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Abstract

The misfolding and progressive aggregation of specific proteins in selective regions of the nervous system is a seminal occurrence in many
neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neu-
roscience research. Despite clinical, genetic and experimental differences, increasing evidence indicates considerable overlap between synuc-
leinopathies, tauopathies and other protein-misfolding diseases. Inclusions, often characteristic hallmarks of these disorders, suggest
interactions of pathological proteins enganging common downstream pathways. Novel findings that have shifted our understanding in the role
of pathologic proteins in the pathogenesis of Alzheimer, Parkinson, Huntington and prion diseases, have confirmed correlations/overlaps
between these and other neurodegenerative disorders. Emerging evidence, in addition to synergistic effects of tau protein, amyloid-b, a-synuc-
lein and other pathologic proteins, suggests that prion-like induction and spreading, involving secreted proteins, are major pathogenic mecha-
nisms in various neurodegenerative diseases, depending on genetic backgrounds and environmental factors. The elucidation of the basic
molecular mechanisms underlying the interaction and spreading of pathogenic proteins, suggesting a dualism or triad of neurodegeneration in
protein-misfolding disorders, is a major challenge for modern neuroscience, to provide a deeper insight into their pathogenesis as a basis of
effective diagnosis and treatment.

Keywords: neurodegeneration� protein misfolding� oligomers� interaction� aggregation� spreading� pathogenic factors

Introduction

Neurodegenerative disorders (NDDs) such as Alzheimer disease (AD),
Parkinson disease (PD), frontotemporal lobar degeneration (FTLD),
Huntington disease (HD), prion and motoneuron diseases are being
realized to have common cellular and molecular mechanisms includ-
ing protein aggregation and inclusion body formation in selected
areas of the nervous system. Therefore, these disorders are summa-
rized as ‘proteinopathies’ [1–5], and are also called ‘neurodegenera-
tive conformational diseases’ [6], ‘protein aggregation diseases’
[281], ‘protein misfolding disorders’ [182], or ‘neurodegenerative fol-
dopathies’ [282]. The size, shape, location, and protein composition
of the aggregates are characteristic features of the diseases. Although
the different localizations of hallmark protein aggregates [extracellular
amyloid-b (Ab) deposits and intracellular hyperphosphorylated tau

(p-tau) in AD, a-synuclein (aSyn) containing cytoplasmic Lewy
bodies (LBs) and neurites (LNs) in PD, aSyn containing glial cytoplas-
mic inclusions (GCI) in multiple system atrophy (MSA), intranuclear
huntingtin inclusions in HD, TDP-43 intrancytoplasmic and intranucle-
ar inclusions in AD and FTLD] may suggest that each protein strikes
a single cellular domain, recent studies indicate the possibility of
common pathogenesis with overlap between the different disorders
[2, 4, 7–13]. The deposits consist of insoluble fibrillary aggregates
containing misfolded protein with b-sheet formation. The most proba-
ble explanation is that these inclusions and aggregates represent an
end stage of a molecular or ‘molecular misreading’ [283] multistep
cascade of complicated events that might result from an imbalance
between protein synthesis, aggregation and clearance possibly
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because of the decline of cellular protein quality processes [14, 15] or
‘molecular misreading’ [283]. It appears reasonable that an earlier
stage may be more directly tied up to the—hitherto unknown—patho-
genesis of the disorders than the inclusions themselves, which may
or may not represent diagnostic hallmarks or signposts. It has been
suggested that the translocation of proteins to the mitochondrial
membrane may play an important role in triggering or perpetuating
neurodegeneration (ND) causing mitochondrial destruction [16, 17].
In many of these disorders, ND is likely to initiate at the synaptic site,
where discrete protein aggregates, known as oligomers, impair neu-
ronal transmission and functioning [18, 19, 92, 284].

Oligomers are usually diffusible, non-fibrillary, small-order aggre-
gates, whereas larger polymers, in the form of amyloid fibrils, com-
prise the inclusion bodies and extracellular deposits that characterize
these disorders and are now believed to represent a pathway for
sequestration of more toxic oligomers [20]. Different types of Ab olig-
omers are associated with various degrees of toxicity; they may differ
in their underlying structure and may follow different assembly
pathways [21]. The high contents of lipid rafts of the neuronal plasma
membrane renders these cells particularly vulnerable to the cytotoxic
attack of amyloid proteins and represents one of the reasons for the
high vulnerability of the CNS to misfolded proteins [285]. Recent
studies indicate that the presence of Ab seeds, and not the age of the
host is critical for the initiation of Ab aggregation in the brain [22].
Small intermediates along the pathway from oligomer to fibril have
also been reported to form ‘pore-like’ structures that might them-
selves disrupt ionic homeostasis and influence synaptic dysfunction,
while large insoluble deposits might function as reservoirs of the bio-
active oligomers that can lead to synaptic and mitochondrial dysfunc-
tion, neuronal apoptosis and cell death [23–25]. This, among others,
is probably because of iron-related oxidative damage mediated by
aSyn oligomerization via oxidative stress during the development of
PD pathology [26–28]. On the other hand, brain-permeable small-
molecule inhibition of heat shock protein Hsp90 has been shown to
prevent aSyn oligomer formation and protect against aSyn-induced
toxicity [29]. aSyn has recently been shown to occur physiologically
as helically folded tetrameres that resist aggregation. It has been
hypothesized that aSyn tetrameres undergo destabilization before
aggregate formation [286]. Ab promotes aSyn aggregation in vivo
[215] and both might directly interact [8] to form hybrid channel-like
structures [25]. Misfolding and subsequent aggregation of aSyn play
a central role in the pathogenesis of synucleinopathies [30, 31]. The
levels of soluble aSyn oligomeric species are increased by phosphor-
ylation at Ser129 [32]. Elevated levels of soluble aSyn oligomers have
been detected in postmortem brain extracts from patients with
dementia with Lewy bodies (DLB), which were significantly higher
than in AD and controls [33]. Evidence further suggests that protein
propagation might contribute not only to the spreading and progres-
sion of the disease, but also to ND. Recent studies suggest that such
protein spreading might occur in AD, PD, FTLD and other NDDs [1,
23, 34, 35]. Seeding induced by aSyn oligomers, the toxicity of which
has been demonstrated in vivo [36], can induce intracellular aSyn
aggregation, providing evidence for spreading of aSyn pathology [37,
38] similar to that of prions [34] and seeding of normal tau by patho-
logical tau conformers drives pathogenesis of Alzheimer-like tangles

[56], but the exact molecular pathways of transmissible proteins are
not yet fully understood [39].

