtillus (Bilberry). Rheumax® contains 4 herbs
including Curcuma longa (Turmeric), Boswellia serrata, Tinospora cordifo-
lia, and Vitex negundo. These eight herbs contain 43 major active com-
ponents, including steroids, terpenes, alkaloids, and, flavonoids [22]. It
will be a good idea to screen these components to search for unknown
COX-2 inhibitors.

In the race to design and develop new therapeutic molecules with the
maximum number of pharmacophoric features, computational tech-
niques have emerged as new tools to minimize the time and resources
required for their chemical syntheses, in vitro, and in vivo testing.
Computer-aided or in silico drug design (CADD) mainly uses computing
power to facilitate and accelerate the process of drug design by selecting
the most likely lead candidate for biological testing. The most common
approaches of CADD include ligand-based drug design (pharmacophore
and quantitative-structure activity relationship (QSAR))and target-based
drug design (pharmacophore and molecular docking) [23, 24].

In this study, the Pharmacophore hypothesis and QSAR model were
performed for a series of novel cyclic imide derivatives as COX-2 in-
hibitors. Then, the inhibitory activity towards COX-2 of 43 compounds
(in-house library) and zinc “all now” (all purchasable in 2 weeks) data-
base [25] was predicted relying on potent strategy which is the use of
pharmacophore fit score (first filter), pIC50 predicted by QSAR model
Table 1. Structures and their IC50 values of active compounds in pharmacophore
model.

Compound Structure IC50 (μm)

30 R ¼ NO2 0.1

R1, R3 ¼ H

R2 ¼ SO2NH2

R4 ¼ H

46 R ¼ NO2 0.18

R1, R2, R3 ¼ OCH3

R4 ¼ H

47 R ¼ NO2 0.24

R1, R3 ¼ H

R2 ¼ OCH3

R4 ¼ H

49 R1, R2, R3 ¼ OCH3 0.28

R, R4 ¼ Cl

50 R1, R3 ¼ H 0.36

R2 ¼ OCH3

R, R4 ¼ Cl
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(second filter), docking score and also by compound-enzyme interactions
(third filter). The compounds must pass all these filters to be considered
as hits recommended for further bio studies. An additional 10-ns MD
simulation was performed on the initial structure of the COX-2 complex
with the two best compounds resulting from the docking. The root mean
square deviations (RMSD) and the radius of gyration (Rg) of the enzyme
were calculated to examine the stability of the system (enzyme, water,
ions, etc.) [26].

The performance of our pharmacophore and QSAR models was vali-
dated by many strict parameters in order to use both of them effectively
in virtual screening [27, 28]. We especially emphasize procedures used to
define QSAR model applicability domain that should be used when the
model is employed for the prediction of external compounds [29, 30]. In
other words, we use machine learning to identify already-known chem-
ical compounds as potential novel COX-2 inhibitors that have not yet
been recognized as such.

2. Material and methods

2.1. Pharmacophore Model

2.1.1. Data set and pharmacophore modeling
A 3D ligand-based pharmacophore model was created using

LigandScout v4.4.1 from five potent cyclic imide compounds collected
from the literature. The values of the inhibitory activity of these COX-2
inhibitors ranged from 100 to–360 nM. The structures and experi-
mental biological activities (IC50) of these compounds are listed in
Table 1. The three dimensional (3D) structures of all compounds were
constructed using Chemdraw. For pharmacophore modeling, LigandSc-
out used espresso algorithm which has many stages including clustering
and conformation generation [31].

LigandScout's clustering method divides the ligands into test-set and
training-set. The aim of this clustering is to choose compounds that are
similar in terms of 3D pharmacophore characteristics and therefore bear
a higher chance of delivering a large overlap of chemical features. The 3D
clustering algorithm performs fast alignments and clusters based on a
similarity value between 0 and 1. Since this algorithm basically performs
combinatorial alignments of all conformations of all compounds, a low
number of conformations is recommended. The cluster distance can be
varied until the desired cluster size is reached. Conformations of the
training-set molecules were generated. After ranking the molecules ac-
cording to their number of conformations (flexibility), pharmacophore
features were projected onto these molecules and all their conformations.
All conformations of the two top-ranked (i.e. the least flexible) molecules
are then aligned using Inte:Ligand's molecular alignment algorithm [32].

2.1.2. Pharmacophore model validation
The validation of a pharmacophore model is considered an important

step before its use in virtual screening. The Predictive ability, specificity,
and sensitivity of a pharmacophore model are earnest metrics for the
reliability of performance. We assessed the predictive ability of the model
on a decoy set to determine the accuracy of recognition of active and
inactive compounds.

Sensitivity states how good the model correctly classifies compounds
and specificity shows how well the model is able to exclude inactive
compounds [28]. The Sensitivity (TPR) and specificity (TNR) can be
measured using Eqs. (1) and (2), respectively.

