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Introduction

Intracerebral hemorrhage (ICH) is caused by the spontane-
ous rupture of blood vessels in the brain, thereby leading to 
primary and secondary brain injury. Primary brain injury is 
a mass effect induced by hematoma formation and increased 
pressure on adjacent brain tissues. A series of metabolic 
reactions generated in response to the primary brain injury, 
such as hemolysis and thrombin activation, then lead to sec-
ondary brain injury.1 Neuroinflammation and oxidative 
stress are involved in secondary brain injury after ICH,2–4 
and the extensive literature on these pathogenic mechanisms 
uncover new insights to counter the pathologic sequelae of 
ICH. At present, surgical or traditional treatments are still 
the main options,5,6 broad pre-clinical studies have been 
completed,7–9 and numerous researches are pouring in,10–12 
however, there is no widely recognized and effective method 
to ameliorate secondary brain injury13 and improve the 
prognosis of ICH.14 For example, applying hyperosmolar 
agents and external ventricular drain placement to cope with 
the decreased alertness caused by mass effect of ICH may 
be appropriate.15,16 Recent clinical trial which used tissue 
plasminogen activator to resolve hemorrhagic products 
turned out to be unsatisfactory in prognosis.17 Numerous 
clinical trials targeting correcting elevated blood pressure 
and reversing coagulopathy are still ongoing.18–21

In the past few decades, nanotechnology has emerged 
as an important class in medical research, where it impacts 
molecular imaging, drug delivery, cancer therapy, and 
other aspects.22,23 Nanomedicine has attracted much atten-
tion as a safe and effective strategy because some materi-
als possess special properties such as good biocompatibility, 
biodegradability, and low toxicity when they are modified 
into the nanoscale. Due to the multi-ligand valency, engi-
neered nanomaterials offer other advantages such as long 
circulation time, crossing biological barriers, and enhanced 
targeting properties.24 The different advantages of 
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nanomaterials are highly dependent on their features which 
vary broadly from shape, size, and composition, to the sur-
face charge, hydrophilicity, conductivity, and rigidity.25,26

Nanomaterials, mainly nanoparticles (NPs), have the 
potential to be applied in preclinical studies and clinical 
trials. They have exerted advantages in the studies of sev-
eral neurological diseases such as Parkinson’s disease, 
Alzheimer’s disease, and ischemic stroke.27–29 Although 
access to the brain is often restricted for many drugs due to 
blood-brain barrier (BBB) and its selective transport of 
drugs,30 nanomedicines improve the bioavailability, phar-
macokinetics, blood circulation time and biological distri-
bution of drugs into the central nervous system (CNS), and 
achieve the purpose of micro, high efficiency, stability and 
targeting compared to free drugs.31,32 The rapid develop-
ment of nanotechnology has made it possible to consider 
its prospects to improve the therapeutic efficacy of drugs 
in ICH.

Roles of nanomaterials in ICH 
treatment

Neuroprotection still represents a major therapeutic goal in 
ICH in order to prevent the progression of ICH-triggered 
damage in the brain parenchyma.33 Unfortunately, most 
protective therapeutic approaches in animal research have 
been disappointing when they were translated into clinical 
trials, mainly because of the side effects of the drugs, low 
BBB permeability, or narrow therapeutic window.34–36 The 
application of traditional medicines is often restricted by 
poor distribution and low selectivity. These problems may 
be solved by using nanotechnology,37 which can conquer 
the main obstacles that hinder the implementation of neuro-
protective approaches by transporting neurotherapeutic 
agents to the brain.38 Multiple types of nanomaterials have 
been tested for delivering a variety of substances.38,39 
Nanomaterials have been regarded as suitable carriers for 
overcoming pharmacokinetic limitations associated with 
conventional drug formulations. Nanotechnology has been 
mentioned as an emerging therapeutic strategy targeting 
ICH.40 In this review, we summarize some nanomaterials 
which appear to exert influence on brain injury mecha-
nisms of ICH including inhibiting brain cell death, resisting 
oxidative damage (Table 1), repressing neuroinflammation, 
and promoting brain tissue repair and functional recovery 
(Table 2), eventually improving neurological impairment 
and prognosis of ICH.