Amyloid-b causes downstream loss of dendrites and synapses,
and functional disruption of neuronal networks [40, 41]. It induces
the neurodegenerative triad of spine loss, dendritic changes and
neuritic dystrophies through calcineurin activation [42], oxidative
stress, mitochondrial dysfunction, impaired synaptic transmission,
disruption of membrane integrity and impaired axonal transport
[43], whereas soluble tau species rather than aggregated ones
induce ND [44]. Cellular prion protein (PrPc) is a high-affinity
receptor for Ab oligomers mediating their toxicity on synaptic
plasticity [45–50], but it mediates neurotoxic signalling of b-sheet-
rich conformers independent of prion replication [248]. Co-trans-
fection of tau gene in cortical neurons with a proteasome activity
reporter (GFP-CL1) resulted in down-regulation of the proteasome
system, suggesting a possible mechanism that contributes to
intracellular PrPC accumulation, indicating a possible crosstalk
between tau and prion proteins in the pathogenesis of tau-induced
ND [287]. Likewise, tau-inhibiting tubulin oligomerization induced
by prion protein points to a possible molecular link between NDDs
and transmissible spongiform encephalopathies [288]. A case with
a rare PRNP mutation (Q160X) resulting in the production of trun-
cated PrP suggests that PRNP mutations that result in a trunca-
tion of PrP lead to a prolonged clinical course consistent with
AD-like pathology [289].

Tau phosphorylation proceeds to tau aggregation that is favoured
by kinases like glycogen synthase kinase-3b (GSK-3b) [51], while
inhibition of GSK-3b activity prevented not only tau phosphorylation
but also tau aggregation in the hippocampus [52]. It is unclear
whether tau accumulation or its conformational changes are related
to tau-induced ND [53]. Recent studies showed that caspase activa-
tion, observed in a tg mouse model overexpressing GSK-3b [54], pre-
cedes tangle formation [55]. Seeding of normal tau by pathological
tau conformers further drives pathogenesis of neurofibrillary tangles
(NFT) [56].

TDP-43 proteinopathies are distinct from most other NDDs
because they are due to protein misfolding without amyloidosis, while
TDP-43 inclusions show abnormal phosphorylation, ubiquitination
and C-terminal fragments [57]. However, TDP-43 is present in AD,
other NDDs and normal ageing, suggesting that TDP-43 proteinopa-
thies can be considered in two classes—primary and secondary [58].
The presence of TDP-43 changes in AD and Down syndrome may be
a secondary phenomenon, relating more to aging than to AD itself,
but it may be integral to the pathology of AD and to some extent
determine its clinical phenotype [290]. TDP-43 and fused in sarcoma,
both DNA-/RNA-binding proteins, show genetic interaction in amyo-
trophic lateral sclerosis (ALS) and FTLD [59, 60]. The molecular
mechanisms of TDP-43-mediated ND have been critically reviewed
recently [291].

However, the mechanism by which oligomers trigger ND still
remains elusive, and it is unclear, whether there is a common underly-
ing pathogenic mechanism inducing both ND and fibrillary protein
aggregates that are typical for different disease processes (double or
triple amyloidosis) or if they represent a common final pathology lead-
ing to ND. The aim of this article is to review the molecular mecha-
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nisms and interactions between the various pathological proteins in
NDDs.

The proteopathic basis of AD

The brains in patients with AD, in addition to neuron and synapse
loss, are characterized by two hallmark lesions—Ab containing pla-
ques and NFT, which are composed of hyperphosphorylated forms of
microtubulus-associated tau protein [61, 62] (Fig. 1). Progression of
NFT pathology throughout the brain strongly correlates with disease
progression [63], while brain oligomeric Ab but not total amyloid pla-
que burden correlates with neuronal loss and astrocytic inflammatory
response in APP/tau tg mice [64] and in humans with the APP
(E693Δ) mutation [292, 293]. Loss of synapses is one of the earliest
events that has been associated with functional impairment [65, 66].
Although both Ab and tau have been extensively studied with regard
to their separate modes of toxicity [67], suggesting that both proteins
exhibit synergistic effects on mitochondrial function finally leading to
ND [68], more recently new light has been shed on their possible
interactions and synergistic effects in AD, linking Ab and tau [69–71].
There is an interaction between tau and Ab mediated by increased
activity of GSK-3b, a major kinase that hyperphosphorylates tau to
produce pathological forms of tau [72–75], which may represent an
interesting link between the two pathogenic hallmarks of these disor-
ders [74, 76–78]. In addition, there may be a participation of the pro-
tein 14-3-3 in the oligomerization and aggregation of tau [294].
Hyperphosphorylation of tau may be a consequence of Ab toxicity via
the regulator of calcineurin gene RCAN1 and GSK-3b, producing a
sequential mechanism for Ab and tau pathology [295].

The senile plaque, where Ab deposits and tau-positive processes
meet, is probably one important site of interactions: the cytoplasmic
domain of amyloid precursor protein (APP), phosphorylated on
threonine 668, could be the intermate as it appears to be associated

both with tau and Ab [79]. There are also well-documented data inci-
dating that Ab and tau meet at the synapse, as in about 25% of syn-
aptosomes preserved from cryopreserved material, phospho (p)-tau
and Ab were co-localized [80]. Recent studies established a common,
direct and synergistic toxicity of pathologic APP and tau products in
synaptic mitochondria contributing to synaptic deterioration in AD
[296], which is associated with reduction of the postsynaptic scaffold
protein PSD-95 in both tg mice and AD [297].

