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Abstract

In similar states, neural circuits produce similar outputs across individuals despite substantial interindividual
variability in neuronal ionic conductances and synapses. Circuit states are largely shaped by neuromodulators
that tune ionic conductances. It is therefore possible that, in addition to producing flexible circuit output, neu-
romodulators also contribute to output similarity despite varying ion channel expression. We studied whether
neuromodulation at saturating concentrations can increase the output similarity of a single identified neuron
across individual animals. Using the lateral pyloric (LP) neuron of the crab stomatogastric ganglion, we com-
pared the variability of /~/ (frequency—current) curves and rebound properties in the presence of neuropeptides.

(s

The activity of single neurons and neural circuits can be very similar across individuals although the ionic
currents underlying activity are variable. The mechanisms that compensate for the underlying variability and
promote output similarity are poorly understood but may involve neuromodulation. Using an identified neu-
ron, we show that neuropeptide modulation of excitability can reduce interindividual variability of response
properties at a single-neuron level in two ways. First, the neuropeptide increases baseline excitability in a
differential manner, resulting in similar response thresholds. Second, the neuropeptide increases excitability
toward a shared saturation level, promoting similar maximal firing rates across individuals. Such tuning of
neuronal excitability could be an important mechanism compensating for interindividual variability of ion
\channel expression. /
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The two neuropeptides we used converge to activate the same target current, which increases neuronal excit-
ability. Output variability was lower in the presence of the neuropeptides, regardless of whether the neuropep-
tides significantly changed the mean of the corresponding parameter or not. However, the addition of the
second neuropeptide did not add further to the reduction of variability. With a family of computational LP-like
models, we explored how increased excitability and target variability contribute to output similarity and
found two mechanisms: saturation of the responses and a differential increase in baseline activity.
Saturation alone can reduce the interindividual variability only if the population shares a similar ceiling for
the responses. In contrast, the reduction of variability due to the increase in baseline activity is independent

of ceiling effects.

Key words: bursting neuron; central pattern generator; stomatogastric; variability

Introduction

Under similar behavioral conditions across individual
animals, neural circuits often produce very similar out-
puts. Output similarity is observed in all parts of the cen-
tral nervous system, from spinal cord circuits (Pearson
and Rossignol, 1991; Masino and Fetcho, 2005) to large
networks involved in learning and memory (Wang, 2010;
Howe et al., 2011; Buzsaki and Wang, 2012). Interestingly,
interindividual similarity of circuit output is also present in
the absence of sensory feedback, as has been observed in
isolated invertebrate neural circuits (Hughes and Wiersma,
1960; Selverston and Moulins, 1985; Harris-Warrick and
Marder, 1991; Buschges et al., 1995; Marder and Bucher,
2001; Bucher et al., 2005; Mulloney et al., 2006; Wenning
et al., 2018). Such similarity is remarkable because, in any
neuron type, ionic conductances underlying activity are
quite variable. Even in a neuron that exists in only a single
copy in each animal, as is common in small invertebrate
circuits, the expression of ion channel conductances and
their corresponding mRNA levels can vary several-fold, yet
the activity of that neuron in the circuit remains remarkably
similar (Prinz et al., 2004; Schulz et al., 2006; Goaillard et
al., 2009; Tobin et al., 2009; Ransdell et al., 2013a; Marder
et al., 2015; Tran et al., 2019). This observation raises the
question of how neurons and circuits produce similar out-
puts despite variable components. A possible explanation
is that different voltage-gated conductances are coregu-
lated in a compensatory manner to give rise to similar neu-
ronal excitability across individuals (MacLean et al., 2003,
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2005; Khorkova and Golowasch, 2007; Harris-Warrick and
Johnson, 2010; Temporal et al., 2012). Alternatively, output
similarity may be an emergent property of the full circuit, as
compensation for intrinsic variability may include the vari-
ability of synaptic strengths or constraints on synaptic cur-
rent trajectories (Prinz et al., 2004; Anwar et al., 2022).

Output similarity is observed across individuals in com-
parable behavioral or circuit states, but circuit output is
flexible and can change substantially depending on the
behavioral needs of the animal. One mechanism provid-
ing such flexibility is neuromodulation by a variety of
transmitters and hormones that modify properties of ion
channels, synaptic release mechanisms, and other circuit
components (Marder and Weimann, 1992; Katz et al.,
1994; Parker, 2000; Johnson et al., 2011; Bargmann, 2012;
Marder, 2012; Nadim and Bucher, 2014). This poses an in-
teresting problem for output similarity. Neuromodulator
receptor expression itself can show substantial interindi-
vidual variability (Garcia et al., 2015), suggesting that, in
addition to the variability of expression, ionic conduc-
tances are also subject to variability of neuromodulator
effects.

In the pyloric circuit of the stomatogastric ganglion
(STG), conductance variability is substantial in both
unmodulated and modulated states (Schulz et al.,
2006; Khorkova and Golowasch, 2007; Golowasch,
2014; Anwar et al., 2022), indicating that receptor vari-
ability does not simply compensate for target ion
channel variability. However, neuromodulatory effects
interact with the variability of intrinsic neuronal proper-
ties, which may lead to reduction in output variability.
In addition, output similarity may increase if a modula-
tor increases neuronal excitability toward a saturation
level that is shared across individuals. Voltage-gated
ionic currents are nonlinear and, in any neuron type, in-
teract in a complex but specific manner to produce
neuronal excitability (Goaillard et al., 2009). It is therefore
possible that, despite their varying levels, ionic currents
interact in a manner that produces consistent output
across individuals. The flexibility provided by neuromodu-
lation may fine-tune these interactions to enhance neuronal
output similarity. Finally, circuits are under the influence of
several neuromodulators at all times, and while some neu-
romodulators have divergent cellular effects, others con-
verge to modify the properties of some of the same ion
channels or synapses (Bucher and Marder, 2013; Nadim
and Bucher, 2014). Convergent comodulation may contrib-
ute to interindividual output similarity.
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We focused on whether neuromodulation can increase
output similarity at the level of an isolated neuron and, if
so, whether comodulation by convergent neuromodula-
tors enhances this similarity. We addressed these ques-
tions in the lateral pyloric (LP) neuron of the STG, which
exists as a single copy in each animal. We first examined
whether modulator-activated current levels in the LP
neuron show similar levels of variability as other ionic cur-
rents. We then measured excitability, postinhibitory re-
bound properties, and response to periodic input in the
synaptically isolated LP neuron. Subsequently, we com-
pared the interindividual variability of these measures of
activity in control conditions and in the presence of one or
two (convergent) peptide neuromodulators. We used the
experimental data to construct families of computational
LP model neurons, with the same variability range as the
data, to understand the mechanisms through which neu-
romodulation can influence interindividual variability at
the single-cell level.

Materials and Methods

Experimental preparation

All experiments were performed on adult male Jonah
crabs, Cancer borealis. Animals were obtained from
local seafood stores in Newark, NJ, and kept unfed in
tanks at 10-13°C. Crabs were placed in ice for at least
30 min for anesthetization before dissections. The sto-
matogastric nervous system (STNS) was dissected
and pinned dorsal side up in a Sylgard (Ellsworth
Adhesives) lined Petri dish. The dorsal sheath of the
STG was removed with fine tungsten pins. During ex-
periments, the STG was constantly perfused in a pe-
troleum jelly well with 10-13°C saline at a flow rate of
~4 ml/min. C. borealis saline contained the following
(in mm): 440 NaCl, 26 MgCl,, 13 CaCl,, 11 KCI, 10 Tris
base, and 5 maleic acid, buffered to pH 7.4.