Nanomaterials can improve the capacity of 
drugs to inhibit neuronal cell death

Drugs combined with nanomaterials can significantly reduce 
iron accumulation and ferroptosis. The blood components 
from hematoma after ICH including hemoglobin, heme, 
and free iron, have neurotoxic effects.41,42 However, the 

iron chelating agent deferoxamine (DEF) is dose-limited 
in human ICH trials due to its drawbacks of poor cellular 
absorption, toxicity, and short shelf life. A broad action 
antioxidant, poly (ethylene glycol)-conjugated hydrophilic 
carbon clusters (PEG-HCCs), was incapable of ameliorat-
ing the dual toxic effects of heme and iron and decreasing 
the susceptibility to ferroptosis.43 The DEF-HCC-PEG, a 
synthesized, catalytic, multifunctional, and rapidly inter-
nalized carbon nanomaterial formed by PEG-HCC, cova-
lently bonds to DEF.43 The synthesized DEF-HCC-PEG 
was significantly more effective than PEG-HCCs, free 
DEF treatment alone, or combined but worked as a single 
drug, in reducing heme and iron-mediated toxicity, inhibit-
ing neuronal aging and ferroptosis in culture. This combi-
nation strategy effectively protected neurons from the 
toxicity of ICH hemolysis (Figure 1). Using nanomaterials 
can greatly enhance the effect and decrease the dosage of 
drugs, and the optimal proportion of DEF and PEG-HCCs 
should be considered.

Another iron chelator, minocycline, has been used to 
reduce ICH-induced brain edema, neuronal death, and neu-
rological deficits.44,45 However, there were some adverse 
issues in clinical trials.46 Keratose hydrogel, a kind of 
hydrogel formed from keratose, could delay hemoglobin-
induced iron accumulation in rat primary neuronal culture 
owing to its adsorptive capacity, while minocycline hydro-
chloride-loaded keratose hydrogel displayed a stronger and 
more thorough cytoprotective effect than blank hydrogel 
(Figure 1). In vivo, the minocycline hydrochloride-loaded 
keratose hydrogel effectively reduced ICH postoperative 
iron accumulation and edema, and improved functional 
recovery and survival rate in rats compared to the systemic 
administration of minocycline.14

Resveratrol, a widely used non-flavonoid polyphenol 
compound,47 has neuroprotective roles in ICH.48–51 
However, its poor oral bioavailability and difficulty in 
crossing physiological barriers52,53 limit its clinical appli-
cation. NPs, as a commonly used drug delivery matrix 
material with good biocompatibility, can transport across 
physiological barriers and improve resveratrol accumula-
tion in plasma and brain. Resveratrol-NPs safely and 
effectively attenuated the progression of ICH-induced 
brain injury by inhibiting ferroptosis54 (Figure 1). In this 
condition, it can be considered to combine other agents 
which target necrosis or necroptosis, with nanomaterials, 
to investigate if they can effectively ameliorate the death 
of neurons post-ICH.

Using nanomaterials can remarkably reduce the neuronal cells 
apoptosis. Polybutylcyanoacrylate NPs have shown poten-
tial as an appropriate non-viral system for gene delivery,55,56 
and they are also efficacious vectors for delivering 
large molecules to the injured brain.57 A delivery system 
comprising polybutylcyanoacrylate NPs of plasmid neu-
rotrophin-3 containing hormone response element (HRE) 
with a cytomegalovirus (CMV) promoter was used to treat 
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ICH rats.58 The results showed that polybutylcyanoacr-
ylate NPs could raise the delivery of cmv-neurotrophin-
3-HRE across the BBB in vivo, therefore increasing the 
expression of neurotrophin-3, and protecting neurons 
against apoptosis after ICH in vivo (Figure 1).