According to the amyloid cascade hypothesis, Ab formation is the
critical step in driving AD pathogenesis, implying the aggregation of
Ab as critical, early trigger in the chain of events that leads to tauopa-
thy, neuronal dysfunction and dementia [81] (Fig. 2). Support for this
concept stems from the identification of pathogenic mutations in

Fig. 1 Neuropathology of Alzheimer disease and morphological markers. Fig. 2 Pathogenesis of Alzheimer disease (major factors).
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patients with familial AD linked to Ab formation and a higher fre-
quency of AD in people with trisomy 21, who carry an additional APP
allele [82]. All firmly established genetic risk factors for AD promote
the buildup of Ab, either by increasing its production, promoting its
aggregation or impending its elimination [83]. While oral, intrave-
nous, intraocular and intranasal inoculation yielded no detectable
introduction of cerebral b-amyloidosis in APP23 tg mice, intracerebral
transmission through Ab-contaminated steel wires [84] and intraperi-
toneal inoculation with Ab-rich extracts after prolonged incubation
times did [85]. Soluble Ab seeds also mediated b-amyloidosis in the
brain [86] and may be induced in bAPP tg rats that are relatively
refractory of spontaneous original Ab deposits [87], whereas periph-
eral reduction of Ab may reduce brain Ab [88]. Previous studies of
Ab induction have used short incubation periods to dissociate seeded
Ab induction from endogenous Ab deposition of the host, showing
that Ab deposition, actuated in one brain area, eventually spreads
throughout the brain (for a review, see [22]). Recent longitudinal
imaging studies indicate that cerebral Ab deposition precedes clinical
AD by a decade or more [89]. How Ab aggregates impair neuronal
function remains uncertain, but evidence is growing that oligomeric
forms of the protein, which can range in size from dimers to dodeca-
mers or larger [90–93], are more deleterious to brain function than
are histologically obvious Ab lesions such as senile plaques and cere-
bral amyloid angiopathy (CAA). On the other hand, according to
recent data, at least some of the Ab toxicity appears to be tau-depen-
dent [70, 94].

Although Ab and tau exert toxicity through separate mechanisms
[95], evidence from both in vitro and in vivo models suggest that
there are three possible models of interaction between the two: (1)
Ab drives tau pathology, supported by induction of tau hyperphosph-
orylation by Ab formation in APP tg mice [96], induction of neuronal
tau hyperphosphorylation by Ab oligomers [97] or Ab-derived diffus-
ible ligants (ADDL) [97], and, together with neuritic degeneration, by
soluble Ab-protein dimers isolated from Alzheimer cortex [93] or by
Ab-rich brain extracts [98]. Tau hyperphosphorylation leads to tau
dissociation from microtubules and increased accumulations in some
dendritic compartments [99]. Together with NFT formation, it seems
to be linked to abnormal mitochondrial distribution in neurons [298],
whereas abnormal interactions between the GTPase dynamic-related
protein 1 (Drp1), acting in the outer mitochondrial membrane, and Ab
have recently been identified in AD brains [299]. Furthermore, aggra-
vation of NFT pathology is induced by intracranial injection of syn-
thetic Ab into mutant tau tg mice [100]. Ab exacerbates neuronal
dysfunction caused by human tau expression in a Drosophila model
of AD [101], whereas inhibition of GSK-3 ameliorates Ab pathology in
this model [102]. The pathogenic effects of Ab-42 were also signifi-
cantly suppressed when Ab-42 is expressed in a Drosophila tau null
line, demonstrating an interaction between the two proteins [102].
Overall, the Drosophila models of tauopathy in which both tau and
APP are co-expressed can provide valuable insights into the cellular
pathways mediating the interaction between these two proteins [103].
Amyloid precursor protein tg mice develop abundant Ab accumulation
as well as tau pathology similar to that observed in AD [104], but
none of the APP models fully recapitulate AD cellular and behavioral
pathology [300, 301]. In an AD mouse model, Ab accelerates the spa-

tiotemporal progress of tau pathology, particularly in the perforant
pathway, whereas tau pathology did not have the same effect on Ab
pathology [105]. In APP/PS1K1 mice, transient intraneuronal Ab
rather than extracellular plaque pathology correlates with neuron loss
in the frontal cortex [302]. Glucocorticoids increased Ab and tau
pathology in another mouse model of AD [106].

On the other hand, a single-dose intraventricular injection of an
Ab antibody in 4-month-old mice cleared intraneuronal Ab pathology
and reduced early cognitive deficits [107], and inhibition of GSK-3b
attenuated Ab-induced tau phosphorylation in vitro and can reduce
tau pathology in vivo [52, 108]. Other data suggest induction of NFT
formation by amyloidogenic peptides rather than specifically by Ab
[109]. While the 3xTg AD mouse model, based on early intraneuronal
accumulation of Ab played an important role in supporting the ‘intran-
euronal Ab hypothesis’ [107], recent evidence claimes that these
mice early and age-dependently accumulate APP instead of Ab within
neurons [110, 111], thus challenging this hypothesis. The intracellu-
lar domain of APP alters gene expression and induces neuron-specific
apoptosis [112, 113]. It should be recognized, however, that the
3xTG-AD mouse model demonstrates AD-like pathology but with
some key differences to human AD, suggesting divergent pathogenic
mechanisms [114]. In the human brain APP rather than Ab is
detected intracellularly when using specific antibodies [303]. (2) Syn-
ergistic effects of Ab and tau by impairment of mitochondrial respira-
tion in triple tg mice that display both Ab and tau pathologies [115].
This indicates the convergence of Ab and tau on mitochondrial deteri-
oration and establishes a molecular link in AD pathology in vivo [116,
117].

(3) Tau mediates Ab toxicity, supported by the observation that
tau�/� neurons are protected from Ab-induced cell death in cell cul-
ture [94, 99, 118]. Tau reduction also prevents Ab-induced defects in
axonal transport of mitochondria and other cargoes [119], which may
link the ‘tau hypothesis’ to other ones, the axonal transport impair-
ment hypothesis, according to which tau induces failure of axonal
transport [120, 121], and the ‘oxidative stress hypothesis’, which
suggests that mitochondria are functionally impaired, resulting in the
production of reactive oxidative species [122]. Astrocytes have been
shown to be important mediators of Ab-induced neurotoxicity and tau
hyperphosphorylation in primary cultures [54]. Soluble oligomeric
forms of Ab stimulate Ab production via astrogliosis in the rat brain
[123].