The majority of chemical synapses in the pyloric circuit
are graded, inhibitory, and glutamatergic, and can be
blocked with picrotoxin (PTX). PTX (Sigma-Aldrich) was
dissolved in DMSO (Thermo Fisher Scientific) and stored
as a 1072 v stock solution at 4°C. The PTX stock solution
was diluted in saline to a final concentration of 1075 m im-
mediately before use. During voltage-clamp (VC) experi-
ments, neurons were prevented from spiking by blocking
sodium channels with tetrodotoxin (TTX). TTX (Alomone
Labs) was dissolved in distilled water as a 10~ m stock
solution and stored at 4°C. The TTX stock solution was
diluted in saline to a final concentration of 10~7 m immedi-
ately before use. Proctolin (Proc) and crustacean cardi-
oactive peptide (CCAP; both custom synthesized by RS
Synthesis) were dissolved individually in distilled water
and stored as 102 m aliquots at —20°C. The neuropeptide
stock solutions were diluted in TTX or PTX saline im-
mediately before use to a final concentration of 1076 m
Proc and 5x 10" m Proc +5 x 10~ m CCAP (hence-
forth referred to as Proc + CCAP) so that the total neu-
romodulator concentration in the single-modulator
and double-modulator saline was always the same. All
chemicals were always bath-applied to the STG.
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Electrophysiology

The pyloric rhythm was recorded extracellularly with
stainless steel pin electrodes inserted into petroleum jelly
wells around sections of the lateral ventricular nerve (lvn),
pyloric dilator nerve (pdn), and pyloric nerve. Extracellular
electrodes were connected to a differential AC amplifier
(model 1700, A-M Systems). The LP and pyloric dilator
(PD) neurons were identified by matching their intracellu-
lar recorded activity to the extracellularly recorded pyloric
rhythm.

We used two-electrode VC to measure synaptic and
voltage-gated currents, and current clamp (CC) to mea-
sure excitability. Intracellular electrodes were made from
thin-walled borosilicate capillaries with filaments, pulled
to a sharp tip using a Flaming-Brown P-97 puller (Sutter
Instrument), and filled with 0.6 m K,SO4 + 20 mm KClI (re-
sistance: 20-25 MQ)). Intracellular signals were amplified
using Axoclamp 900A amplifiers (Molecular Devices).
All recordings were digitized at 5 kHz (Digidata 1440A,
Molecular Devices) and recorded with Clampex 10.6
(Molecular Devices).

After cell identification, we removed all neuromodula-
tory inputs by transecting the stomatogastric nerve (stn;
decentralization; Fig. 1). Unless otherwise indicated, we
ran each of the protocols in decentralized control, Proc
saline, Proc + CCAP saline, and after washing out. We
did not wash between single and dual neuromodulator
applications. Durations for wash in were 10 min and for
wash out were 10-30 min before running a set of VC or
CC protocols. In five experiments, we used sham wash in/
wash out without any modulators in the saline to control
for potential rundown of the LP neuron over time. Before
and after each set of protocols, we measured the input re-
sistance of the LP neuron by injecting currents pulses of
—1nA for 500ms (10 sweeps). Experiments were dis-
carded if input resistance was <5 M().

Measurement of ionic currents

For VC experiments, we applied 10~ m TTX to block
transient sodium currents, and then measured several
ionic currents in the LP neuron in control and Proc saline.
These currents included delayed rectifier and calcium-ac-
tivated potassium currents measured together as the
high-threshold potassium current (/4tx; Khorkova and
Golowasch, 2007), the transient potassium current (/a),
the hyperpolarization-activated inward current (Iy), the
synaptic current from the PD to LP synapse (/s,n), and the
modulator-activated inward current (/y,; Golowasch and
Marder, 1992b; Fig. 2A). For these measurements, the PD
neuron was always held at —60 mV, except during the /s,
measurements. For the total potassium currents (/x), the
LP neuron was held at —80 mV and stepped for 500 ms
from —50 to 20mV in 10 mV increments. /|yt was meas-
ured in the same way, except that LP was held at —40 mV
to inactivate /. /5 was calculated as the difference current
between I and Iytk. To measure /,,, we stepped LP from
—40to —120mV for 10 s. For /gy, the LP neuron was held
at —50mV and the presynaptic PD neuron was stepped
from —70 to O0mV in 10 mV increments and a 500 ms step
duration. To measure the noninactivating /\;, the voltage
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Figure 1. Isolating the LP neuron. A, Schematic of the STNS (top) and the simplified pyloric network with electrodes to indicate
which neurons were recorded from (bottom). Modulatory projection neurons are located in the commissural ganglia (CoG) and
esophageal ganglion (OG) and project via the stn to the neurons in the STG. Neurons of the pyloric network are located in the STG.
The network consists of a pacemaker group (one AB and two PD neurons), and several follower neurons, of which only the LP neu-
ron provides direct chemical feedback to the pacemaker group. Chemical inhibitory synapses and their transmitters (glutamate or
acetylcholine) are shown as circles, electrical coupling is depicted with resistor symbols. B-D, Extracellular recordings of the Ivn
and pdn, which carry axons of both LP (largest unit on Ivn) and PD neurons (mid-sized units on Ivn), or only of PD neurons, respec-
tively, and intracellular recordings of LP and the two copies of PD. B, When the preparation is intact (all intrinsic neuromodulators
present), the LP neuron receives strong periodic inhibition from the pacemaker group. C, After decentralization (removal of intrinsic
neuromodulators by transecting the stn), the pyloric rhythm deteriorates but synaptic connections are still functional as illustrated
by LP inhibition during PD bursts, and IPSPs in PD for each LP spike. D, After the addition of 10° m PTX, glutamatergic synapses
between the pacemaker group and LP are blocked. The cholinergic synapse from PD to LP is still functional. When PDs are hyper-
polarized (traces clipped), this synapse is silenced. Recordings in all three panels are from the same experiment and, with exception

of the inset in B, on the same voltage scale.

of the LP neuron was ramped from —80 to 20mV (75 mV/
s) and back to —80 mV. The I~V curve was then calculated
as the difference between the current responses to the
negative ramp in Proc and control saline (Schneider et al.,
2021).

We used the maximum current level of each current in
each experiment to calculate the variability of that compo-
nent. For potassium currents, we used the value in re-
sponse to the voltage step to +20mV (Fig. 2B, open
circles) for all further calculations. /5 was calculated as the
difference in current between I (Fig. 2A, gray traces) and
Itk For Ik, we measured the transient and persistent
currents separately, indicated by the arrows “t” and “p” in
Figure 2A. For I, we calculated the current amplitude be-
tween the beginning of the hyperpolarizing step and the
end, indicated by the arrow in Figure 2B. For Iy, we first
fitted the I-V data from the presynaptic voltage and aver-
age postsynaptic current during each presynaptic voltage
step with a logistic sigmoid function, as follows:

f(V)y=—>=2 (1)

V—Vip
1+exp P
where a is the maximum postsynaptic current, V4, is the
voltage at midpoint, and k is the slope factor at V.
Lower bounds were set at —10nA for a and —80mV for
V4. We used the value of a as the maximum synaptic
current, indicated by the open circle in Figure 2B.
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For Iy , we first calculated the difference current be-
tween Proc and control. From this, we separated the -V
curves for the positive and negative voltage ramp because
the positive ramp activates an additional inactivating com-
ponent, Iyt (Schneider et al., 2021). The /-V curves of the
negative ramps were fitted with the following function:

f(V) = M7 @)

V- V1/2
1+exp P
with the following bounds: 0 <a, 0 <b (mV) <40, —40 < V4,
(mV) <0, and 0.1 <k (mV) <20. The maximum current level
for Iy was the minimum negative current obtained from the fit
function, indicated by the open circle in Figure 2B.

The parameters we used (Fig. 2B, white markers) were
as follows: for the potassium currents, the maximum cur-
rent value at the voltage step to 20mV; for /,,, the maxi-
mum amplitude during the step to —120mV; for /g, the
scaling factor of the sigmoid fit of the mean postsynaptic
current at each voltage step; and for /y;;, the maximum in-
ward current of the fitted current. Since I, is activated
only in the presence of neuropeptides and is calculated
as a difference current, we are unable to provide control
data for this current.