Exosomes are nanosized 30–100 nm diameter membra-
nous vesicles released from diverse cell types, and they 
transfer biomolecules from one site to another. They are 
thought to play important functions in various biological 
pathways including cell-to-cell communication, tumor 
progression, and cellular waste disposal.59 A large collec-
tion of recent research papers has revealed that exosomes 
released from various stem cells can improve multiple 
diseases,60,61 including ICH. For example, exosomes 
derived from miR-19b-3p-overexpressing adipose-derived 
stem cells attenuated ICH-induced ferroptosis and neu-
ronal injury.62 MiR-146a-5p-enriched exosomes released 
from bone marrow mesenchymal stem cells elicited 
neuroprotection and functional improvement after ICH by 
reducing neuronal apoptosis and neuroinflammation asso-

ciated with the suppression of microglial pro-inflamma-
tory polarization63 (Figure 1).

Nanomaterials can improve the ability of drugs 
to resist oxidative stress

Curcumin has been described to prevent or delay the onset 
of ischemic stroke and multiple CNS diseases.64–70 
Quercetin is known for its antioxidant activity and anti-
inflammatory properties.71,72 However, they both have low 
bioavailability in their natural states.73,74 Nanoemulsions 
(NEs) are surfactant stabilized heterogeneous systems and 
their oil droplet sizes make them potential systems for 
improving drug delivery.65 Studies have compared the 
possible therapeutic effect of these two free drugs versus 
their drug-loaded NEs in an ICH rat model.75,76 The 
results showed that the formulations of curcumin-NEs and 
quercetin-NEs increased total antioxidant capacity in ICH 
than them alone. Both drug-loaded NEs reduced the size of 
the hematoma, recovered locomotor activity, and 

Table 1. The strategies in targeted delivery of nanomedicines to inhibit cell death and resist oxidative stress after ICH.

Action Nanomedicine and 
intervention strategy

Traits Achievements References

Inhibit cell 
death

Deferoxamine-HCC-PEG Prevents heme and iron-mediated 
toxicity; reduces neuronal aging 
and ferroptosis

Dharmalingam 
et al.43

Minocycline-loaded 
keratose hydrogel

Good biocompatibility, 
porous property; promising 
for bone regeneration and 
nerve repair

Reduces ICH postoperative iron 
accumulation, edema; improves 
functional recovery and survival 
rate in rats

Luo et al.14

Resveratrol-NPs Have good 
biocompatibility; can cross 
physiological barriers; 
improve drug accumulation 
within the plasma and brain

Attenuate the progression of ICH-
induced brain injury by inhibiting 
ferroptosis

Mo et al.54

Polybutylcyanocr-ylate 
NPs

Protect neurons against apoptosis Chung et al.58

Exosomes Attenuate ferroptosis and 
neurologic injury; reduce neuronal 
apoptosis and inflammation

Yi and Tang,62 
Duan et al.63

Resist 
oxidative 
stress

Curcumin-nanoemulsions Low toxicity; control the 
release of selenium; ensure 
favorable effects and 
reduce potential toxicity

Increase total antioxidant capacity; 
modulate antioxidant responses; 
reduce the size of the hematoma; 
recover locomotor activity

Marques et al.75

Quercetin-nanoemulsions Galho et al.76

Selenium-SiO2 Protects cells from ROS toxicity; 
alleviates brain edema; reduces 
BBB damage

Yang et al.80

PEG-CeNPs Reduces ROS level; improves the 
anatomical integrity of myelinated 
fibers; ameliorates white matter 
injury

Zheng et al.83

RNPs Extremely stable in vivo 
conditions; possess long 
blood circulation lifetimes

Minimize oxidative damage; 
decrease brain edema; decrease 
neurologic deficit

Krishna et al.90

BBB: blood-brain barrier; HCC: hydrophilic carbon cluster; NPs: nanoparticles; PEG: poly (ethylene glycol); RNPs: Redox polymer self-assembled 
nanoparticles; ROS: reactive oxygen species;.
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Table 2. Strategies in targeted delivery of nanomedicines to repress inflammation and promote tissue repair and functional 
recovery after ICH.