Sensitivity¼ true positives
true positives in the database

¼ TP
A

¼ TPR (1)

Specificity¼ true negatives
true negatives in the database

¼ TN
D

¼ TNR (2)

Other metrics to validate the pharmacophore model are the receiver
operating characteristic (ROC) curve which indicates how well a model
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can differentiate between active and inactive compounds [31] and the
area under the ROC-curve (AUC) [33]. The ROC curve provides the true
positive rate plotted against the false positive one of the hits. If the curve
was sharp and then flattened, this means that the model ranked the active
compounds higher than the inactive ones. The AUC value lies between
0 (bad classifier) when the model ranks all the inactive compounds first
and 1 (excellent classifier) on the contrary situation. Hence, to evaluate
the performance of the model, a set of 703 inactive compounds was
obtained from DUD-E as a decoy set for 5 active and selective COX-2
inhibitors. The decoy and active compounds have similar physicochem-
ical properties but different two dimensional topological ones [34, 35,
36]. Using the idbgen routine included in LigandScout, the compounds
were converted into a LigandScout format [52]. In addition to these
metrics, the statistical parameters of goodness of hit score (GH) [37],
enrichment factor (EF), and accuracy (ACC) were determined to inves-
tigate the performance of the model. The formulas are written in Eqs. (3),
(4), and (5) below:

GH¼
�

Ha
4HtA

�
ð3AþHtÞ �

�
1�

�
Ht� Ha

D� A

��
(3)

EF¼HaðAþ DÞ
HtA

(4)

ACC¼TPþ TN
Aþ D

(5)

Ht is the total number of hits and Ha is the number of active hits. The
range of the GH score is (0–1) with a threshold value equal to 0.6 [38].
Ideally, when the model picks all the active compounds with no inactive
ones, it will have a steep slope for the ROC curve, a high value of AUC, a
high EF value, and the highest value of sensitivity and specificity which is
1 [39].

2.1.3. Pharmacophore-based virtual screening (PBVS)
Virtual screening, based on the best pharmacophore model as a query,

was performed using Ligandscout v4.4.1 [40]. A part of the ZINC data-
base “All Now” and a small dataset consisting of 43 active components in
some herbal preparations were used for the screening study. The hit
compounds were retrieved based on the Pharmacophore Fit Score values
and then evaluated based on their drug-likeness properties using Lip-
inski's RO5 [41].

2.2. QSAR model

2.2.1. Data set
For QSAR studies a series of forty cyclic imide derivatives with their

COX-2 reported IC50 values were compiled from recently published
studies [42, 43, 44]. Various structures of dataset were selected. No large
gaps were allowed between activity values. For QSAR modeling, the
negative logarithm pIC50 of the biological activities IC50 was used. The
pIC50 values ranged between 4.151 and 7.000 with an average of 5.401
[45]. The data set was divided randomly using MATLAB into a
training-set (32 molecules) to build the model and the eight remaining
molecules were used to test the performance of the model (test-set) [46].
The structures of the studied molecules and their corresponding experi-
mental biological activities are listed in Table 2.

2.2.2. Optimization of compounds
The structures of the molecules were assembled using Hyperchem

software (version 8.0; Hyperchem, Alberta, Canada) (13). The geometry
of the compounds was optimized using Hyperchem. The molecular me-
chanics force field (MMþ) then semi empirical method AM1 were
applied [45].
3

2.2.3. Descriptors generation and features selection
For each compound, 1875 descriptors were calculated using PaDEL

software was used to calculate 1875 descriptors [47]. The calculated
descriptors which encoding different properties like physiochemical,
electronic, and topological properties were analyzed for the existence of
constant or near constant variables (standard deviation of 0.1 as a
threshold) using MATLAB. The detected ones were then removed.
Collinear descriptors (i.e. correlation coefficient between descriptors is
greater than 0.9) were detected and the one displaying the most note-
worthy correlation with the activity was held and others were expelled
from the data. Finally, 191 descriptors remained. SPSS (version 13.0;
SPSS Inc., Chicago, IL, USA) (15) statistical software was utilized to select
the features that had the minimum number of descriptors (simplicity)
and kept good performance [48]. The QSAR equation consisted of the
descriptors (X) and the measured pIC50 (Y). To correlate between X and
Y, Multiple Linear Regression (MLR) method was used. Different models
were generated with different R squares and numbers of descriptors for
each model. These values are crucial for the selection of acceptable
models. No less than five compounds should be involved in the equation
for each descriptor. The performance of MLR model was evaluated by
calculating root-mean-square error (RMSE) and from R2 values. RMSE
was calculated by Eq. (6):

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPns

i�1ðyi� y0Þ2
ns

s
(6)

yi is the wanted output observation, y0 is the predicted value, and ns is
the number of the total compounds in the data set. MATLAB was used to
do all the calculation for the training and test sets like calculating R2,
RMSE, and Q2.

2.2.4. Validation
To confirm the robustness of the model, the dataset was divided into a

training-set consists of 32 compounds and test-set (8 compounds) and
statistical parameters (Eqs. (7), (8), (9), (10), (11), and (12)), in addition
to R2 in accordance with Tropsha et al, Roy and Roy were calculated.