Measurements of neuronal excitability
To measure the variability of excitability, we chemically
isolated the LP neuron with 10~° m PTX before running the

eNeuro.org
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Table 1: Model parameters for the LP-like model
Moo Tm heo Th
Soma/Neurite
5 v+ 10> (7 v+ 60)
Ia m°h S< 50 2 S 75 50
, v+ 45> (v + 40> (_ Ca; >
Ica m°h S< 15 100 + 2500 S 20 S 564 500 + 2500
v+70
s(—
(-5°)
+ +
I m s(" 370> 2500 + 1500 %S (V 460>
499 — 494
[Ca]; 125
54.6*lo .
Ikca) mh ! 9 <1e -3 s (— [Ca]’> 25
;. (143e-3 5 *S<v+5.5> sf|v+ o 0.03
[Ca]; 8
" m s (v + 48) 5
5
Axon
3 v+ 18) (_ v+ 28)
INa m~h S<1225 1 S 7= 2.5
+ +
I m* S<V 523> 2+7*s(7" 523)

S(x) denotes the logistic sigmoid function 1/(1 + exp(-x)). Time constants are in milliseconds.

stimulation protocols, which blocks inhibitory glutamater-
gic synapses from the pacemaker anterior burster (AB)
and follower PY (pyloric) neurons to the LP neuron, as well
as all synapses from the LP neuron to its targets (Bidaut,
1980). After 20 min of wash in, when IPSPs from LP to PD
were effectively blocked, one or both PD neurons were
hyperpolarized by —5nA current injection or voltage
clamped at a holding potential of —90mV to silence the
cholinergic synapse from PD to LP (Martinez et al., 2019;
Fig. 1A,D).

To measure the excitability of the LP neuron in the form
of frequency—current (f-/) curves, we injected increasing
current levels from 0 to 5nA in 0.5 nA increments, with 5 s
duration, followed by the reversed protocol with decreas-
ing current levels from 5 to 0 nA to check for hysteresis.

We measured the rebound properties of the LP neuron
in two ways. To examine rebound properties following a
long hyperpolarization period, we hyperpolarized the LP
neuron with a —5nA DC current for 10 s, followed by a
10 s interval of no current injection. This protocol was re-
peated for five sweeps and allowed us to measure the
complete histogram of the burst structure of the LP neu-
ron on rebound from hyperpolarization. To measure the
steady-state rebound properties of the LP neuron as ex-
perienced during normal pyloric activity, we periodically
hyperpolarized the LP neuron with 20 current pulses,
-5 nA, 1 s on and 1 s off. We empirically determined
that this 0.5 Hz periodic stimulation reliably resulted in
rebound spiking in all modulatory conditions. Higher-
frequency stimulations did not reliably produce spiking
at steady state in the LP neuron in control or wash and
were therefore not analyzed.

July/August 2022, 9(4) ENEURO.0166-22.2022

To compare the parameters of the ~/ curves, we calcu-
lated the average instantaneous spike frequencies at
each level of current injection and fit the experimental
measurements with the following power function:

f() =a(l —1p)", 3)

where a is a scaling factor, /g is the current level that first
elicited spikes, and the power b was set to 0<b <1
to limit the -/ curve to a sublinear function (Fig. 3A/).
To measure hysteresis of the 7~/ curve between depo-
larizing and repolarizing current injections (Fig. 3Aii),
we calculated the average instantaneous spike fre-
quency in the range of 2-4nA and divided that value
for the depolarizing current injections by that of the re-
polarizing current injections. This converted the hys-
teresis data to a ratio scale to use the coefficient of
variation (CV) as a measure for variability. Ratios >1
mean that spike frequencies were greater during the
current injections with depolarizing increments.

Table 2: Parameter values used for LIF simulations

Parameter Value

lapp [-50:100] nA

Gleak Uniform distribution [0.05, 0.2) uS
Eleak —-60mV

Imi-L 0,0.2,0.36 uS

Em 10mV

Vin —40mV

Vreset —-80mV

eNeuro.org



eMeuro

To analyze rebound properties following a long hyper-
polarizing DC current (Fig. 4), we considered all five
sweeps because we did not observe transient effects
across subsequent sweeps. For the rebound in response
to periodic hyperpolarizing pulses (Fig. 5), we only consid-
ered the last 10 of the 20 pulses where the response of
the LP neuron had reached steady state. In both cases,
we calculated the latency to the first spike and the re-
bound spike structure for the selected sweeps (or pulses)
in relation to the end of the hyperpolarizing current step.
For the spike structure, we fitted the cumulative spike count
histogram with the sigmoid function in Equation 1, in which
a is now the maximum number of spikes per sweep or pulse
and t4,,, instead of V;,, , is the time of the midpoint relative
to the end of the current injection. Additionally, for the
steady-state rebound, we approximated the time constant
by identifying the pulse number at which the latency
dropped to 63% of its total drop value.

Data analysis

All data were analyzed using custom scripts written in
MATLAB (releases R2018a and R2020b; MathWorks).
Clampex files were imported with abfload (version 1.4.0.0;
https://www.mathworks.com/matlabcentral/fileexchange/
6190-abfload).

Statistical tests were performed with SigmaPlot (version
12.0; SyStat Software) or custom-written MATLAB scripts.
Significance was assumed at « = 0.05. We performed one-
way ANOVA when data passed the Shapiro-Wilk normality
test and Levene’s equal variance test, or one-way ANOVA
on ranks if at least one of the tests failed. We used Tukey’s
test for post hoc multiple comparisons if the data had
equal variance, and Dunn’s test if the variance was not
equal. ANOVA results are listed in Tables 3, 4, and 5. We
did not use paired tests because four of our single-cell vari-
ability experiments did not spike in control condition and
were replaced with the control condition of four of the five
sham experiments in which we never applied any modula-
tors. Variability was calculated as CV (SD normalized to the
absolute mean) and adjusted for the sample size (Haldane,
1955) if data were on a ratio scale, or as SD if data were on
an interval scale. One exception is latency, where we also
use SD as a variability metric. To calculate CV for latency,
we must use the onset of the stimulus as a reference time
point. Since we have stimulus durations of 10 s for most re-
bound experiments, the CVs in this case would be a scaled
version of the SD.

The data presented are from 11 experiments for com-
ponent (ionic current) variability, 16 experiments for sin-
gle-cell (neuronal) variability, and 5 experiments with no
modulator application.

LP model structure and activity

The LP neuron model was built as described in the
study by Schneider et al. (2021), and implemented and
run using NEURON (Carnevale and Hines, 2006) in
Python. In brief, the model is composed of two coupled
compartments, one representing the soma/neurite, and
the other representing the axon. Spiking is generated in
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the axon, which has /¢, Ina, and Ik, while the soma
produced bursting activity with l\eak, Ica, Ikcas /as In, @and
Ivi- Calcium accumulation was tracked, where /g, con-
tributed to intracellular calcium concentration ([Ca];,),
and [Ca];, influenced both /s, and Ikca as described in
Table 1. In addition to /4, all currents were modeled as
standard Hodgkin—-Huxley type currents with the follow-
ing general form:

IX - gxmghg(v - EX)7 (4)
dz  z.(V)—-z
E - TZ(V) ) (5)

where x is the current type, g, is the maximal conductance, p
and q are, respectively, the activation (m) and inactivation (h)
variable (hon-negative integer) exponents, and E, is the rever-
sal potential. Reversal potentials of axonal currents are Ejeax =
—55mV, Ena = 70mV, and Ex = —80 mV. The reversal poten-
tials of somatic currents are Ejgax = —50mV, Exca = —80mV,
En=-80mV, E, = —20mV, and Ey, = —10mV. The change
of activation and inactivation terms is given by Equation 5,
where z_ is the steady-state value of m or h and 7, is the cor-
responding time constant. The parameters for the model are
provided in Table 1. The calcium current was modeled using
the Goldman-Hodgkin—Katz formalism, as follows:

Cal_.e ¢ —|[Cal,
ICa = PCamgahCaFg <[ ]027§ — 1[ ]m)v (6)
ZcaVol - F
[ ="V, @)

where Pg, is the total permeability of the current, mg, and
hca are activation and inactivation variables given by
Equation 5, vol is the volume of the microdomain influenc-
ing the current, F is Faraday’s constant, R is the universal
gas constant, and T is temperature. [Ca] is the calcium
concentration outside (out) and inside (in) the cell. The in-
ternal calcium concentration is given by the following:

d[Ca]in

dat TCa

[Ca}oo - [Ca]in _ P1 l
ZeoF -vol - P &%

®8)

where Ic, denotes the calcium current, [Ca]., denotes the
steady-state calcium concentration inside the cell, P, is
the maximal per cluster permeability of /5, and P is the
total permeability over all clusters of interest. The parame-
ters of Ic, are P; = 0.014 (cm - ms) ™', T=283.15 K, [Calout
=13 mm, Py = 1.1675 um®/s, p=0.0467 (cm - ms) ",
vol =6.49 um?, [Ca].. = 0.02 mwm, and 7c, = 25 ms.