Phase of cascade Nanomedicine and 
intervention strategy

Traits Achievements References

Repress 
inflammation

Rosuvastatin 
nanomicelles

Good biocompatibility and 
nontoxicity

Inhibit the expression of 
downstream inflammatory 
factors; modulate the polarization 
of microglia/macrophages

Zi et al.97

Gelatin hydrogel Excellent biodegradability, 
biocompatibility, and 
target activity

Attenuate postoperative 
neurological deficits; reduce 
neuron loss; repress inflammation

Xu et al.104

Promote 
tissue repair 
and functional 
recovery

Gelatin-EGF-loaded 
hydrogel

Suitable for minimally 
invasive implantation

Fills irregularly shaped cavities; 
attracts cells for migration; 
improves recovery

Lim et al.111

RADA16mix Reduces acute brain injury; 
decreases inflammatory response; 
promotes functional recovery and 
nerve fiber growth

Zhang et al.118

Figure 1. Model illustrating the effects of nanomedicine on the ferroptosis and apoptosis after ICH. Deferoxamine-HCC-PEG 
is a complex of the iron chelator deferoxamine and antioxidant PEG-HCC, which can effectively reduce heme/iron toxicity, and 
prevent senescence and ferroptosis. Minocycline-loaded keratose hydrogel can reduce iron accumulation, resveratrol-NPs and 
miR-19b-3p-enriched exosome can inhibit ferroptosis. miR-146a-5p-enriched exosome and cmv-neurotrophin-3-HRE-loaded 
polybutylcyanoacrylate NPs can reduce apoptosis following ICH.
cmv: cytomegalovirus; DEF: deferoxamine; HCC: hydrophilic carbon cluster; HRE: hormone response element; KG: keratose hydrogel; MH: minocy-
cline hydrochloride; NPs: nanoparticles; PEG: poly (ethylene glycol); RBC: red blood cell; ROS: reactive oxygen species.
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attenuated weight loss caused by ICH, without obvious 
toxic effects.71

Selenium is a cofactor of glutathione peroxidase and 
thioredoxin reductase, which are antioxidant enzymes that 
resist oxidative stress and maintain redox balance.77 
However, the use of selenium is restricted by the narrow 
gap between its beneficial and harmful effects.78 The 
porous selenium-SiO2 nanocomposites with an average 
diameter of about 55 nm79 could control the release of 
selenium, ensure favorable effects and reduce potential 
toxicity.80 After intraperitoneal injection into ICH mice, 
the activity of glutathione peroxidase was increased, while 
the level of malonaldehyde was significantly decreased. 
By protecting cells from reactive oxygen species (ROS) 
toxicity, alleviating brain edema and reducing BBB dam-
age, the porous selenium-SiO2 nanocomposites improved 
neurological functions of ICH mice.

Ceria NPs (CeNPs) are known to possess potent-free 
radical scavenging activity.81,82 One study found that PEG-
CeNP, which was formed by CeNPs with a PEG coating, 
strongly reduced ROS levels in the brain tissue. It also 
modulated ROS-induced microglial polarization and astro-
cyte alteration improved the anatomical integrity of myeli-
nated fibers and ameliorated white matter injury after 
ICH.83

The nitroxide radical compound 2,2,6,6-tetramethyl-
piperidine-1-oxyl (TEMPO) is one of the strongest anti-
oxidants that catalytically scavenge ROS.84,85 Under in 
vivo conditions, however, these low molecular weight 
nitroxide compounds have several problems, including 
nonspecific dispersion in normal tissues, preferential 
renal clearance and rapid reduction to the corresponding 
hydroxylamine form. Redox polymer self-assembled NPs 
(nitroxide radical-containing NPs [RNPs]) with diameters 
of approximately 40 nm were developed to solve these 
issues.86 By contrast, RNPs are extremely stable in vivo 
and possess long blood circulation lifetimes.87,88 Nitroxide 
radicals in RNPs have catalytic ROS scavenging activity 
including for superoxide and hydroxyl radicals,89 which is 
superior to that of superoxide dismutase (SOD).90 Systemic 
RNP treatment at an early stage after ICH decreased levels 
of superoxide anion radicals and minimized ICH-induced 
oxidative damage to other molecules in addition to DNA. 
RNPs also decreased acute ICH-induced brain edema and 
neurologic deficit, probably by decreasing the hemor-
rhagic area.