Q2 > 0.5, (7)

R2 > 0.6, (8)

��R2
test�R

2
0 test

��
R2

test

< 0:1; (9)

��R2
test�R

;2
0 test

��
R2

p

< 0:1; (10)

0.85 � k � 1.15 and 0.85 � k' � 1.15 (11)

R2
m ¼ r2p �

n
1�

�
r2p � r20

	1=2o
(12)

The R2
m value should be larger than 0.5 [49] to express that the model

has good external prediction.

2.2.5. Applicability of domain
The applicability of domain (AD) is widely comprehended in QSAR

field to estimate the unreliability and vulnerability in the prediction of a
specific molecule based on how similar it is to the compounds used to
build the model [50]. In this study, we used the Williams plot to evaluate
the AD of our QSAR model. The Williams plot provides leverage values (
hi) plotted against the standardized residuals. The leverage hi for each
compound, was calculated by Eq. (13) to predict its activity by QSAR
model [51]:



Table 2. Structures of compounds used in the QSAR study, and pIC50 values.

No pIC50 pIC50 predicted

3–4

3t R1 ¼ MeO 5.283 5.53

4r R1 ¼ Cl 4.978 5.174

5–10

5r R1 ¼ MeO, R2 ¼ H 5.193 5.370

6r R1 ¼ Cl, R2 ¼ H 5.040 5.051

7r R1 ¼ MeO, R2 ¼ 5-NO2 7.000 6.630

9r R1 ¼ MeO, R2 ¼ 5-Me 6.397 5.433

11t R1 ¼ MeO, R2 ¼ 5-tert-But 5.000 4.567

12r R1 ¼ Cl, R2 ¼ 5-tert-But 4.684 4.571

13r R1 ¼ MeO, R2 ¼ 5,6- Dichloro 4.906 5.003

14r R1 ¼ Cl, R2 ¼ 5,6-Dichloro 4.521 4.704

15r R1 ¼ MeO, R2 ¼ 4,5,6,7-Tetrachloro 4.347 5.064

18–19

18r R1 ¼ MeO 6.346 6.747

19r R1 ¼ Cl 6.000 5.990

20–21

20r R1 ¼ MeO 6.346 6.251

21t R1 ¼ Cl 6.000 5.796

(continued on next page)
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Table 2 (continued )

No pIC50 pIC50 predicted

22–31

23r R ¼ H,Ar ¼ b 4.602 4.525

24t R ¼ 5-Me, Ar ¼ a 4.301 4.025

27r R ¼ 5-tert-But, Ar ¼ b 4.301 5.074

28t R ¼ 5,6-Dichloro, Ar ¼ a 6.397 6.299

30r R ¼ 5-nitro, Ar ¼ a 7.000 7.221

31r R ¼ 5-nitro, Ar ¼ b 6.522 6.239

32–33

32r Ar ¼ a 6.096 6.310

33r Ar ¼ b 6.000 5.434

34–35

34r Ar ¼ a 5.522 5.617

35r Ar ¼ b 5.397 4.810

37r 4.151

R1 ¼ 3,4,5-trimethoxy 4.336

38–52

38r R1 ¼ 3,4,5-trimethoxy 4.471

R2 ¼ H 5.597

41t R1 ¼ 3,4,5-trimethoxy 4.619

(continued on next page)
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Table 2 (continued )

No pIC50 pIC50 predicted

R2 ¼ CH3 4.289

42r R1 ¼ 4-methoxy 4.442

R2 ¼ CH3 4.720

44t R1 ¼ 3,4,5-trimethoxy 4.492

R2 ¼ tert-butyl 4.295

45r R1 ¼ 4-methoxy 4.536

R2 ¼ tert-butyl 4.388

46r R1 ¼ 3,4,5-trimethoxy 6.744

R2 ¼ NO2 6.500

47t R1 ¼ 4-methoxy 6.619

R2 ¼ NO2 6.448

48r R1 ¼ 4-fluoro 4.507

R2 ¼ NO2 5.752

50r R1 ¼ 4-methoxy 6.443

R2 ¼ 5,6-Dichloro 5.408

52r R1 ¼ 4-methoxy 5.387

R2 ¼ 3,4,5,6-tetrachloro 4.968

53r 5.070

R1 ¼ 3,4,5-trimethoxy 4.860

55–56

55r R1 ¼ 3,4,5-trimethoxy 5.136 4.974

56r R1 ¼ 4-methoxy 4.767 5.317

57r 6.522 6.148

*r: training, *t: test.
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hi ¼ xtiðxt xÞ�1xi (13)
Where xi is the descriptor row vector of the query molecule and x is the k
�n matrix where k is the descriptor value for n molecule from the
training-set. The diagonal elements in this matrix represent the leverage
values (h) for the molecules in the dataset. The warning leverage, h*, was
fixed at 3p/n, where p is the number of descriptors plus one and n is the
number of training samples. A molecule with leverage higher than h*
may refer to unreliable predictions. The developed QSARmodel could be
6

used to predict the activity of certain compound only if it was inside the
applicability domain as Williams plot showed.