The difference between the LP model used here com-
pared with the model in Schneider et al. (2021) is that,
here, the kinetics of Ic,, Ia, and I, were tuned to capture
rebound firing, as seen in the biological data of this study.
The protocol for rebound firing in the model is the same
as in the biological experiments, where —5nA is injected
into the LP model soma for 10 s on and 10 s off. The -/
curves were generated by injecting 5 s current steps into
the LP soma. The current step amplitudes ranged from
—10 to 5.5nA in increments of 0.5nA. This larger range
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was chosen to better fit the 7~/ power function curve pa-
rameter lo. Cumulative spike histograms of model re-
bound experiments, and 7~/ power function curves of
model 7~/ experiments were fit using scipy.optimize
(Virtanen et al., 2020).

Generating a family of LP models

To address the questions of the effects of modulation
on population variability, families of models were gener-
ated such that their activity summary statistics matched
those of the experimental observations in the control
condition (decentralized). This was done by generating
a pool of candidate models using the simulation-based
inference toolbox SBI (Goncalves et al., 2020; Tejero-
Cantero et al., 2020), and then selecting the final family
of models according to criteria constrained by experi-
mental results. For the rebound firing case, the sum-
mary statistics matched were the latency and power
function coefficients (a, t1/2, k). The model parameters
estimated were the somatic maximal conductances
(Gieaks 94 G Gkca Iw) @nd calcium permeability (Pca).
The selection criteria imposed on the rebound firing
population were that rebound latency must be >0.1
and <1.5 s. This resulted in a family of models (n=198)
whose summary statistics matched the experimentally
measured firing rebound statistics in the decentralized
control condition.

A similar approach was used to generate a family of LP
models whose -/ curve fit parameters matched those of
experimental data in the control (decentralized) condition
(n=85). In this case, we used the -/ power function fit pa-
rameters a, b, and Iy as summary statistics and estimated
the same model parameters as in the rebound case, as
well as of axonal maximal conductances (gieak, Gng @nd
9x) and the inactivation time constant (ry,) for Iy,. The se-
lection criteria used were the exclusions of models that
went into depolarization block in the range of additional
9w added, and models where the -/ power function fit
parameter a was <6.

Population of linear integrate-and-fire models

To check whether our observations could be explained
from first principles, we used a standard linear integrate-
and-fire (LIF) model. The change in voltage with respect
to time is given as follows:

dv
at
where a spike occurs when voltage exceeds vy, after
which the voltage is immediately set tO Vieget-

Cn is the membrane capacitance, and /5, is the amount
of DC current injected. The ionic currents included were
leak @nd Iy, a linearized version of ly. Here, leax is
a standard leak current with reversal potential Ejcax =
—60mV and conductance gieax, and /.. is a positive leak
current with reversal potential Ey, = 10mV and conduct-
ance gwu-L- All values used are given in Table 2.

At steady state, the frequency of the LIF neuron is given
as follows:

Cm—= = lapp — Gieak(V — Eieax) — gm(V — Emn), ©
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B VSS - Vreset ’
Tmln————
Vss — Vin

The membrane time constant (r,,,) is as follows:
p— Cm
" Gleak T ML
Steady-state voltage (vss) is as follows:

lapp + GieakEieak + Gmi—LEmi

Vss =
Jleak T IMI-L

(12)

A family of LIF model was constructed where gjcax Was
sampled from a uniform distribution while all other param-
eters were kept fixed. To increase excitability, we added
fixed amounts of gy;,_ to the family of LIF models. The fre-
quencies of the models were calculated using Equation 10
and fit to Equation 3, and the measures of variance were
calculated in the same way as for the biological data.

Data availability

Source code for the LP model and linear integrate-
and-fire model is available at https://github.com/fnadim/
Schneider_et_al_variabilty_single_neuron and as Extended
Data 1.

Results

Interindividual variability is not different between
nonmodulated and modulated ionic currents

Most neurons express a multitude of ionic currents and
receive synaptic input from many neurons. A modulatory
input often activates or modifies the levels of a subset of
these ionic currents. Substantial interindividual variability
has been shown in identified pyloric neurons both for un-
modulated voltage-gated currents (Schulz et al., 2006;
Hamood and Marder, 2014), modulator-activated currents
(Goaillard et al., 2009), and synaptic currents (Goaillard et
al., 2009; Anwar et al., 2022). As a first step, we wanted to
confirm the substantial interindividual variability of ionic
currents found in the LP neuron and that neuropeptide
neuromodulation does not systematically change com-
ponent variability. We compared the variability of ionic
currents that are targeted by proctolin and currents that
are not, by measuring these currents in the same prepa-
rations. The nonmodulated currents that we measured
included Itk (transient and persistent portions), /5 and
I, and the modulated currents included /gy and /y; (Fig.
2A,B; Golowasch and Marder, 1992b; Li et al., 2018). All
currents except Iy were measured twice, once in control
and once in Proc (Fig. 2C), whereas I\, was measured as
a difference current between control and Proc (see
Materials and Methods). For each current, the CV (SD
divided by the absolute mean) was calculated across in-
dividuals (Fig. 2D). As expected, CV values were larger
for the currents that had a small overall magnitude (/,
and /), likely because of increased measurement error,
and therefore larger SD, for small currents. Because CV
is the ratio of SD to the mean, changes in CV can be
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Figure 2. Variability of modulated components is not different from nonmodulated components across individuals. A, Example volt-
age-clamp recordings for nonmodulated and modulated currents. Current traces for /y1x [transient (t) portion indicated by black arrow,
persistent (p) by gray arrow], I (with total potassium currents Ik as gray overlay; I, is the difference current between all potassium cur-
rents Ik and lyrx); In; the synaptic current /sy, from PD to LP; and the neuromodulator-activated, voltage-gated current /y, are shown
with the corresponding voltage-clamp protocol as the inset. B, From these voltage traces, the features indicated with white markers
were extracted: the maximum transient current for both potassium currents and additional the persistent current for /iytk, the amplitude
of the current at the end of the hyperpolarizing voltage step for /,,; the scaling factor for the sigmoid fit for /gyn; and the maximum in-
ward current of the current fit for /y,. C, The distribution of these parameters across experiments are shown. Each dot represents one
experiment, and red lines mark the mean. Black is for control (decentralized), blue is for Proc. Transient /¢ is shown in bold colors,
persistent in transparent colors. Since /\ is calculated as a difference current (Proc — ctrl), there are no data in control. D, Coefficients

of variation (SD/mean) are in the same range for the nonmodulated currents (/y1«, /a, /v) and modulated currents (Isyn, Iv)-

because of the following three mechanisms: (1) if the
mean is constant but the SD is increasing, CV would in-
crease; (2) if SD is constant but the mean increases, CV
would decrease; and (3) if both mean and SD are chang-
ing, changes in CV would depend on the ratio changes
of both. Generally, these measurements showed that
CV values were similar between modulated and nonmo-
dulated currents, and between control and Proc.
Hence, the addition of Proc did not systematically re-
duce current variability, and the variability of modulated
currents is in the same range as that of nonmodulated
currents. Consequently, any change in variability of
neuronal response properties caused by neuropeptide
modulation is not simply because of altered component
variability, but must arise from the interactions of ionic
currents.