Although knowledge about the roles of tau and its interactions
with Ab is increasing (see [1, 124]), many questions about the scaf-
folding partners for tau in its interaction with Ab are still unanswered.
While this phenomen may result from direct cross-seeding of tau by
aggregated Ab [125, 126], indirect pathways such as Ab-induced tau
phophorylation, inflammation and/or disruption of proteostasis [70,
77, 127] have not been excluded.

While structural and functional changes in tau mutant mice neu-
rons are not linked to the presence of NFTs, or co-occur independent
of mature NFTs [128], the incidence of plaques and tangles correlates
positively in human AD, but a consistent anatomical relationship
between these lesions is not apparent [61]. Cross-sectional analysis
of postmortem human brain reveals a characteristic progression of
Ab plaques and a highly stereotypical appearance of NFTs [129]. Ab
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plaques develop first in the neocortex, followed by the allocortex and
then the subcortex, and the progression of their appearances often
corresponds to functionally and anatomically coupled brain regions
[130–133]. Neurofibrillary tau pathology first arises in the locus ceru-
leus (LC) and entorhinal brain regions [134–137]. The pattern that
emerges from these studies implies neuronal transport and synaptic
exchange mechanisms in the spread of AD lesions within the brain
[120, 136]. Several studies indicating that tau pathology of AD begins
in the brainstem [137–139], and the recent demonstration of tau-
positive pretangle material or early NFT stages without the presence
of Ab plaques in the LC before the involvement of the entorhinal
region of the cortex in young individuals [137, 140] may indicate that
not only reclassification of currently existing neuropathological
staging NFT categories for AD could be necessary but also a rethink-
ing of the amyloid cascade hypothesis that might not be valid for spo-
radic AD cases [129]. According to these authors, sporadic AD could
be the result of two separate factors: first, a tauopathy, possibly
beginning in young age and, second, negative influences of Ab after a
given threshold is crossed. As shown in animal models, Ab might be
capable of exacerbating the underlying tauopathy so that it develops
into clinical AD [100, 104], but, currently, too little is known about the
pace with which the pathologic process in human brain develops. A
novel antibody capture assay for paraffin-embedded tissue detected
wide-ranging Ab and paired helical filament tau in cognitively normal
older adults [141], and other recent findings indicate that Ab-associ-
ated brain volume loss occurs only in the presence of p-tau (in cere-
brospinal fluid or CSF) in humans at risk for dementia [142].

As we gain a deeper understanding of the different cellular func-
tions of tau, the focus shifts from the axon, where tau has a principal
role as microtubule-associated protein, to the dendrite, where it medi-
ates Ab toxicity [70]. On the other hand, according to several data,
tau aggregates may be a consequence rather than a cause of ND [55,
143]. Therefore, the effects promoted by Ab and tau should be analy-
sed more specifically to identify the mechanisms that underly Ab and
tau toxicity and/or neuroprotection to find appropriate therapeutic
targets [144].

Protein interactions in PD

Intracytoplasmic proteinaceous inclusions, primarily composed of
tau and/or aSyn, are predominant pathological features of AD and
PD, respectively [145]. However, the co-existence of these and other
pathological proteinaceous aggregates like Ab has been identified in
many NDDs [146–148]. Proteomic analysis of cortical LBs revealed
296 proteins [149], while in brainstem LBs 90 proteins were identi-
fied, differing from Pick bodies and suggesting a complex formation
process [150]. A recent proteomic study of the LC of PD brains
revealed a total of 2495(!) proteins of which 87 were different from
controls. The majority of these proteins are known to be involved in
processes that have been implicated in the pathogenesis of PD previ-
ously, including mitochondrial dysfunction, oxidative stress, protein
misfolding, cytoskeleton dysregulation, alterations in autophagy, and
inflammation. Several individual proteins were identified that have
hitherto not been associated with PD, such as regucalcin, which

plays a role in maintaining intracellular calcium homeostasis, and
isoform 1 of kinectin, which is involved in transport of cellular com-
ponents along microtubules. These findings indicate that the prote-
ome of PD-LC and non-neurological controls provide data that are
relevant to the pathogenesis of PD, reflecting both known and poten-
tially novel pathogenetic pathways [151]. Mitochondrial dysfunction
significantly contributes to PD pathology; however, to what extent it
contributes to the pathogenesis of sporadic PD remains to be eluci-
dated [304].

The co-occurrence of both aSyn and tau or other pathologic pro-
teins highlights the interface between them [7, 11, 152, 153]. They
may be co-aggregated in the same brain or even in the same region
or in the same cell in human brains [147, 154–156] and tg mice
[157]. Recent data suggest that aSyn secretion might be triggered by
the toxic properties of overexpressed aSyn and that tau specifically
enhances aSyn secretion. The synergistic effect between aSyn and
tau may be relevant for many NDDs that show co-occurence of both
proteins, as an increase in p-tau is one of the key features in the
brains of all tauopathies and has been shown to reduce binding of tau
to microtubules [158].

Whereas aSyn can spontaneously polymerize into amyloidogenic
fibrils, in vitro, tau polymerization requires an inducing agent [159].
Dopamine facilitates aSyn oligomerization and promotes formation
and secretion of non-fibrillary aSyn oligomers [305, 306], and the
chaperone Hsc70 affects the cellular propagation of aSyn aggregates
and their spread throughout the CNS in PD [307]. Cellular models,
various transgenic and other experimental PD models provided novel
insights into the role of aSyn in the hyperphosphorylation of tau pro-
tein observed in disease [159–167]. These data suggest that oxida-
tively modified aSyn is degraded by the proteasome and plays an
pro-aggregatory role for tau [166], and that aSyn is an in vivo regula-
tor of tau protein phosphorylation at Ser(262). Toxic interactions with
aSyn may lead to hyperphosphorylation of tau and eventually to the
deposition of both proteins in the disease [168]. Oxidatively modified
aSyn degraded by the proteasome further promotes the recruitment
of tau to protein inclusions in oligodendroglial cells in synucleinopa-
thies [166] E46K human aSyn tg mice develop Lewy-like and tau
pathology associated with age-dependent motor impairments, and
studies on the ability of E46K aSyn to induce tau inclusions in cellular
models suggest both direct and indirect mechanisms of protein
aggregation being possibly involved in the formation of tau inclusions
observed in PD, supporting the notion that aSyn is involved in the
pathogenesis of human diseases [169]. On the other hand, tau
enhances aSyn aggregation and toxicity and disrupts aSyn inclusion
formation in cellular models [156].