MLR was used to determine the standardized residuals of inhibitory
activity. The calculated leverage and standardized residuals values were
used for definition the AD. The AD was identified as a square area be-
tween �3 standard deviation and h*. Leverage values for all of training-
set and test-set compounds were calculated. The compound was
considered inside of the applicability domain only if had standardized
residual <3 standard deviation units and leverage value not exceeding
h*.
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2.2.6. Prediction
QSAR is an important part in computational drug design [52]. The

QSAR equation was applied to the compounds that we got it by phar-
macophore virtual screening on ZINC “all now” database and the 43
herbal components in order to predict their inhibitory activity on the
COX-2 enzyme. The expected inhibitory activity must be considered
reliable just for inhibitors that fall within the AD pool on which themodel
was developed. Leverage values and the predicted pIC50 of the retrieved
compounds are listed in Table 5.

Later on, only the compounds that fall inside the AD and pass the
QSAR filter will succeed to reach the docking study.
2.3. Molecular docking

All the compounds that achieved both good pharmacophore fit score
in pharmacophore-virtual screening and good pIC50 predicted by QSAR
model) besides celecoxib, rofecoxib, and diclofenac were docked to COX-
2 (PDB code: 5KIR, 2.697 Å) [53]. The Schrodinger suite of software
(Maestro, version 121) was used to do all the docking procedure with its
calculations and scores.

Molecular docking was performed using the extra-precision (XP)
mode of Glide (Grid-based Ligand Docking with Energetics). Glide al-
gorithm searches for ligand orientations, positions, and conformations in
the enzyme-binding pocket. The final evaluation of binding energy was
done with Glide score (G Score). Glide performance was validated by a
re-docking approach. Before docking the nine molecules, the bound
ligand found in the X-ray crystal structure was docked back into the
binding pocket of COX-2 enzyme. This was done to confirm that Glide
could imitate the position and orientation of the inhibitors as observed in
the crystal structure.

2.3.1. Ligand preparation
The two-dimensional (2D) structures of the studied inhibitors were

sketched using the freeware ACD/ChemSketch version 12.01 (ACD/Labs
Release, Canada) [54]. Then, they were converted into the standard
structure-data file (SDF) format using the freely available open source
toolbox, Open Babel [55].

Energy minimization was conducted using optimized potential for
liquid simulations (OPLS3) force field [56, 57] using Lig Prep Module
provided by Maestro version 12.1 (Schr€odinger, LCC, New York, 2019)
[58]. One three-dimensional (3D) conformer that has the lowest energy
and correct chirality was generated for each ligand to be used during the
docking procedure.
Figure 1. Mapping the most active training com
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2.3.2. Protein preparation
The 3D structure of COX-2 (PDB code: 5KIR, 2.697 Å) was retrieved

from the Protein Data Bank (PDB) and processed using Protein Prepa-
ration Wizard from Maestro version 12.1 (Schr€odinger, LCC, New York,
2019). Protein preparation was executed for chain A only, while the
other chain and extra molecules like water molecules, and arachidonic
acid were removed. Steps of protein preparation involve adding explicit
hydrogen atoms, assigning bond orders and formal charges, creating
disulfide bonds, capping termini, and finding overlaps. The corrected
structure was energetically optimized and minimized to relieve any
strain and to fine-tune the placement of various groups [59].
Protein-energy minimization was conducted using OPLS3 force field.

2.3.3. Receptor grid generation
Glide Receptor Grid Generation platform as a part of Maestro was

employed to create a rigid grid around the interacting residues of the
active site from the prepared protein. The default grid box size of 20 Å
was used and the size of the inner grid box was changed to (12� 12� 12
Å3). The centroid of grid box was located on the ligand. Grids for mo-
lecular docking with Glide16 were calculated with a hydrogen bond
constraint to Arg 513 of COX-2 [60].

2.3.4. Extra precision (XP) molecular docking
To predict the binding pose of ligands COX-2, extra precision (XP)

Glide docking procedure was utilized to dock the ligands into the
generated receptor grid. XP refines the predicted docking modes using an
anchor-and-grow algorithm to more thoroughly sample ligand degrees of
freedom [61, 62]. Glide workflow from Maestro version 12.1
(Schr€odinger, LCC, New York, 2019) was used during this step. Ligands
were docked flexibly into the rigid docking box using Glide's internal
conformation generator and the “Alternate Protocol 2” which is the
process of applying constraints in a flexible ligand docking experiment.
For each ligand, one docking hit with the lowest Glide docking score was
generated and used to analyze docking results [63].
2.4. Molecular dynamics simulation of COX-2

The MD simulations were performed using the GROMACS 2019.1
[64]. The topology parameters of COX-2 were created. The interaction
parameters were computed using the charmm36 force field. The system
was immersed in a cubic water box (9.906 * 9.906 * 9.90618 nm3) of
extended simple point charge (SPC) water molecules. The solvated sys-
tem was neutralized by adding one chloride ions in the simulation, and
pound on the model in 2D (a) and 3D (b).



Table 3. The Pharmacophore-Fit Score values of the training and test compounds.