Neuromodulation reduces interindividual variability of
the f~I relationship

The -/ relationship of a neuron describes the gain of
its input-output function and is an established measure
of neuronal excitability (Ermentrout, 1996; Skinner,
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2013). We therefore measured the variability of the -/
relationship of the LP neuron across preparations (Fig.
3). We generated -/ curves by applying different levels
of DC current to the LP neuron and measuring its firing
frequency at each current level. To compare the -/ rela-
tionships across preparations, we used the -/ data from
the increasing current steps and fit this curve with a power
function for each modulatory condition (control, Proc, Proc
+ CCAP, wash; Fig. 3A). We fitted the f~/ curves to obtain
three parameters that capture the relationship and com-
pared the fit parameters across all modulatory conditions
(Fig. 3B).

Application of neuromodulators consistently altered the
f~I curve of the LP neuron (Table 3, one-way ANOVA re-
sults). In contrast, sham neuromodulator application (see
Materials and Methods) did not change the f~/ relationship
(Extended Data Fig. 3-1, example). Neuromodulators sig-
nificantly increased the scaling factor a, indicating that
the spike frequency of the LP neuron increased at any ap-
plied current level in the presence of neuromodulators.
This is a well known phenomenon and is expected from
modulators that activate inward currents (Heckmann et
al., 2005). The exponent b decreased with modulators,
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Figure 3. Neuromodulation changes excitability and reduces interindividual variability. A, Example of f — | relationships in four modu-
latory conditions (black: control; blue: Proc; magenta: Proc + CCAP; gray: wash). Left panel: Intracellular recording at four levels of
increasing current injection in control condition. Right panel: Instantaneous spike frequencies at each current level in different neu-
romodulatory states, shown as the average with SD, were fitted with a power function. The left inset shows how the fit parameters
influence the appearance of the curve. B, Distribution of fit parameters. Each dot represents the value from one experiment, and red
lines indicate means. Application of one (blue, Proc) or two (magenta, Proc + CCAP) neuromodulators significantly changed param-
eters (asterisks). C, Application of one or two neuromodulators reduced the variability of the fit parameters compared with control
(black). D, f — | curves showed hysteresis depending on in creasing (filled circles) or decreasing (open circles) levels of current injec-
tion. Only frequencies between 2 and 4 nA current injection (bold symbols) were used to calculate hysteresis as the ratio between
increasing and decreasing current levels. E, Distribution of hysteresis across experiments. Application of one or two neuromodula-
tors significantly changed hysteresis (asterisks). F, Application of one or two neuromodulators reduced the variability of hysteresis
compared with control (black). Removing the outlier in control (i.e., the maximum value), for both hysteresis and /o, did not change
the statistical significances. Control data for this figure are shown in Extended Data Figure 3-1. Raw data for B and E are provided
in Extended Data Figure 3-2.

indicating that the firing frequency started saturating at  consistently decrease variability more than Proc on its
lower current levels, as higher values of b (closer to 1) in-  own. Since the SD for a was similar among the four condi-
dicate a more linear -/ relationship. Finally, modulator ap-  tions, the decrease in CV was because of the increased
plication lowered the firing threshold, as /y, the current  mean in Proc and Proc + CCAP compared with control
level at which LP first spiked, decreased significantly, = and wash.
again an expected and well known phenomenon (Binder The f~/ relationship with decreasing current steps was
etal., 1993). not identical to that with increasing steps (Fig. 3D), indi-
To compare interindividual variability of the parameters  cating hysteresis (Lee and Heckman, 1998). To quantify
under different modulatory conditions, we calculated the  this hysteresis, we used the average instantaneous fre-
CV for parameter a, and the SD for parameters b and Iy quencies for current step values between 2 and 4 nA and
(Fig. 3C; see Materials and Methods). For all parameters, = measured the ratio of this measurement for increasing
variability was highest in control and decreased with  over decreasing steps (Fig. 3E, Table 3). This ratio was >1
modulator application. After the wash, variability of all pa-  in all conditions meaning that, at the same current level,
rameters except for Iy increased. For all parameters, vari-  the LP neuron firing frequency was always larger when in-
ability was reduced in the presence of modulators. creasing the applied current than decreasing it. With
However, the coapplication of Proc and CCAP did not modulators, the ratio was closer to 1, indicating a
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Figure 4. Neuromodulation changes general rebound properties and reduces interindividual variability. A, Spike raster and intra-
cellular recording of the last of the five sweeps of one example experiment in four modulatory conditions (black: control; blue:
Proc; magenta: Proc + CCAP; gray: wash). B, Latency was measured as the time from the end of the hyperpolarizing current in-
jection to the first spike, averaged across all five sweeps. Sweeps of the intracellular recording are shaded in gray, from dark to
light for sweeps 1-5. C, Spike histogram (Ci, 200 ms bin size) and sigmoid fit to the cumulative spike histogram (Cii). Dots indi-
cate sigmoid midpoint. A-C are from the same experiment. D, Parameter distribution for latency and fit parameters; t;,» is relative
to the end of the current injection (A, ty). Dots represent individual experiments; the red line indicates the mean. Application of
neuromodulators significantly (asterisks) changes most parameters (n.s.: ANOVA not significant). E, Variability of all parameters
is reduced in the presence of neuromodulators. Control data for this figure are shown in Extended Data Figure 4-1. Raw data for
D are provided in Extended Data Figure 4-2.

reduction in hysteresis. As for the f-/ curve fit parameters,
modulator application reduced the interindividual variabil-
ity of hysteresis, as seen in the smaller CV values (Fig.
3F). The decrease in CV together with the decrease in the
respective means indicated a strong contribution of the
reduction of SD. Raw data for these calculations is avail-
able in Extended Data Figure 3-2.
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Neuromodulation reduces interindividual variability of
rebound properties

In the intact pyloric network, the LP neuron generates
bursts of spikes when it rebounds from inhibition by the
pacemaker neurons. To assess rebound properties, we
recorded the responses after release from a 10 s hyperpola-
rizing current step of —5 nA under different neuromodulatory
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Figure 5. Neuromodulation changes steady-state rebound properties and reduces interindividual variability. A, Example intracellular
recording of the LP neuron with 20 cycles of periodic inhibition. B, Spike raster and intracellular recording of all 20 sweeps of the
same experiment in all four modulatory conditions (black: control; blue: Proc; magenta: Proc + CCAP; gray: wash). C, During the
first sweeps the latency to the first spike successively decreased; therefore, we only included the last 10 sweeps (steady state) in
the further analysis. The open circles indicate the sweep at which the latency was reduced to 63% of its total range. D, Spike histo-
gram (Di, 100 ms bin size) and sigmoid fit to the cumulative spike histogram (Dii). Dots indicate sigmoid midpoint. A-D are from the
same experiment. E, Parameter distribution for latency and fit parameters; t;,, is relative to the end of current injection (B, ty). Dots
represent individual experiments; the red line indicates the mean. Application of neuromodulators significantly changes parameters.
F, Variability of all parameters is reduced in the presence of neuromodulators. Control data for this figure are shown in Extended
Data Figure 5-1. Raw data for E are provided in Extended Data Figure 5-2.

conditions (Fig. 4A). We determined the latencies to the first
rebound spike (Fig. 4B) and generated histograms of the re-
bound spike trains for the 10 s window after hyperpolariza-
tion (Fig. 4Ci). From the histograms, we fitted the cumulative
spike counts with a sigmoid to extract parameters that can
be used for comparisons of variability (Fig. 4Cii). Sham

July/August 2022, 9(4) ENEURO.0166-22.2022

neuromodulator application (see Materials and Methods)
did not change the rebound properties (Extended Data Fig.
4-1, example).