Nanomaterials can improve the capacity of 
drugs to repress neuroinflammation

Statins are considered as neuroprotective agents that 
can reduce microglia activation and differentiation in 
many CNS diseases including ICH.91–93 Rosuvastatin is a 
synthetic, highly effective second-generation statin 
with poor water-solubility and low oral bioavailability. 

Polymeric nanomicelles as self-assembled copolymers are 
good candidates for poorly water-soluble or hydrophobic 
drugs.94–96 Rosuvastatin nanomicelles were prepared by 
cosolvent evaporation method using Poly (ethylene 
glycol)-poly (ε-caprolactone) (PEG-PCL) nanomicelles as 
nanocarrier97 because of their good biocompatibility and 
nontoxicity.98–100 The rosuvastatin nanomicelles employed 
in the treatment after ICH inhibited the expression of 
downstream inflammatory factors such as tumor necrosis 
factor-alpha (TNF-α) and interleukin-1beta (IL-1β), and 
promoted the polarization of microglia/macrophages 
toward a regulatory phenotype, effectively repressing 
neuroinflammation.97

Injectable hydrogels are particularly suitable for 
ischemic and hemorrhagic stroke owing to their advan-
tages of minimally invasive implantation.101,102 Hydrogels 
themselves can bind to specific cell-surface receptors of 
endogenous brain cells, inducing a variety of repair and 
anti-inflammatory cellular pathways. Gelatin is derived 
from denatured and partially degraded collagen. It has 
excellent biodegradability and biocompatibility, as well as 
adhesion to cells and lack of antigenicity, and can retain 
the cell adhesion motif of RGD.103 There is an injectable 
hydrogel formed by Thiolated gelatin reacting with poly-
ethylene glycol diacrylate. The in vivo experiment showed 
that the gelatin hydrogels interacted with different host 
cells, making it possible to attenuate postoperative neuro-
logical deficits, reduce neuronal loss, and repress the acti-
vation of astrocytes and microglia/macrophages. In 
addition, hydrogel injection reduced the release of inflam-
matory cytokines, IL-1β and TNF-α104 (Figure 2).

Using nanomaterials can significantly promote 
brain tissue repair and functional recovery

Rebuilding the damaged CNS is a momentous goal for 
studies in neuroscience. Typical scaffolds are unsuitable in 
the damaged brain owing to massive manipulation of over-
lying tissues during implantation.105,106 Moreover, the 
advances of exogenous stem cells are still limited by some 
practical and ethical hurdles.107–110 In this light, injectable 
hydrogels are promising because they allow for a mini-
mally invasive method that can eventually be compat-
ible with current stereotactic procedures, as mentioned 
earlier.101,102 An injectable gelatin hydrogel containing 
epidermal growth factor (gelatin-EGF) as a therapy for 
ICH was evaluated.111 This result indicated that growth 
factor-containing biomaterials could be safely introduced 
into an ICH cavity to rebuild tissue and potentially improve 
recovery in ICH rats. On this basis, the best time to inject 
the biomaterial and how long it will take to take effect after 
ICH still need exploration. Diverse recovery pathway and 
factors are involved in CNS recovery,112 and given the good 
practices in brain ischemia, such as injectable hydrogels 
containing brain-derived neurotrophic factor was 
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deposited into the cavity to promote repair and recov-
ery,113–115 nanomaterials containing different growth fac-
tors or neuroprotective agents could be further studied.