Compounds COX-2 IC50 μM Pharmacophore- Fit score Matched Feature Pairs

30 0.1 106.943 11

46 0.18 100.663 10

47 0.24 103.873 10

49t 0.28 71.428 7

50t 0.36 73.634 7

Celecoxib 0.3 52.520 6

t: test compound.

Figure 2. ROC plot of the pharmacophore model.
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the entire system was composed of 8790 atoms of COX-2, 1 Cl- coun-
terions, and 28997 solvent atoms. The energy was minimized using the
steepest descent method of 1000 steps. Then, simulations were per-
formed in a constant number of molecules, constant pressure, and con-
stant temperature (NPT) ensemble with coupled temperature and
pressure at 310 K and 1 bar, respectively. In the next step, the solute
(protein and counterion) was fixed and the position-restrained dynamics
simulation of the system, in which the atom positions of COX-2 were
restrained at 300 K. The water and the counterion permitted to relax
about the protein. The relaxation time of water was 20 ps. Finally, the full
Table 4. Statistical factors of the best pharmacophore model.

Features AAAAAAHDRRP

Ha 3

Ht 3

A 5

D 703

TPR 60%

FPR 0%

AUC 0.8

ACC 0.997

Sensitivity 0.6

specificity 1

GH 0.6

EF 141.6

Features: A: H-bond acceptors, H: hydrophobic groups, D: H-bond donors, R:
aromatic ring, P: positive charge.
Ha: active hits, Ht: total hits, A: total number of actives in the dataset, D: total
number of decoys in the dataset, TP: true positive, FP: false positive, EF:
enrichment factor, GH: goodness of hit, AUC: area under ROC curve, ACC:
accuracy.
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system was subjected to 10-ns MD at 300 K temperature and 1 bar
pressure. The MD simulation and results analysis were performed on the
Ubuntu 18.04.3 LTS Linux on an Intel® Xeon(R) CPU E5-2650 v4 @
2.20GHz � 24 and 64 GB of RAM.

2.5. Molecular dynamics simulation on COX-2 complex with 375 and 560

The complex of ZINC000113253375 (375) and ZINC000043170560
(560) with COX-2 was chosen for MD simulation. The topology param-
eters of 375 and 560 were built by the CHARMM General Force Field
(CGenFF) program [65], and were embedded to the topology parameters
of COX-2. An additional 10-ns MD simulation was performed on the
initial structure COX-2 complex with 375 and 560 resulted from the
docking. All the simulation processes were performed by the GROMACS
2019.1 and the same as previous section and at the end of simulation
results of the complex of 375 and 560 with COX-2 were analyzed.

3. Results and discussions

3.1. Pharmacophore

3.1.1. Pharmacophore modeling
The aim of this study is finding new COX-2 inhibitors by ligand-based

pharmacophore modeling. Based on five potent and diverse cyclic imides
collected from the literature (mentioned in Table 1 with their biological
activities IC50) [42,43], a pharmacophore model was created. The
pharmacophore model of the most active compound is displayed in
Figure 1. The eleven features of the generated pharmacophore were two
aromatic (R) showed as blue sphere, one hydrophobic (H) colored by
yellow sphere, one H-bond donors (D) showed as green sphere, six
H-bond acceptors (A) showed as red sphere, one positive charge (P)
colored by blue lines. The Pharmacophore Fit Score values are used to
measure the overlapping between the features of pharmacophore and
chemical functionalities of the compound and listed in Table 3. The
values of Pharmacophore Fit Score of the compounds in training-set are
high (103.87–106.94) and indicate good mapping with the model.
Accordingly, the model could be a hopeful query in virtual screening in
order to find promising active hits so screening decoy and active sets was
done to evaluate the pharmacophore model.

3.1.2. Pharmacophore model validation
Two datasets including five COX-2 inhibitors and 703 inactive com-

pounds were used to validate the model. The values of enrichment factor
(EF) and goodness of hit score (GH) refer to the good ability of the model
to identify active compounds. The receiver operating characteristic
(ROC) curve of the pharmacophore model is shown in Figure 2. The
retrieved hits by themodel are 3 and the area under the ROC curve (AUC)
value is 0.8%. The pAUC (partial area under the curve) values are 1.00,
1.00, and 1.00 at 1%, 5% and 10% of the screened database respectively.
Also, the model is sensitive because it retrieved 3 active compounds from
5 ones (60% of the total active compounds) and very specific because it
selected no decoys. This high selectivity and sensitivity indicates that our



Table 5. Pharmacophore fit score and pIC50 predicted by QSAR each tested compound.