The LP neuron was usually silent in the absence of mod-
ulators. Upon hyperpolarization, we observed a slow volt-
age sag, which is known to be due to the activation of I
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Table 3: One-way ANOVA results for f~I experiments

N Parameter  Normality = Variance  Teststatistic df res p ctrl Proc Proc + CCAP  Wash
16 a pass pass F=28.703 3 60 <0.001 10.346  14.947 15.583 11.790
16 b pass pass F=9.805 3 60 <0.001 0.289 0.167 0.137 0.240
16 o fail H=11.289 3 0.01 0.000 —0.020 —0.026 —0.013
16  hysteresis  fail H=40.453 3 <0.001 1.554 1.092 0.128 1.581

“N” is the number of animals, results from tests for normality and equal variance is given as pass/fail, the test statistics are F for ANOVA and H for ANOVA on
ranks, and “res” is the residuals. Significant p-values (o < 0.05) are printed in bold. Values for ctrl, Proc, Proc + CCAP, and wash are means for ANOVA, and me-

dians for ANOVA on ranks.

(Fig. 4A; Golowasch and Marder, 1992a). Upon rebound,
the LP neuron fired a train of spikes that terminated within
the 10 s recording interval. In the presence of Proc or Proc
+ CCAP, however, LP was more depolarized and tonically
firing without external current input. Upon hyperpolariza-
tion, it stopped spiking and produced a similar sag as in the
control saline. In all conditions, the LP neuron produced a
rebound after hyperpolarization and then its spike rate
tapered off to its baseline level (Fig. 4A). The LP neuron
produced its rebound spiking with a brief latency (Fig. 4B).
In each condition, this latency to the first spike was similar
for all sweeps. However, the application of Proc + CCAP
significantly reduced the latency compared with control
(Fig. 4D, Table 4). The spike histogram reflected that the
spike rate first increased after the release from hyperpolar-
ization and then tapered off (Fig. 4Ci). The total spike num-
ber, measured as the sigmoid fit parameter a, significantly
increased in the presence of neuromodulators (Fig. 4D,
Table 4), consistent with the increased excitability we ob-
served in the 7=/ curves. The t4», relative to the release from
hyperpolarization, occurred later with Proc than in control,
but k, the steepness of the cumulative spike histogram,
was not significantly changed with any of the modulators
(Fig. 4D, Table 4). However, the variability of all parameters
was always reduced in the presence of neuromodulators,
indicated by lower values of SD and CV, regardless of any
changes in the parameter (Fig. 4E). Variability of all parame-
ters returned toward control levels in wash. For rebound la-
tency, the decreased CV was because of a larger decrease
in SD than the mean. For a, the SD increased, which was
compensated for by the larger increase in the mean. For
ti/0, the mean was increased and the SD was decreased,
resulting in a smaller CV. Raw data for these calculations
are available in Extended Data Figure 4-2.

Neuromodulation reduces interindividual variability of
periodic rebound bursts at steady state

In the intact circuit, the LP neuron generates bursts
of action potentials on rebound from regular periodic

inhibition by the pyloric pacemaker neurons. To mimic
the response of the LP neuron to this periodic input, we
hyperpolarized the neuron with 20 —5nA current pulses,
applied periodically with a 1 s on/1 s off protocol. The LP
neuron responded to the first few pulses with fewer spikes
and longer latencies before the responses stabilized to a
steady state (Fig. 5A-C).

We analyzed rebound latencies and spike histograms
only from the last 10 of the 20 cycles, in the same manner
as shown in Figure 4. The steady-state rebound latency
was smaller in Proc + CCAP than in control (Fig. 5E, Table
5). The only significant difference for spike count parame-
ters was an increase in the total spike count, a, in the pres-
ence of modulators (Table 5), which is consistent with the
results of Figure 4, but there was no modulator-induced
change in ty» or k. As with our previous measurements,
there was no difference for any of the parameters between
Proc and Proc + CCAP application. Sham neuromodulator
application (see Materials and Methods) did not change the
rebound properties (Extended Data Fig. 5-1, example).

Although the application of neuropeptides did not al-
ways result in significant differences of the mean values,
once again the variability for any of the measured parame-
ters was always lower in the presence of modulators,
and this variability increased after wash (Fig. 5F). For 7
and ty,, SD decreased more than the mean, which re-
sulted in smaller CVs in Proc and Proc + CCAP. For a, the
increase in mean compensated for the increase in SD so
that CV decreased. Furthermore, the reduction of the CV
of k was because of both an increase in mean and a de-
crease of SD. Raw data for these calculations is available
as Extended Data Figure 5-2.

The influence of modulatory currents on rebound
properties in a family of LP model neurons

As shown in the experimental results, peptide modula-
tion is sufficient to reduce the interindividual variability of
f-I curves and rebound properties at the single-cell level.
In the STG, peptide modulators are known to activate an

Table 4: One-way ANOVA results for general rebound experiments

N Parameter Normality Variance Teststatistic df res p ctrl Proc Proc + CCAP  Wash
16 Loglatency Pass Pass F=3.675 3 60 0.017 —1.097 —1.444 —1.725 —1.208
16 a Pass Pass F=14.937 3 58 <0.001 283.857 659.188 722.063 306.063
16t Pass Fail H=10.337 3 0.016 2.741 3.901 3.899 3.349
16 k Fail H=6.709 3 0.082 1.415 1.730 1.780 1.522

“N” is the number of animals, results from tests for normality and equal variance is given as pass/fail, the test statistics are F for ANOVA and H for ANOVA on
ranks, and “res” is the residuals. Significant p-values (o < 0.05) are printed in bold. Values for ctrl, Proc, Proc + CCAP, and wash are means for ANOVA, and me-
dians for ANOVA on ranks. Latency was bounded by experimental design between 0 and 10; therefore, we logarithmically transformed the data to a normal distri-

bution and did the statistics on the log-transformed data.
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Table 5: One-way ANOVA results for steady-state rebound experiments

N Parameter Normality Variance Teststatistic df res p ctrl Proc Proc + CCAP  Wash
16 7 Fail H=10.310 3 0.016 6 6 5 6

16 arctan (latency*w) Pass Pass F=3.124 3 59 0.033 0.996 0.831 0.786 0.919
16 a Pass Pass F=7.623 3 58 <0.001 46.286 92.563 102.688 49.813
16 tie Fail H=3.791 3 0.285 0.714 0.690 0.678 0.691
16 kK Fail H=5.115 3 0.164 0.119 0.138 0.144 0.131

“N” is the number of animals, results from tests for normality and equal variance are given as pass/fail, the test statistics are F for ANOVA and H for ANOVA on
ranks, and “res” is the residuals. Significant p-values (p < 0.05) are printed in bold. Values for ctrl, Proc, Proc + CCAP, and wash are means for ANOVA, and me-
dians for ANOVA on ranks. Latency was bounded between 0 and 1 by experimental design. Therefore, we transformed the data to a normal distribution by multi-

plying by 7 and calculating the arctangent.

inward current, /y;, and to modify synaptic properties
(Thirumalai et al., 2006; Zhao et al., 2011; Li et al., 2018).
Generally, I increases the excitability of a neuron (Zhao
et al., 2010). Given that the experiments were conducted
on a synaptically isolated LP neuron, we used modeling to
examine whether the activation of /\; was sufficient to de-
crease interindividual variability. To examine the contribu-
tion of I, to the reduction of interindividual variability, we
built a family of 198 LP model neurons (see Materials and
Methods). In these models, the addition of peptides was
modeled by increasing the level of g,,, the maximal con-
ductance of Iy,.