Recent postmortem studies showed increased accumulation of
tau protein phosphorylated at Ser 262 and 396/404 in the striata of
PD patients and in the A53T aSyn mutant mouse model of PD [162,
170]. This is related to increased activity of GSK-3b [75, 161, 164], a
major kinase that hyperphosphorylates tau to produce pathologic
forms of tau [50, 74]. This is stimulated by aSyn that associates with
the actin cytoskeleton [171] and by GSK-3b [172]. On the other hand,
aSyn is a substrate for GSK-3 and GSK-3 inhibition protects against
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and other Par-
kinsonian toxins [308]. Dopamine D1 receptor activation induces tau

1170 ª 2011 The Authors

Journal of Cellular and Molecular Medicine ª 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



phosphorylation via cyclin-dependent kinase 5 (cdk5) and GSK-3b
signalling pathways [173]. Expression of both GSK-3b and microtu-
bule-associated protein/microtubule affinity-regulating kinase 2 inhib-
ited the formation of aSyn-induced tau aggregation [159]. Reduced
19S and 20S proteasomal subunit activites in PD striata suggest that
they account for the abnormal disposal of aSyn and p-tau. The small
decrease in proteasomal activity in PD striata is consistent with other
studies that showed no significant changes of these proteins in PD
striata but lower activity in substantia nigra (SN) [174]. In an MPTP
model and in MPP+ cellular models, aSyn has been shown to induce
GSK-3b-catalysed tau phosphorylation [175–177]. Parkinson dis-
ease-associated risk factors such as environmental toxins and aSyn
mutations promote tau phosphorylation at Ser 262, causing microtu-
bule instability, which leads to neuronal degeneration [165]. Rotenon
exposure may also induce aSyn and Ab aggregation, as well as
increased hyperphosphorylation of tau, while high concentrations of
the pesticide lead to cell death before protein aggregation [167].

Hyperphosphorylation of tau by aSyn in the MPTP model of par-
kinsonism has been observed [175]. Tau in MPTP models and in
human postmortem PD striata is hyperphosphorylated at the same
sites (Ser 202, 262 and 396/404) as in AD [170], whereas phos-
phorylation of soluble tau differs in AD and Pick disease brains
[178]. Tauopathy in PD striata is restricted to dopaminergic neurons,
whereas degeneration in the inferior frontal cortex, associated with
increased tau deposition because of diminished proteasomal activity
in the absence of oxidative stress and pGSK-3b activity is not asso-
ciated with tauopathy [170]. In the aSyn overexpressing mouse
model of PD tauopathy, along with microtubule destabilization,
exists primarily in the brainstem and striatum, the two brain regions
known to express high levels of aSyn and undergo the highest levels
of degeneration in human PD. Thus, tauopathy in PD may have a
restricted pattern of distribution [163], which differs from its gener-
alized affection in AD. Whether there are differences in the three-
and four-repeat tau pathology between these disorders is not yet
fully understood and needs further investigation, as has recently
been performed for both AD and four-repeat tauopathies using new
methods [179].

There is strong interaction between aSyn, tau and Ab, particularly
in their oligomeric forms, which might synergistically promote their
mutual aggregation and vice versa [30, 168, 180]. Cross-seeding
between dissimilar proteins that share b-sheet structures has been
described, for example, of Ab and aSyn [25], tau and aSyn [181] and
prion protein and Ab [182]. In vivo interactions between aSyn and
tau are supported by genetic studies that link the MAPT gene, which
encodes tau, with increased risk of sporadic PD [183–186], and in
familial PD [155], fibrillation of aSyn and tau is caused by the A53T
mutation [181]. A family with early onset dementia showed wide-
spread appearance of LBs and NFTs, but no amyloid deposits [187].
There is recent evidence that prions trigger hyperphosphorylation of
tau in genetic, sporadic and transmitted forms of prion diseases in
the absence of amyloid plaques [11].

Neurofibrillary tau pathology is modulated by genetic variations of
aSyn [188]. Tau phosphorylation is found in synapse-enriched frac-
tions of frontal cortex in PD and AD [189] and in brainstems of aSyn
mice [190]. Direct links between aSyn and tau are supported by the

accumulation of both proteins within synaptic terminals in AD brains
and APP Swedish mutant mice [19, 189], the co-localization of both
proteins in both NFTs and LBs, especially in neuronal populations vul-
nerable for both aggregates [154, 191–193], in the olfactory bulb in
AD with amygdaloid LBs [191] and in neuronal and glial cytoplasmic
inclusions in MSA [194, 195]. Between 15% and 60% of AD brains
show numerous aSyn lesions in the amygdala, even in the absence of
subcortical LBs [196, 197]. Alzheimer disease with amygdala LBs is
considered to be a distinct form of a-synucleinopathy [198] in which
tau and aSyn pathology are co-localized [191]. In AD patients with
clinical extrapyramidal symptoms, between 50% and 88% of the
patients showed extensive aSyn pathology co-localized with p-tau in
SN, tau and less aSyn pathology in brainstem significantly increasing
with higher neuritic Braak stages [199–201]. Co-occurrence of abnor-
mal deposition of tau, aSyn and TDP-43 in AD, DLB and other NDDs
[146, 202, 203], highlight the interface between these and other mis-
folded proteins.

