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Abstract: Biospectroscopy offers the ability to simultaneously identify key biochemical changes in
tissue associated with a given pathological state to facilitate biomarker extraction and automated
detection of key lesions. Herein, we evaluated the application of machine learning in conjunction with
Raman spectroscopy as an innovative low-cost technique for the automated computational detection
of disease activity in anti-neutrophil cytoplasmic autoantibody (ANCA)-associated glomerulonephri-
tis (AAGN). Consecutive patients with active AAGN and those in disease remission were recruited
from a single UK centre. In those with active disease, renal biopsy samples were collected together
with a paired urine sample. Urine samples were collected immediately prior to biopsy. Amongst
those in remission at the time of recruitment, archived renal tissue samples representative of biopsies
taken during an active disease period were obtained. In total, twenty-eight tissue samples were
included in the analysis. Following supervised classification according to recorded histological
data, spectral data from unstained tissue samples were able to discriminate disease activity with
a high degree of accuracy on blind predictive modelling: F-score 95% for >25% interstitial fibrosis
and tubular atrophy (sensitivity 100%, specificity 90%, area under ROC 0.98), 100% for necrotising
glomerular lesions (sensitivity 100%, specificity 100%, area under ROC 1) and 100% for interstitial
infiltrate (sensitivity 100%, specificity 100%, area under ROC 0.97). Corresponding spectrochemical
changes in paired urine samples were limited. Future larger study is required, inclusive of assigned
variables according to novel non-invasive biomarkers as well as the application of forward feature
extraction algorithms to predict clinical outcomes based on spectral features.

Keywords: ANCA; ANCA-associated; vasculitis; glomerulonephritis; Raman spectroscopy

1. Introduction

Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is a
complex auto-immune disease that typically causes multi-organ and life-threatening dis-
ease. It results from the necrotising inflammation of small- and medium-sized blood vessels
which characteristically lack any significant immune complex deposits on histopathology.
Renal involvement with ANCA-associated glomerulonephritis (AAGN) tends to present
with rapidly progressive disease and often denotes a higher mortality risk compared to
patients without renal disease, particularly amongst those with dialysis dependence [1–3].
Since its initial description in the early 1980s, patient outcomes have improved in parallel
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with advancing treatment strategies, with a substantial proportion of patients receiving
remission-induction therapy and achieving dialysis independence by four months [4,5].
However, AAV is often characterised by a relapsing disease course and determining if
changes in renal function or urinalysis are attributable to active disease without a repeat
biopsy or a reliable peripheral biomarker presents a diagnostic challenge, particularly in
renal limited disease with no other clinical cues.

Renal biopsy remains the gold standard for the diagnosis of AAGN, but its serial use
for disease monitoring is restricted by the inherent procedural risks and resource require-
ments. The Berden classification system categorises histopathological findings in AAGN
into four key subgroups: focal disease (≥50% normal glomeruli), crescentic disease (≥50%
cellular crescents), sclerotic disease (≥50% globally sclerotic glomeruli) and mixed disease
with no predominant lesion [6]. Since its initial description in 2010, it has been validated by
numerous studies and has been shown to be of predictive clinical value, with poorer renal
function amongst those with a higher degree of sclerosis and more favourable outcomes in
those with a focal class of disease [6–11]. Although previously reported outcomes varied
amongst crescentic and mixed class disease, a recent meta-analysis found no significant
difference in end stage kidney disease between the two groups [11]. Emerging from these
studies was the importance of the percentage of normal glomeruli as a significant predictor
of renal survival, as well as the degree of tubulointerstitial disease [7–10]. T-cell mediated
tubilitis and, as expected, a higher degree of interstitial fibrosis and tubular atrophy (IFTA)
are associated with poorer renal outcomes, with the degree of IFTA increasing in parallel
with the degree of glomerular scarring [8–10]. These features have since been incorporated
into two predictive models: the Mayo chronicity score and the ANCA renal risk score [3,12].
The former accounts for glomerulosclerosis, IFTA, and aterioslcerosis with a lower like-
lihood of renal recovery associated with a higher score [3]. The ANCA renal risk score
accurately predicts the risk of end stage renal disease by using a graded score for renal
function at presentation, the degree of IFTA and the proportion of normal glomeruli [11,12].

The ability to non-invasively determine the prevailing histopathological lesion in
real time would prove to be an invaluable tool to aid disease monitoring in renal limited
AAV. Furthermore, it could facilitate individualised therapy, helping to identify those least
likely to benefit from continued or intensified therapy in order to mitigate any potential
treatment related harm. This study aims to differentiate spectral data obtained from
renal tissue according to key histological lesions in cases of AAGN to evaluate the role
of Raman spectroscopy as a method for automated computational detection of disease
activity. Additionally, subsequent comparative analysis of the spectral data from paired
urine samples at the time of renal biopsy will explore the role of biospectroscopy as a
non-invasive surrogate marker of histological activity in renal vasculitis, in effect providing
a liquid biopsy.