A traditional self-assembly peptide nanofibrous 
(SAPNS) called RADA16-I, is frequently used in tissue 
engineering.116 In an ICH model that incorporated stereo-
tactic minimally invasive hematoma aspiration to pro-
vide space for local delivery of nanomaterials,116 SAPNS 
served as a biocompatible material in the hemorrhagic 
brain cavity. It replaced the hematoma, reduced acute 
brain injury and brain cavity formation, and improved 
sensorimotor functional recovery.117 With this ICH model, 
it has been found that RADA16-I could reduce acute brain 
injury and decrease the inflammatory response. In addi-
tion, a modified synthesized neutral SAPNS, which struc-
ture is RADA16-RGD (Arg-Gly-Asp), could overcome 

the disadvantages of RADA16-I, including poor biocom-
patibility caused by its acidity, very fine functional recov-
ery and even no nerve fibers to ICH mice.117 Another 
self-assembly peptide nanofibrous scaffold, RADA16mix, 
reduced acute brain injury, decreased inflammatory 
response, and promoted functional recovery and nerve 
fiber growth.118

Potential applications of 
nanomaterials

The volume of hematoma is one of the most important pre-
dictors of functional outcome in ICH patients.119 However, 
the clinical trials of hemostatic measures have turned out 
to be unsatisfactory. For example, intravenous administra-
tion of an activated recombinant factor VII did not improve 

Figure 2. Schematic presentation of the effect of the injectable gelatin hydrogel and rosuvastatin nanomicelles on 
neuroinflammation after ICH. The implanted hydrogels bind to integrins on microglia/macrophages via cell adhesion RGD peptide, 
and then promote the regulatory phenotype polarization of the microglia/macrophages. Rosuvastatin-loaded PEG-PCL can also 
promote regulatory polarization.
PEG-PCL: Poly (ethylene glycol)-poly (ε-caprolactone); RGD: Arg-Gly-Asp.
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functional outcomes after ICH,120 and platelet transfusion 
was detrimental in patients taking antiplatelet therapy 
before ICH.121 Compared to cell-derived microparticles, 
such as thrombosomes and synthocytes, which are ineffec-
tive at reducing bleeding and increase the risk of adverse 
immunoreaction,122 nano-engineered agents have effi-
ciently improved hemostasis with fewer side effects.123 
These are promising to improve the progress of ICH. 
Various topical NPs have been developed,124,125 but only a 
few have been tested in ICH. In this case, polymeric NPs 
are applied to stabilize the structure of some clot’s compo-
nents such as platelets or fibrin, and reduce bleeding time. 
Synthetic platelets, made of a poly (lactic-coglycolic 
acid)-poly-L-lysine block copolymer core with PEG arms 
terminated with RGD functionalities,126 bind to activated 
platelets and favor platelet aggregation, thus reducing 
bleeding time in arterial injury models. Further optimized 
NPs, which is closer to endogenous platelets owing to 
deformability characteristics,127 could better accumulate at 
the wound site and improve the hemostatic functions of 
natural platelets. A similar approach, intravenous adminis-
tration of a hemostatic polymer (PolySTAT), enhanced 
fibrin crosslinking and prevented clot degradation because 
of multiple binding sites for fibrin, and therefore improv-
ing survival by reducing blood loss in the trauma model.128 
The efficacy of these treatments for limiting bleeding in 
ICH remains to be confirmed.129

In recent years, stem cell therapy has been a promising 
method for ICH treatment, aiming to replace the damaged 
neurons and therefore improve the functional recovery and 
prognosis post-ICH.130 A magnetic resonance imaging 
(MRI)-visible PAsp (DMA)-Lys-(CA)2 polymer-based 
nanoscale polymeric micelle, has been used to deliver 
small interfering RNA/antisense oligonucleotides (siRNA/
ASO) against Pnky long noncoding RNA (lncRNA) into 
neural stem cells. This multifunctional nanomedicine can 
direct stem cell differentiation in vivo and in vitro, as well 
as track the stem cells after transplantation in vivo in 
ischemic stroke.131 If MRI-visible nanomaterials could be 
applied in ICH, it will be more targeted and more control-
lable for nanomaterials to play their roles and deliver ther-
apeutic agents. Apart from delivering therapeutic genes 
into stem cells to regulate neuronal differentiation as 
vehicles, nanomaterials can exert their effects on stem 
cells in several ways as well. Nanomaterials can protect 
stem cells from a series of pathological processes such 
as inflammation,132 and deliver growth-related factors 
to provide microenvironments for stem cells to survive 
and proliferate then form new tissue in the brain.89,133 
Furthermore, nano-sized exosomes released by stem cells 
can reduce neuronal death and improve neurological func-
tion on their own.62,63 It is promising to develop nanomate-
rials-based stem cell therapies for ICH.