In conclusion, genetic, pathologic and biochemical evidence sup-
port a role for tau in the pathogenesis of PD [168], and concurrence
of tau, aSyn and TDP-43 pathology in brains of AD and LB diseases
provide a better understanding of the pathogenic pathways in these
disorders [146]. It has been suggested that the process of LB forma-
tion is triggered, at least in part, by Alzheimer pathology [147, 204],
while the interaction between aSyn and tau in MSA awaits further elu-
cidation [195, 205]. Recent data suggest that PD and AD could be
linked by progressive accumulation of p-tau, activated GSK-3b and
aSyn [162, 170, 206], while activation of caspase and caspase-cleft
Dtau may represent a common way of abnormal intracellular accumu-
lation of both tau and aSyn, promoted by Ab deposition, and unifying
the pathology of AD and LB diseases [8, 207, 208] (Fig. 3). Emerging
evidence suggests that secreted proteins such as Ab and cytosolic
proteins such as tau and aSyn, are spreading by cell-to-cell transmis-
sion, thus unifying the pathogenesis of many NDDs [34, 209], but is
is not fully understood whether they are the result of similar protein
aggregation and misfolding mechanisms.

Combined determination of aSyn, tau and Ab concentrations in
CSF show differential patterns in these disorders [210]; in particular,
tau/aSyn ratios can contribute to the discrimination of PD [211],
while different soluble isoforms of APP and other CSF biomarkers

Fig. 3 Hypothetic diagram unifying pathologic processes in Alzheimer

and Lewy body diseases. PD: Parkinson disease; LBD: Lewy body dis-

ease; LBs: Lewy bodies; AD: Alzheimer disease.
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may differentiate between AD and LB diseases [212]. Other studies
have suggested that Ab is more likely to promote the deposition of
aSyn than tau [213], and Ab is known to inititate hyperphosporylation
of tau [71]. Cortical aSyn load is associated with Ab plaque burden in
a subset of PD patients [214]. Ab peptides enhance aSyn accumula-
tion and neuronal deficits in a tg mouse model [215], and aSyn-
induced synapse damage is enhanced by Ab-42 [216]. Both can be
linked by separate mechanisms driven by a common upstream com-
ponent [217]. Recent studies showed that Ab-42 tightly binds to
tubulin polymerization-promoting protein (TPPP/p25) and causes
aberrant protein aggregations inhibiting the physiologically relevant
TPPP/p25-derived microtubule assembly.

TPPP/p25 expression enhances cellular sensitivity to dopamine
toxicity [218], and the interaction of TPPP/p25 and Ab can produce
pathologic aggregates in AD and LB diseases [219], although other
proteins, for example, aSyn and tau, have also been shown to interact
with p25 [219]. p25a was found in LBs in PD and DLB, but does not
co-localize with the inclusions in tauopathies [220]. Expression of
p25a and aSyn in a rat oligodendroglial cell line resulted in disruption
of the microtubule cytoskeleton, formation of aSyn oligomers and
apoptosis [221]. p25a promotes the oligomerization of aSyn and
accelerates inclusion formation leading to oligodendroglial death
[222], p25a probably being an early event for the formation of GCIs
in MSA.

Interactions between Ab, aSyn and tau may be a molecular mech-
anism in the overlapping pathology of AD and PD/DLB [8, 208], prob-
ably generated by the same stimulus with the outcome possibly
having an inverse relationship depending on genetic background or
environmental factors. These lesions represent a collision of two or
more processes, but it is unclear whether there is a common underly-
ing final pathology leading to neuronal degeneration (see [9])
(Fig. 4).

Induction and spread of protein
aggregates in NDDs

Mounting evidence implicates that templated corruption of disease-
specific proteins and the propagation of proteins may be a unifying
mechanism of disease progression and, thus, has important implica-
tions for understanding the onset and progression of various NDDs
(Table 1). In PD, aSyn-rich lesions that characterize LB pathology,
first arise in the lower brainstem and in the anterior olfactory nucleus
and olfactory bulb; they subsequently appear in a predictable
sequence in mesencephalic and neocortical regions [230–232],
although the reliability of Lewy pathology staging in sporadic PD has
been a matter of discussion [233–236]. The concept that aSyn
lesions ramify within the CNS by a seeding-like process is supported
by the observation that foetal dopaminergic transplants in the stria-
tum of a subset of PD patients surviving more than 5 years may
develop aSyn-positive LBs in some cells [237–239]. These data imply
for a host-to-graft propagation of aSyn, and a neuron-to-neuron
(interneuron) transmission or transsynaptic spread of aSyn appears a
likely interpretation for the propagation of the disease. Similar accu-
mulation of aSyn occurs in stem cells transplanted into transgenic
mice [34]. It has been suggested that LBs develop in transplanted
dopaminergic neurons in a fashion similar to that in the host SN
[240], but it could not be determined whether the LB-like inclusions
were formed by the spread of aSyn fibrils, or whether some other
toxic effect of the neighbouring diseased neurons introduced these
inclusions [35]. Moreover, the effects of LBs in the grafted neurons
are unclear, as LB pathology in neurons does not necessarily mean
their functional impairment. Secreted aSyn can recruit endogenous
aSyn in the recipient cells, act as a permissive template and promote
misfolding in small aggregates [241]. Some of the upake of aSyn
from the extracellular space appears to occur via endocytosis,
although additional mechanisms might also contribute [241, 242]. It
is probable to trigger the formation of large LB-like aggregates in cul-
tured cells, when artificial methods, bypassing physiologic uptake
mechanisms, are used to promote the entry of misfolded aSyn [34,
239]. These suggestions are supported by the observation that neural
grafts placed into tg mice expressing human aSyn take up the human
protein and form Syn-positive aggregates [227, 241, 243].

Most recent studies demonstrated that preformed fibrils gener-
ated from full-length and truncated recombinant aSyn enter primary
hippocampal neurons, probably by adsorptive-mediated endocytosis,
and promote recruitment of soluble endogenous aSyn into insoluble
PD-like LBs and LNs. Remarkably, endogenous aSyn was sufficient
for formation of these aggregates, and overexpression of wild-type or
mutant aSyn was not required. Accumulation of pathologic aSyn led
to selective decrease in synaptic proteins, impairment of neuronal
excitability and connectivity and, eventually, neuron death [35].