Compounds Pharmacophore fit score leverage AD pIC50 predicted by QSAR

ZINC000029396226 96.92 0.257 1 5.850

ZINC000000009029 92.25 0.258 1 5.894

ZINC000019851284 82 0.178 1 4.009

ZINC000114185151 92.93 0.162 1 5.303

ZINC000113253375 79.65 0.403 1 7.496

ZINC000043170560 86.40 0.235 1 6.789

Astragalin 59.75 0.171 1 5.233

catechin 55.76 0.072 1 4.538

apigenin 42.8 0.234 1 4.350

Curcumin 53.86 0.472 1 6.324

cyanidin 52.43 0.273 1 5.585

epicatechin 62.73 0.174 1 4.112

harpagide 51.56 0.699 1 1.971

harpagoside 52.31 0.151 1 0.366

hyperoside 55.36 0.113 1 4.843

isoquercitrin 49.93 0.273 1 5.071

luteolin 52.51 0.124 1 4.467

quercitrin 63.35 0.145 1 4.725

agnuside 59.22 0.198 1 4.520

Ferulic acid 54.29 0.195 1 3.508

eugenol 44.35 0.249 1 3.091

procumbide 55.29 0.387 1 2.010

quecetin 53.16 0.082 1 4.317

celecoxib 52.52 0.144 1 6.148

rofecoxib 42.52 0.106 1 5.084

diclofinac NA NA NA 5.029

Ad:1 means the compound is inside the applicability domain of QSAR model.
NA: not available.

Table 6. Name, type, and meaning of descriptors with their coefficient, error, and contribution to the model.

Name Type of descriptor Meaning Coefficient Error contribution

ETA-beta Extended topochemical atom A measure of electronic features of the molecule 0.1658 0.038 þ
IC1 Information content Information content index (neighborhood symmetry of 1-order) 2.2784 0.491 þ
GATS8m Autocorrelation Geary autocorrelation - lag 8/weighted by mass 0.9179 0.239 þ
VR1_Dzs Barysz matrix Coefficient sum of the last eigenvector from Barysz matrix/weighted by I-state 0.0017 0.000 -

nHdsCH Atom type electrotopological state Count of atom-type H E-State: ¼CH- 0.1979 0.056 þ
RDF70s RDF Radial distribution function - 070/weighted by relative I-state 0.0402 0.011 -

BCUTp-1l BCUT nhigh lowest polarizability weighted BCUTS 0.3436 0.159 -

Intercept 6.2128 2.496 -

Table 7. Statistical parameters of the test set.

Parameter MLR

Q2 0.8407

R2 0.9605

R0
2 0.9531

R0
|2 0.9415��R2
test�R

2
0test

��
R2
test

0.0077

���R2
test�R

;2
0test

���
R2
p

0.0197

R2
m 0.8778

R/2
m 0.8281

K 0.9694

K/ 1.0301
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pharmacophore is a very good filter for recognizing COX-2 inhibitors
[27]. All the parameters of validation process are shown in Table 4 and
state good quality of the pharmacophore model so it can be used suc-
cessfully in virtual screening.

3.1.3. Pharmacophore-based virtual screening (PBVS)
The most active training compound (30), which has high Pharma-

cophore Fit Score (106.94) mapped on the model in Figure 1. Virtual
screening was done to identify new inhibitors of COX-2 by the validated
pharmacophore model. ZINC “all now” database containing of 5002
molecules were converted into a LigandScout format using (idbgen)
function. Six molecules of ZINC database were selected by screening
using the model. The values of Pharmacophore Fit Score of the hits
ranged from 79.65 to 96.92. In addition, small herbal components data
contained 43 compounds was exposed to all mentioned steps. Table 5
shows the pharmacophore fit scores of all the retrieved hits. 17 active
components have had pharmacophore fit scores as good as the pharma-
cophore fit score of celecoxib and/or rofecoxib. These 23 compounds



Figure 3. Plot of predicted pIC50 versus their experimental values.

N. Moussa et al. Heliyon 7 (2021) e06605
obey lipinski's RO5 and will be prepared to pass our QSAR model and its
applicability domain filter in the next step. The COX inhibitors in the
studied herbs might be responsible, at least in part, for the anti-
inflammatory activity of the studied medicinal plants.
3.2. QSAR study

3.2.1. QSAR model
The best QSAR model was built using 7 descriptors such as extended

topochemical atom, information content, auto correlation, RDF, BCUT,
barysz matrix, atom type electrotopological state and molecular linear
free energy relation. For the selection of the most important descriptors,
stepwise MLR method was used.

The MLR analysis with a stepwise selection was carried out to relate
the pIC50 to a 7 set of descriptors. The SPSS software (version 13.0; SPSS
Inc., Chicago, IL, USA) (15) was used for the MLR analysis). It is defined
by Eq. (14):

pIC50 ¼ -6.2128 (�2.496) þ0.1658 (�0.038) ETA-beta þ2.2784 (�0.491)
IC1þ0.9179 (�0.239) GATS8m –0.0017 (�0.000) VR1_Dzs þ0.1979
(�0.056) nHdsCH -0.0402 (�0.011) RDF70s -0.3436 (�0.159)
BCUTp-1l (14)

The built model produced good results for the training-set and the
test-set. The 7 descriptors with their contribution to the model and their
statistical parameters are shown in Table 6.