We tuned the kinetics of the LP model neurons to allow
for rebound spiking as in the biological LP neuron (Fig.
6Ai). The models captured the increase and tapering of
spike frequency on rebound from hyperpolarization and
produced tonic spiking when high levels of Iy, were acti-
vated. The population of LP model neurons was selected
for similar rebound properties as measured in the biologi-
cal data (Fig. 6Aii) and had a baseline normal distribution
of low levels of g, (Fig. BAiii, top). To test whether the in-
terindividual variability of rebound decreases in response
to modulation, we added fixed amounts of gy, (Agw) to
the population of models (Fig. 6Aiii, middle). The resulting
fits of the cumulative spike histograms are shown in
Figure 6B.

The metrics of variability were measured as in the bi-
ological experiments (see Materials and Methods). We
observed a monotonic decrease of variability with in-
creasing amounts of Agy, added to the population.
This suggests that increasing excitability by adding
Agy, is sufficient to decrease the interindividual vari-
ability of rebound firing.

The actions of modulators can be inherently variable
in magnitude, as supported by reports of variable meas-
urements of /y, across individuals and variable receptor
expression (Garcia et al., 2015). To address whether vari-
ability in the activation of /Iy, would modify the effect seen
in the case of adding fixed amounts of Ag,,, we allowed
Agy, to be a normal distribution with a moderate mean of
Agy (0.025) and variances ranging from 0 to 0.1 (oQwm;
Fig. BAIii, bottom), resulting in the cumulative histogram
fits shown in Figure 6C. We found that the effect of in-
creasing og), increased the variability of rebound firing
compared with adding fixed Ag,. This suggests that the
statistics of the gy, distribution activated will influence
the effect observed on the interindividual variability of
rebound firing, where, for a given mean value of gy, a
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narrower distribution will allow for a greater reduction of
variability than one with a larger variance.

Is the reduction of variability only due to an increase in
excitability?

Generally, the increase of g, decreased the variability
of rebound parameters in our family of LP model neurons.
However, -/ relationships capture a different aspect of
neuron output than rebound properties. Therefore, we
tuned a family of LP model neurons to have f-/ statistics
similar to those observed in the biological experiments
and added fixed amounts of g, (Ag\y) to the baseline dis-
tribution, as we did for the model rebound experiments
(Fig. 7Ai). We only included models that were reliably pro-
ducing spikes at all Ag,,, values (n=85).

The most obvious change in the -/ curves was a left shift
with increasing Agy, (Fig. 7Aii). This shift simply reflects a
lower threshold for excitability (i.e., a more negative /). In
addition, the means of scaling factor a increased and those
of b decreased; Fig. 7B), indicating, respectively, an in-
crease in the maximum spike rate and an overall reduction
in gain. In contrast to the rebound parameters, the -/ pa-
rameters did not seem to approach a saturating value
across the range of Ag),, values. However, we were unable
to add larger amounts of Ag), because models stopped
generating spikes due to depolarization block. With in-
creased Agy, variability decreased only for a and b, but
not for Iy (Fig. 7B). Even so, the reduction in variability was
far less than what we observed for the model rebound
parameters.

Is the reduction of variability only due to an increase in
excitability? To address this question from a first princi-
ples perspective, we used a family of LIF models (n =500).
Since the frequency for these models does not saturate,
we truncated all -/ curves at 20 Hz to fit the power func-
tion to the same range of frequency values in each condi-
tion. The underlying variability within this family of models
comes from the variability of the leak conductance. We
expected that, like in the other models, increasing excit-
ability in the LIF models (by increasing /.. levels) would
result in a left shift of the 7~/ curves, but the other parame-
ters would not be changed. As expected, /o became more
negative with increased excitability, and the SD remained
constant (Fig. 8). However, the scaling factor (a) in-
creased, and the curves became less linear (b decreased).
The decrease in b corresponds to the widening of the
base of the f-/ curves with increasing Agy,_.. The
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Figure 6. Increasing gy, in a family of LP models reduces the variability of rebound parameters. A, A family of 198 LP models was
tuned to the rebound statistics from the biological experiments. Ai, Example voltage traces and spike histogram of one of the re-
bound LP models at different levels of added Agy,. Aii, Paired plots of the rebound parameters from the biological experiments
(black) and the family of LP models (orange). Aiii, The baseline g, distribution (top) was shifted by either adding a fixed amount of
9w (Agw, middle) or a variable amount of gy, with a fixed mean (0@, bottom). B, Fits to the cumulative spike histograms (top row),
the fit parameters and latency (middle row), and the corresponding measure of variability (bottom row) when adding increasing lev-
els of gy, with a fixed distribution (Agy,). Individual dots represent values from an individual LP model, blue bars indicate the mean.
An asterisk above a CV bar indicates that the CV for this group is significantly different from the CVs of all other groups. C, Fits to

July/August 2022, 9(4) E

NEURO.0166-22.2022

eNeuro.org



eMeuro

Research Article: New Research 15 of 19

continued

the cumulative spike histograms (top row), the fit parameters and latency (middle row), and the corresponding measure of variability
(bottom row) when adding variable levels of g,, with a fixed mean (og),). Individual dots represent values from an individual LP

model, blue bars indicate the mean.

variability of these parameters was reduced in the same
way as for the LP model family (Fig. 8). Thus, it appears
that the reduction in variability due to increased excitabil-
ity is @ more generic property and is not limited to the LP
model neuron.

Discussion

Neural circuit output can show variability across individ-
ual animals (Marder and Taylor, 2011; Wenning et al,,
2018; Anwar et al., 2022; Gorur-Shandilya et al., 2022),
but some attributes of this output must be constrained to
provide biologically meaningful function characteristic for a
given circuit state. For example, in the pyloric circuit, oscil-
lation frequency can vary substantially across individuals
under control conditions, while the relative timing and duty
cycles of different neuron types is maintained (Bucher et al.,
2005; Goaillard et al., 2009; Anwar et al., 2022). Such inter-
individual similarity of circuit output attributes has been
carefully documented in central pattern-generating circuits,
in which bursting neurons maintain a relatively constant
phase in each oscillation cycle despite variations in cycle
frequency (Grillner, 2006; Mullins et al., 2011; Zhang et al.,
2014; LeGal et al., 2017; Martinez et al., 2019). The mecha-
nisms that constrain aspects of circuit output to give rise to
interindividual similarity are not well understood, particularly

30

because ionic currents in identified neurons vary substan-
tially across individuals (Schulz et al., 2006; Khorkova and
Golowasch, 2007; Golowasch, 2014; Anwar et al., 2022). It
is also not clear to what degree output similarity arises at
the level of individual neurons or at the level of the whole cir-
cuit. Compounding this puzzle is the fact that circuit output
is shaped by the actions of neuromodulators, which can
also vary across individuals. Here we show that excitatory
neuromodulation can increase the interindividual similarity
of response properties in an isolated identified neuron.
Further work is required to show whether such reduction
of variability translates to the circuit output level, where dif-
ferentially modulated neurons and synapses increase the
complexity of neuromodulator actions (Harris-Warrick and
Johnson, 2010; Johnson et al., 2011; Oleisky et al., 2020).

Variability of modulator-activated currents

Both peptides that we used in this study converge to
activate the same ionic current, /y, in the LP neuron
(Swensen and Marder, 2000, 2001). In the same neuron
type, ionic currents, including /,, can greatly vary across
animals (Schulz et al., 2006; Goaillard et al., 2009;
Ransdell et al., 2013a,b), but it is possible that /\ has
more consistent levels or that it is coordinated with other
ionic currents, thereby promoting a similar neural activity.
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Figure 7. Increasing gy in a family of LP models reduces the variability of /~/ parameters. A, Schematic of the right shift of g, to in-
crease excitability (Ai) and -/ curves of a family of 85 LP models for selected Ag),, values (Aii). B, Fit parameters (top row) and cor-
responding variability measures (bottom row). Dots represent individual experiments; blue bars indicate the mean.
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Figure 8. Increasing excitability in a family of LIF models par-
tially reduces the variability of -/ parameters. A, f~/ curves for a
family of 500 LIF models at three different Agy,_, values. As in
the LP models, increasing excitability shifts the curves to the
left. B, Fit parameters (top row) and corresponding variability
measures (bottom row). Dots represent individual experiments;
blue bars indicate the mean.