In vivo approaches in cell culture could not discriminate between
a ‘prion-like’ corruptive templating mechanism—host-derived—
translocated aSyn inducing misfolding of aSyn generated in the graft,
versus a simple translocation of aggregated synuclein from the host
to the graft, as in cell culture all the mechanisms needed for prion-like
behaviour of misfolded aSyn appear to be possible [227, 241, 243].

Fig. 4Morphologic interrelations of synucleinopathies, tauopathies and
amyloidopathies. NFTs: neurofibrillary tangles; PSP: progressive supra-

nuclear palsy; CBD: corticobasal degeneration; PDD: Parkinson disease

dementia; DLB: dementia with Lewy bodies; AD: Alzheimer disease;

LBs: Lewy bodies.
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These and other data suggest that aSyn pathology could be induced
in cells and may spread by a ‘prion-like’ mechanism involving the
transmission of conformationally altered aSyn [244–247]. Recent
studies indicated that cellular prion (PrP/C) mediates neurotoxic sig-
nalling of b-sheet-rich conformers independent of prion replication
[248]. Although the mechanism of spread remains uncertain, there is
evidence that prions can be conveyed between neurons by transsy-
naptic transport [244]. Prion toxicity may be exerted by neither PrPc
nor PrPSc but via a toxic intermediate, the generation of which
requires conversation to take place and is therefore dependent on
local availability of PrPc [249]. Transmissible prion disease can be
induced by PrP structures different from that of authentic PrPSc
suggesting a new mechanism designated as “deformed templating”
postulates that a change in the PrP folding pattern from the one
present in rPrP fibrils to an alternative specific for PrP(Sc) can occur
[309]. The propagation of aSyn lesions by cell-to-cell passage has
been demonstrated, as has the induction of proteinaceous lesions
associated with other NDDs [262], such as aggregates of superoxide
dismutase 1 (SOD1) in ALS [250, 251], aggregates of polyamine
[228], which typify HD and spinocerebellar ataxias, or cytosolic
aggregates of TDP-43 [252], which are present in ALS and FTLD with

TDP-43-positive inclusions (FTLD-TDP) [253]. The capability of pass-
ing between living cells is not limited to prions and those cited before;
it was also shown for aggregates of truncated tau, consisting of the
microtubule-binding region and a fluorescent protein tag that can
leave and enter cells in culture and promote the aggregates and fibril-
lization of normal tau within them [1, 34, 124, 226, 254–256]. It
should be emphasized, however, that with the recognition that tau,
aSyn, Ab, TDP-43 and other pathological conformers are transmissi-
ble, there is no evidence that they are infectious. Hence, it appears
important to distinguish between cell-to-cell transmission from brain-
to-brain transmission (aSyn, tau, Ab, TDP-43). Therefore, it seems
important to make a clear distinction between transmissible, non-
infectious disease proteins (active in NDDS) and prions, which, by
definition, are poteinaceous infectious particles, as the evidence that
AD, PD, DLB, FTLD, HD and ALS are infectious is not supported by
many studies that clearly demonstrated this for iatrogenic Creutzfeldt-
Jakob disease [257, 258]; see also reference [1]. Amyloid transfor-
mers can spread from cell to cell in the brains of affected individuals,
thereby spreading the specific neurodegenerative phenotypes distinc-
tive to the protein being converted to amyloid. This transmittability
mandates re-evaluation of emerging neuronal graft and stem cell

Table 1 Evidence for spreading of non-prion protein aggregates in the central nervous system (modified from [34])

Inoculum Host Propagation effect

Amyloid-b

Brain homogenates from Alzheimer
disease or APP transgenic mice

APP transgenic mice (intracerebral injection) Amyloid-b deposition at injection site and in
adjacent brain structures [84, 223, 224]

Tau

Tau fibrils Cultured neuronal cells Endocytic uptake of exogenous tau fibrils
and induction of cytoplasmic endogenous
tau proteins. Cell-to-cell transmission of
tau taken up by cultured cells [225, 226]

Brain extracts from tau transgenic mice Transgenic mice expressing human wild-type
tau (intracerebral injection)

Spreading of tau from site of injection to
other brain structures [194]

a-Synuclein (aSyn)

Aggregate-producing neuronal cell cultures Neuronal cells Endocytic uptake of aSyn aggregates [227]

Introduction of aSyn aggregates by
preformed fibrils generated from truncated
recombinant human wild-type aSyn

Primary hippocampal neurons Adsorptive-mediated endocytosis promoting
soluble aSyn into insoluble PD-like LBs
and LNs [35]

Transgenic mice overexpressing human
aSyn

Mouse neuronal progenitor cells grafted into
mouse brains

Interneuronal transmission of human
aSyn [227]

Brains of patients with Parkinson disease Foetal stem cells grafted into the brains of
patients with Parkinson disease

Interneuronal transmission of Lewy
inclusions [223, 228, 229]

PolyQ proteins

In vitro-generated polyQ peptide fibres Mammalian cells in culture Internalization of fibres with subsequent
recruitment of soluble endogenous polyQ
proteins and aggregate formation [228]

APP: amyloid precursor protein; PD: Parkinson disease; polyQ: polyglutamine; LBs: Lewy bodies; LNs: Lewy neurites.
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therapies [310]. Accumulation of cellular proteins within dystrophic
neurites in amyloid plaques in AD brain could support the hypothesis
that PrPc accumulation in dystrophic neurites reflects a response
to impairments in cellular degradation, endocytosis, or transport
mechanisms associated with AD rather than a non-specific cross-
reactivity between PrPc and aggregated Abeta or tau [311]. On the
other hand, the identification of molecules able to mimic or recapitu-
late antiamyloidogenic and antioxidative functions of PrPc may pro-
vide a new avenue for the battle against the devastating ND in AD
[259]. A profound molecular cross talk between misfolded proteins in
animal models of AD and prion disease may have important implica-
tions for understanding the origin and progression of these disorders
[312]. Although the exact involvement in the pathophysiology of prion
disorders and NDDs and a possible overlap between both disease
categories have to be further investigated, the interaction between
prion protein and toxic Ab assemblies can be therapeutically targeted
at multiple sites [260].