3.2.2. Validation results
Results show that this model has a cross-validated correlation coef-

ficient (Q2) value higher than 0.5 (0.8407). Q2 is important parameter
but not enough to judge the power of the model. Indeed, the true pre-
dictive power of a QSAR model can be established only through model
validation procedure which consists of prediction of activities of com-
pounds in test set (i.e. not included in model building). A strong vali-
dation should be performed to insure good reliable, prediction, and
conclusion of the QSAR equation. This implies quantitative evaluation
Figure 4. William plot for standardized residual versus leverage.
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and a set of statistical criteria. Such as R2 which is a measure of the de-
gree of the fit between the predicted outcomes and the experimental
ones. Other statistical parameters were performed to insure good quality
of the model [29, 30].

R2 (calculated for the test set) value larger than 0.6. R2
0 is the cor-

relation coefficient for regressions between predicted against experi-
mental values through the origin. R02

0 is the correlation coefficient for
regressions between experimental against predicted values through the
origin. R2

m an additional parameter was specified as a worthy parameter
of the external prediction. The value of R2

m here is 0.8778 (larger than
0.5) and that means the model has good external prediction [49].

The values of Slopes (k and k') of regression lines through the origin
are very close to 1 and fall in the acceptable range between 0.85 and
1.15. It could be seen from the results that all criteria were satisfied thus
giving power and trust for the developed model. Statistical parameters of
the external test set for the MLR model are given in Table 7. The pre-
dicted pIC50 values versus their experimental values were plotted in
Figure 3 for the training-set and test-set.

3.2.3. Applicability of domain
The warning leverage, h*, was fixed at 3p/n (h*¼ 0.75) in this study,

where p is the number of descriptors plus one and n is the number of
training samples.

The applicability domain (AD) was defined as a square region be-
tween leverage threshold h* of 0.75 and�3 standard deviation. Leverage
values for all compounds in training-set and test-set were calculated
(Figure 4). As mentioned before, the compound was considered inside of
the AD only if it had leverage value �0.75 and standardized residual <3
standard deviation units. It can be concluded from the plot that all
compounds of training-set and the test-set are situated inside the assigned
domain. One of the inhibitors with response over the threshold of �3
standard deviation unit of standardized residual.

Concerning the previously conditions, the suggested model can be
used with a high level of confidence right now.

3.2.4. Prediction
Twenty-three molecules from ZINC database and our in-house library

were selected by virtual screening using the pharmacophore model. Then
only nine compounds from those twenty-three passed our QSAR model
and its applicability domain filter. These nine compounds were
ZINC000029396226, ZINC000000009029, ZINC000114185151,
ZINC000113253375, ZINC000043170560, Astragalin, Curcumin, cya-
nidin and isoquercitrin. Curcumin is the main bioactive compound iso-
lated from rhizomes of curcuma longa. Isoquercitrin and astragalin,
naturally occurring flavonoids, have been identified in a variety of me-
dicinal plants such as the eight herbs in Voltarit® and Rheumax®. Cya-
nidin is the most commonly anthocyanin that identified in Vitex negundo
(Rheumax®), Billberry and Hawthorn berries (Voltarit®) [22]. The pIC50
of all tested compounds listed before in Table.5.

3.3. Docking results and discussion

Finally, to confirm the discovery of new lead compounds, we finished
with the docking study of the compounds retrieved from ZINC and herbal
data to choose the best hits that have the best glide docking score. For
validation the reliability of docking, the heavy-atom root mean squared
deviation (RMSD) value was determined between the crystal ligand and
re-docked ligand using Schrodinger. The value of RMSD equal to 0.5 Å
(no more than 2 Å) and that reveal good agreement between the exper-
imental and predicted binding pose [66]. The hits that showed good
pharmacophore score with good predicted pIC50 from QSAR model (5
compounds from ZINC and 4 compounds from herbal data that are listed
in Table 8) were exposed to docking with the 3D structure of COX-2 (PDB
code: 5KIR, 2.697 Å) by GLIDE.
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The structure of the catalytic domain, which is the largest region in
COX enzyme, is similar between COX-1 and COX-2 (RMS deviation of 0.4
A�). The Arg120, Tyr355, and Glu524 residues form the entrance of the
active site while we find Tyr385 and Tyr348 in the apex of the active site.
The main differences between both active sites are at the positions 513,
434 and 523. In other words, Ile434 and Ile523 in COX-1 are replaced by
valine residues in COX-2. The hydrophobic His513 in COX-1 was
replaced by the positively charged arginine in COX-2. These differences
are the key points of selective inhibitors [67, 68]. The residue 513 plays a
vital role for ligands to distinguish the structural difference between the
active sites of COX isoforms [69]. The reasonmentioned above elucidates
one way in which many hit compounds of the present study selectively
inhibits COX-2.