We therefore recorded both unmodulated currents and
proctolin-activated currents and found similar levels of
variability, indicating that interindividual output similarity
is not because of consistent levels of the modulated
current or simply because of a reduction in component
variability.

Reduction in the variability of response properties must
therefore be an emergent property (i.e., it must arise from
the way that the currents activated by neuropeptides in-
teract with other currents). Principally, there are two types
of current interactions. First, as previous theoretical work
has demonstrated, disparate current combinations across
individuals can result in similar circuit output and voltage
trajectories of individual neurons (Golowasch et al., 2002;
Prinz et al., 2004). Indeed, despite substantial interindivid-
ual variability, pairs of ionic conductances are often corre-
lated (McAnelly and Zakon, 2000; MaclLean et al., 2003;
Khorkova and Golowasch, 2007; Schulz et al., 2007; Cao
and Oertel, 2011; Amendola et al., 2012; Temporal et al.,
2012; Ransdell et al., 2013a; Tran et al., 2019). Such correla-
tions can be independent of activity (MacLean et al., 2005;
Schulz et al., 2006) and under neuromodulatory control
(Khorkova and Golowasch, 2007; Temporal et al., 2012).
Second, ionic currents within a cell have complex and
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nonlinear interactions through their voltage or Ca®" de-
pendence, as currents both shape and depend on voltage
trajectories and Ca?" fluctuations. In fact, Iy, seems to be
partially carried by Ca?* ions and influence internal Ca®*
levels (Zhao et al., 2011; Gray et al., 2017; Schneider et
al.,, 2021) and may therefore impact both voltage- and
Ca®*-dependent currents. Notably, there are substantial
differences in how sensitive different neuronal activity at-
tributes are to the variability of different currents (Taylor
et al., 2009), suggesting that not all variability has the
same functional impact. In addition to their maximal
conductances, voltage and Ca®" dependence of ion
channels can also covary, and their dependence on
neuromodulators can affect this covariation, with po-
tentially substantial consequences for neuronal activity
(Amendola et al., 2012).

While we focused on currents that can be easily meas-
ured in the soma, the interindividual variability of fast axo-
nal currents in the LP neuron is unknown. However, since
currents, such as /y, that arise in the neurites can influ-
ence neuronal excitability, they can also impact the spik-
ing output that a neuron generates and thus alter activity
phases or the number of spikes per burst.

Potential mechanisms for the reduction of variability
by proctolin

Our computational models showed that the activation of
I is sufficient to reduce the interindividual variability of LP
activity. Notably, in a family of model LP neurons, adding
moderate, but variable, levels of g,, increased output simi-
larity compared with low levels of g,, with a narrower distri-
bution. Thus, increasing levels of gy, can reduce the
variability of neural activity even if the g, levels are variable.

Increasing / increases excitability because Iy, is a re-
generative inward current (Zhao et al., 2010). Our models
indicated two effects that contribute to reduced variabili-
ty. (1) Firing frequency increased more in neurons with an
initially low spiking activity, which promoted interindivid-
ual similarity. This is reminiscent of the finding that the
activation of peptidergic modulatory neurons increases
pyloric cycle frequency primarily when the baseline fre-
quency is low (Nusbaum and Marder, 1989; Bartos and
Nusbaum, 1997). The effect we describe here is inde-
pendent of saturation, but rather reflects the larger slope
and wider base of the -/ curve at low frequencies, as we
demonstrated with LIF models that do not saturate (Fig.
8). (2) The other effect was saturation. Neurons have a
maximal firing frequency, which is approached when they
receive increasing excitation. If maximum firing rates are
similar across individuals (i.e., a similar ceiling for firing
rates), increasing excitability can reduce variability by
reaching this ceiling. Maximum firing rates are con-
strained by the kinetics of ionic currents, in particular,
those that influence the refractory period of the neuron.
Similar kinetics would produce similar maximum firing
rates. In contrast, highly variable ion channel kinetics
across a population may lead to an increase, rather
than a decrease, in output variability. Our family of
model LP neurons in fact had near-identical ionic
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current kinetics and were only distinct in the maximal
conductances of each current.

Thus, our models show two potential strategies for the
system to reduce population variability: allowing for the
output attributes to approach a ceiling or shifting these at-
tributes away from low values (i.e., raising the floor).

Combined application of CCAP and proctolin does not
additionally reduce variability

Neuropeptides mostly act through specific G-protein-
coupled receptors (Brain and Cox, 2006; Huang and
Thathiah, 2015), and in the STG, the subcellular path-
ways activated by the receptors of excitatory neuropep-
tides converge downstream to activate /, (Swensen
and Marder, 2001; Garcia et al., 2015). In the LP neuron,
the combined activation of I, by coapplication of CCAP
and proctolin at concentrations >10"" m is simply addi-
tive up to saturation (Li et al., 2018). We did not find an
additional reduction of variability by coapplication of
proctolin and CCAP compared with proctolin alone.
Most likely, both 106 wm proctolin and the combination
of 5 x 10~/ m for each proctolin and CCAP were close to
saturating (i.e., activated all /Iy, channels in the LP neu-
ron so that the modulator-mediated reduction in vari-
ability was similar in both cases). Interestingly, the
combined activation of I, by the coapplication of CCAP
and proctolin is sublinear when at least one of them is
applied at a lower concentration (Li et al., 2018).

How would neuromodulation at nonsaturating con-
centrations affect output similarity? If two neuromodu-
lators additively converge to activate a downstream
target, but act through independently varying recep-
tors, then their combined actions would result in less
variability in the activation levels of that target. This is
because adding two independently varying quantities
has a smaller variability than either quantity, due to sig-
nal averaging. However, as mentioned above, the inter-
action of peptide modulators in activating /, can be
nonlinear (Li et al., 2018), which could result in a more
complex interaction in how comodulation influences
output variability.

Potential pitfalls in interpreting variability metrics

To our knowledge, few attempts have been made to
quantify interindividual variability or output similarity
(Wenning et al., 2018). SD is not dimensionless and
therefore impossible to compare, for example, between
spike number and current amplitude. Furthermore, SDs
of the same unit cannot be compared when the means
are very different. In contrast, the CV is dimensionless
and scales the SD to the mean, which allows for the di-
rect comparison of variability across different parame-
ters. However, the CV is only valid for data on a ratio
scale and therefore could not be used for all parame-
ters. Furthermore, CV can be sensitive to parameters
with small means: experimental error introduces some
variability in any dataset that does not scale with the pa-
rameter of interest. In such cases, dividing SD by a
small mean value results in a CV that is most likely an
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overestimation of the population variability. It is there-
fore possible that the interindividual variability of small
ionic currents in the LP neuron, such as /,, and /y,, is in-
fluenced by measurement errors and therefore the bio-
logical variability is smaller than what we reported.

In our analysis, both the SD and the CV yield only a sin-
gle value across animals, which makes statistical compar-
isons difficult. This is different from experiments in which
intraindividual variability is compared between different
conditions (Arancillo et al., 2015; Boele et al., 2018). In
those experiments, a distribution of CVs exists for each
condition (one CV per animal per condition), which can be
compared with common statistical tests. In contrast, in
our experiments, we quantified the interindividual variabil-
ity with a single value. Unfortunately, available tests to
compare the CV equality of single values require data to
be normally distributed and only have sufficient power for
CV values <0.5 (Sokal and Braumann, 1980; Feltz and
Miller, 1996; Krishnamoorthy and Lee, 2014). The param-
eters and their CVs in our datasets did not always meet
those requirements, which is why we refrained from using
these tests. However, given that both measures of vari-
ability (CV and SD) consistently decreased in the pres-
ence of neuromodulators and usually recovered after
washing, we are confident that neuromodulators did re-
duce the interindividual variability in the LP neuron.
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