The recent demonstration of tau-positive pretangle material in
the LC before involvement of the transentorhinal region of the cere-
bral cortex in young individuals [137, 140] suggests a progression
of tau pathology via neuron-to-neuron transmission and transsynap-
tic transport of tau protein aggregates [136], and seeding of neuro-
nal tau by pathological tau conformers drives pathogenesis of
Alzheimer-like tangles [56]. The induction and spread of both Ab
and tau aggregates in experimental animals is well documented (see
mutant P201S tau), as found in frontotemporal dementia with par-
kinsonism (FTDP-17); it is capable of spreading through the cortex
of an Alz17 tg mouse expressing the human wild-type protein and
induce an NFT-like pathology that consists of human tau in brain
areas distant from the injection site [255]. These and other data
raise the possibility that neurodegenerative pathologies could spread
within the brain via a mechanism analogous to prion-like self-propa-
gation via dissemination by cells, although alternative mechanisms,
such as disruption of basic cellular proteostasis by exogenous
aggregates, cannot be excluded [261]. However, the means by
which templated conversion occurs, remain poorly understood [34,
244, 246, 262]. In vitro, aggregates of pathogenic proteins can all
be taken up by endocytosis and induce the misfolding of the core-
sponding intracellular proteins, while cytoplasmic protein aggregates
can translocate from one cell to another [7, 100, 117, 170, 175,
231, 245]. It appears well documented that aSyn and S0D1 are
secreted into the cell medium [34, 244, 263]. Furthermore, tau and
aSyn are present in blood and CSF in both monomeric and oligo-
meric forms, suggesting release of these normally intracellular pro-
teins in vivo [211, 263–265]. The intercellular transfer of cytosolic
protein aggregates may also occur through nanotubes, exosomes or
microvesicles [244]. Like other pathogenic proteins, Ab can be taken
up, modified and secreted by cells in vitro [118, 266], and—together
with tau—it is also present in the CSF [267–269]. At the current
state of knowledge, the exact involvement in the pathophysiology of
prion disease and the NDDs is not fully understood and deserves
further investigation to elucidate the possible overlaps between these
disorders. Most recent cell culture studies showed that embryonic
stem cell neurons can modulate the activity of a network of host
neurons [270].

Conclusions

Synergies between Ab, tau and aSyn have been recently described,
suggesting that they accelerate ND and cognitive decline [272]. Inter-
action beween these proteins may be a molecular mechanism in the
overlapping pathology of LB disease and AD, possibly representing a
complex continuum, characterized by variable amounts of pathologic
proteins, and Ab is suggested to promote accumulation of both aSyn
and tau. The procession from Ab to neurite pathology in the cerebral
cortex of AD and DLB may be unifiable [8, 208]. DLB-3xtg-AD mice
exhibit accelerated formation of aSyn and LB-like inclusions in the
cortex, and enhanced increase of p-tau deposits immunoreactive for
antibody AT8 in the hippocampus and neocortex provide further
evidence that tau, aSyn and Ab interact in vivo to promote accumula-
tion of each other and accelerate cognitive dysfunction, although
accumulation of aSyn alone can significantly disrupt cognition [271,
272]. Polymorphic tau and Ab-tau aggregates may be due to
sequences which are prone to variable turn locations along the tau
repeats, suggesting that synergistic interactions between repeats in
tau protein and Ab may be responsible for accelerated aggregation
via polymorphic states [126]. These changes and common inflamma-
tory mechanisms in these disorders [273] could be generated by the
same stimulus, with the outcome possibly having an inverse relation-
ship depending on genetic backgrounds and environmental factors.
Although recent data documented co-localization of aSyn and tau in
LBs [191], of Ab and p-tau in synaptosomes [80], synaptic terminals
[19] and in triple transgenic mice [115], why tau, Ab and aSyn
pathologies are so intimately associated remains one of the major
questions of the pathogenesis of ND in selected/vulnerable brain
regions that are typical for different disease processes (double or tri-
ple amyloidoses). It has been suggested that these pathologies repre-
sent a common final pathway leading to or preventing neuronal
damage [9, 157, 206].

The induction and proliferation of poteinaceous aggregates by
corruptive templating appears to be a common feature of multiple,
clinically diverse disorders, although many questions remain to be
answered [274]. The basic molecular mechanisms (presumed regio-
nal differences in proteasomal, caspase and GSK-3b activities, oxida-
tive stress in the presence of aSyn deposition, etc.) need further
elucidation, and the molecular basis of the synergistic effects of
aSyn, p-tau, Ab and other pathologic proteins, suggesting a dualism
or triad of ND, are a major challenge for modern neuroscience [275].
In humans, Ab deposition begins decades prior to the onset of
cognitive decline and, therefore, has been considered an early and
predictive indicator of AD [89]. In vivo, the appearance of soluble Ab
seeds may precede the appreciable Ab deposition in plaques and
blood vessels. As potent Ab seeds, like prions [276], appear to be rel-
atively small [86], soluble Ab forms could serve as biomarkers in
body fluids, and an effective disease-modifying therapy should be ini-
tiated prophylactically, before the disease has inflicted irreversible
damage to the brain. The early appearance of pathological aggregates
in the peripheral nervous system and their relatively systematic
spread within the brain [277, 278] in synucleinopathies, and other
neurodegenerative proteinopathies [5] suggests that seeds travelling
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between cells from one region to another might be profitable objec-
tives for therapeutic interference [246]. Inhibition of early aSyn
aggregation events would consequently prevent aSyn oligomer-
related toxicity [279], which would fit also for other proteinopathies
[1]. Furthermore, the cell-to-cell transfer and the induction of patho-
genic protein aggregates in cellular grafts [224, 243, 246] emphasize
the needs to protect grafted cells form host-induced protein templat-
ing [1]. The hypothetical risk of transmission of non-prion proteopa-
thies—like that of prion diseases [84, 280, 313]—suggests a need
for more research into the epidemiology of such disorders as well as
analysis of tissue and organ donations to minimize the risk for trans-
mission of such diseases. An extended multidisciplinary research of
the molecular and cell biology of protein aggregation is needed to
improve our insight into the molecular pathogenesis of proteinopa-

thies and related NDDs thereby improving diagnostic and therapeutic
possibilities.
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