Based on the benefits of good biocompatibility, good 
targeting, and well-controlled drug release,134 nanomateri-
als not only hold great prospects in treating primary and 

secondary injuries, but also in improving the neurological 
recovery after ICH. Meanwhile, many crossing strategies 
have combined nanotechnology with multiple substances 
such as cell-penetrating peptides, receptor, shuttle peptide, 
and cells to transport the therapeutic drugs through the 
BBB for improved precision of drug delivery, prolonged 
half-life, great stability, and increased drug loads.135 In this 
condition, it is worthwhile to consider which nanomaterial 
to choose, whether nanomaterials need to be modified, and 
how to combine nanomaterials and agents when applied to 
ICH. More importantly, attention needs to be paid to whether 
the application of nanomaterials improves prognosis.

The concerns of nanomaterials

Toxicological analyses are essential before formulations or 
drugs are applying in clinical studies. The good news is 
that according to the pre-clinical experiments in ICH mod-
els, nanomaterials have not been found to cause renal or 
hepatic toxicity.54,75 However, despite the many advan-
tages and advances of nanotechnology to improve neuro-
protection, potential side effects and the complex metabolic 
processes of nanomaterials may limit their applications in 
clinical practice. For example, NPs based on pure copper, 
silver, or aluminum, can impair endothelial cell function 
and increase BBB permeability in rodents.136 These pro-
cesses are regarded as adverse in ICH,137 although they 
might promote drugs into the brain. Furthermore, NPs are 
more easily identified as pathogens by the host than small 
molecules, resulting in rapid clearance and response of the 
complement system.138 In addition to immune reactions 
that could be triggered by contact with blood components, 
nanomedicines may damage organelles such as mitochon-
dria, endoplasmic reticulum or lysosome of macrophages, 
leading to the release of excessive ROS and pro-inflamma-
tory mediators.139 Since the nucleus is also exposed, DNA 
may be damaged, so extensive monitoring for genotoxicity 
is required. All these reasons should be noted in the appli-
cation of ICH treatment, therefore, further in-depth assess-
ment of the risks associated with the use of nanomaterials 
is necessary.

Summary

ICH is an intractable disorder. The emergence of nanotech-
nology provides a promising option for treating ICH. 
Compared to free drugs, nanomaterials improve the capac-
ity of agents to cross the BBB, prolong the half-life of 
drugs, reduce adverse effects, and enhance drug stability. 
Citations within this review highlight that nanomaterials 
can exert protective role after ICH. However, current inter-
vention approaches based on nanomedicine are far from 
being clinical applications. Moreover, we should consider 
their side effects. The toxicity of nanomaterials should be 
thoroughly investigated before they are applied to patient 
treatment. Fortunately, the toxicity of nanomaterials has 
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received increasing attention, and more measures have 
been developed in the field of nanomedicine140–142 to sup-
port their eventual clinical translation. Furthermore, the 
application of nanomaterials should be based on clear drug 
targets and pathways.

Based on a series of conservative treatments, our atten-
tion has been turned to some innovative therapeutics tar-
geting ICH. Among all, nanotechnology is undoubtedly a 
very efficient and effective method. More and more novel 
and useful nanomaterials are being developed to treat ICH 
and this has brought hope in improving the prognosis of 
this often-fatal form of stroke.
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