The extra precision glide docking scores for the hits ranged from
-7.279 to -9.764. The glide docking score for sodium diclofenac, rofe-
coxib and celecoxib and as a reference potent COX-2 inhibitors were
-7.839, -9.735 and -10.452 respectively. Analysis of the binding poses
disclosed that the compounds oriented in the COX-2 binding cavity in a
similar way; i.e. binding with residues from both the membrane-binding
domain (MBD) and the catalytic domain as summarized in Table 8.
Moreover, binding modes of all studied compounds were close to that of
the selective COX-2 inhibitors rofecoxib and celecoxib, especially the
interaction with Arg513 which is essential for selective COX-2 inhibition
[70]. However, celecoxib binds to Arg513 through positive charge
interaction between the sulfonamide and guanidinium. The hits interact
with Arg513 via positive charge and/or hydrogen bond. Access of cele-
coxib and hits to the adjunct pocket was through hydrophobic interaction
with Tyr91. Other types of interactions like polar, hydrogen bonding,
negative/positive charges, etc. with other residues in the binding site
were also involved in the binding pose and will be explained for only the
significant COX-2 inhibitors [71]. In the side pocket of the COX-2
channel, the methyl sulfone moiety of rofecoxib binds to it and the
phenyl ring reaches the side chain of Tyr385. Rofecoxib contacts COX-2
channel's residues 42 times. All the interactions are hydrophobic ones
and only one hydrophilic placed between O atoms of the methyl sulfone
moiety of the inhibitor and the side-chain N atoms of His90 and Arg513
found in the base of the side pocket [72].

ZINC000043170560, ZINC000113253375 and Astragalin (as a plant
component) had the lowest docking score amongst the hits as shown in
Table 8 suggesting good binding poses and stable ligand-enzyme com-
plexes. Figure 5 shows that ZINC000113253375 binds to the residues
His90, Phe518 and Arg513 sited at the base of the side pocket (polar
interaction with His90, hydrogen bond and hydrophobic interaction with
Ph518, positive charge with Arg513). Figure 6 shows that Astragalin also
binds to residues His90, Phe518 and Arg513 (polar interaction with
His90, hydrogen bond and hydrophobic interaction with Ph518, positive
charge and hydrogen bond with Arg513). They also bind to the hydro-
phobic side pocket contained of residues Leu352, Ser353, Ile517, and
Phe518 (polar interaction with Ser353 and hydrophobic ones with the
rest residues). We also see the hydrophobic interaction with residues
Tyr355 lie at the mouth of the COX active site, and the catalytic Tyr385
located at the apex of the hydrophobic channel.

Astragalin binds to the residue Gln192 that contributes to the outer
shell of the side pocket with polar interaction and hydrogen bond and
also binds to Tyr385 with hydrogen bond [71, 72].
3.4. Molecular dynamics simulation

The stability of the system (enzyme, water, ions, etc.) was examined
by the calculation of root mean square deviations (RMSD) and the radius
of gyration (Rg) of the enzyme with respect to its initial structure.

Figure 7 shows the time history of RMSD for COX-2, COX-2-375 and
COX-2-560. Analysis of this figure indicates that the RMSD of these
systems reaches equilibration and oscillates around in average value after
3.5 ns. The RMSD values indicated that conformation of COX-2 has been



Figure 5. Schematic representation of the interactions between compound ZINC000113253375 and COX-2 active site.

Figure 6. Schematic representation of the interactions between Astragalin and COX-2active site.

N. Moussa et al. Heliyon 7 (2021) e06605

12



Figure 7. RMSD values of protein backbone for COX-2 and COX-2 complex with
compound 375 and 560 during 10 ns MD simulation.

Figure 8. Time evolution of the radius of gyration (Rg) for COX-2 and COX-2
complex with compound 375 and 560 during 10-ns of MD simulation.

N. Moussa et al. Heliyon 7 (2021) e06605
equilibrated after 3.5 ns in a water environment. Finally Rg values of
COX-2, COX-2-375 and COX-2-560, plotted in Figure 8.

The Rg results clearly indicate that the conformation of the COX-2 in
the presence of compound 375 and 560 has not changed and these
complexes are stable.

4. Conclusions

Computational studies were carried out for the search of novel COX-2
inhibitors as new lead compounds from ZINC database and in-house
natural product library. Firstly, both of these libraries were screened by
validated 3D pharmacophore model. Then, QSAR model was constructed
with a verified cross-validated and test-validated high degree of accu-
racy. The applicability domain of this model was determined. Finally, all
hits that passed our pharmacophore and QSAR filters were docked to
COX-2 3D structure using Schrodinger as a final filtering. Only those hits
that obtain high enough scores in docking and desired ligands enzyme
interactions were selected. The MD simulation study showed that the
complexes of the COX-2 with the best two hits were stable.

The final results suggested nine novel lead compounds as COX-2 in-
hibitors that passed all filtering steps. Five compounds from the ZINC
database are ZINC000029396226, ZINC000000009029,
ZINC000043170560, ZINC000114185151, and ZINC000113253375.
Four compounds from the in-house library are Astragalin, Curcumin,
cyanidin, and isoquercitrin. Previous studies demonstrated the inhibitory
activity of COX-2 by ZINC000029396226, ZINC000000009029, Curcu-
min, cyanidin, and isoquercitrin [73, 74, 75, 76, 77, 78, 79].

The inhibitory activity of COX-2 of the compounds
ZINC000043170560, ZINC000113253375, ZINC000114185151 and
13
Astragalin (the direct inhibition of COX-2 not through mediators) have
not been reported before. We find our contribution significant for future
in vitro studies of these compounds or their derivatives.
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