2. Materials and Methods
2.1. Patients & Ethics

From February to August 2019, consecutive patients with active AAGN and those in
disease remission were recruited. For those in disease remission at the time of recruitment,
where available, archived renal tissue samples taken at the time of initial diagnosis and
held by the tissue bank at Royal Preston Hospital were obtained. For those patients with
active disease at the time of recruitment, renal tissue samples along with paired urine
samples taken immediately prior to renal biopsy were collected. The definition of AAV
as outlined by the 2012 Chapel Hill Consensus Conference was used. Patients who did
not meet this criterion, who were aged < 18 years, unable to provide consent, or exhibited
dual positivity with anti-glomerular basement membrane disease were excluded. All
participants were registered with the Department of Renal Medicine regional vasculitis
service at Lancashire Hospitals NHS Foundation Trust, Preston, UK. Informed written
consent was obtained prior to enrollment in accordance with study approval from the
Health Research Authority, Cambridge South Research Ethics Committee (REC reference
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18/EE/0194) and the Research and Development team in the Centre for Health Research
and Innovation at Lancashire Teaching Hospitals NHS Foundation Trust.

Baseline clinical assessment comprised of participant demographics, histological
evaluation of renal biopsies by a renal pathologist, and salient laboratory results at the time
of biopsy including ANCA serotype, serum creatinine and urine protein creatinine ratio.
Recorded histological data included the assigned Berden classification (focal: ≥50% normal
glomeruli, crescentic: ≥50% cellular crescents, sclerotic: ≥50% globally sclerotic glomeruli,
and mixed: no predominant lesion) [6], the percentage of normal glomeruli (N0 > 25%,
N1 10–25%, N2 < 10%), the severity of interstitial fibrosis and tubular atrophy (IFTA)
(T1 > 25%, T0 ≤ 25%), and the presence of interstitial infiltrate, necrotising glomerular
lesions, extra-glomeruli arteritis, and vessel wall necrosis. The percentage of normal
glomeruli and degree of IFTA was assessed according to the grading scale applied by Brix
et al., in the ANCA renal risk score [12]. Urine samples were sent for microscopy and
culture to determine the presence of bacteriuria and its potential impact as a confounding
factor on spectroscopic analysis.

2.2. Sample Collection & Preparation

Following their initial acquisition and departmental assessment, formalin-fixed paraffin-
embedded tissue blocks were retrieved from the tissue bank at Royal Preston Hospital. To
ensure close correlation between histopathology reports and spectroscopic measurements,
contiguous sections of 10 µm thickness were used from each tissue block. After sections
had been cut and placed on IR-reflective aluminium coated FisherBrandTM (Loughborough,
UK) slides, all samples were deparaffinised according to local protocols using xylene and
ethanol in order to avoid any potential impact on the spectral data obtained.

Urine samples were collected in reagent-free, sterile containers and centrifuged at
3000 rpm, 4 ◦C for 10 min. The resulting supernatant urine was collected in 0.5 mL
Eppendorf tubes and stored at −80 ◦C. When required for experimentation, samples were
thawed at room temperature, after which 30 µL aliquots were placed on IR-reflective
aluminium-coated FisherBrandTM slides and left to air dry for a minimum of 2 h prior to
spectroscopic analysis.

2.3. Spectral Acquisition

Spectral data was obtained using a Renishaw InVia Raman spectrometer in conjunc-
tion with a charge-coupled device and Leica confocal microscope (Renishaw pls UK).
This system utilised a 200 mW laser diode at a wavelength of 785 nm with a grating of
1200 lines/mm. Renishaw WiRETM was used to control data acquisition. The spectral
range was set between 400–2000 cm−1 with a 1 cm−1 spectral resolution. For tissue map-
ping, spectral data was obtained over the entirety of a 1000 × 500 µm2 acquisition area,
using 5×magnification, 100% laser power, exposure time of 0.1 s with 5 × 5 steps in high
confocality and spectral centre of 1300 cm−1. Three select regions of interest where the
highest number of glomeruli were visible within the acquisition area were analysed from
each sample. For urine samples, ten individual spectral points were taken per sample
over an acquisition area of 250 × 125 µm2 using 20× magnification, 10% laser power,
and an exposure time of 10 s, with an extended grading scale. Within each acquisition
area, four spectral points were taken along the superior horizontal plane, four along the
inferior horizontal plane, and two in the middle. For both tissue and urine samples, one
representative mean spectrum was subsequently generated per sample for later use in
the analysis.

2.4. Spectral Pre-Processing

Three-dimensional (3D) Raman mapping images were uploaded into MATLAB R2014b
environment (MathWorks Inc., Natick, MA, USA) and unfolded into two-dimensional (2D)
structures containing n rows (number of spectra) and m columns (number of wavenumbers).
Initially raw spectral data obtained from both tissue and urine samples were evaluated
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for anomalous spectra or biased patterns. Pre-processing was then undertaken, applying
mathematical techniques to remove or reduce chemical signals that are not relevant to
the analyte target property or sample discrimination in order to improve the precision of
any qualitative and quantitative analysis [13]. The raw data obtained for both tissue and
urine samples were then submitted to the same procedures; spectral data was cut in the
region of 800–1800 cm−1 with application of Savitzky–Golay (SG) 2nd order derivative
(51 window points, 2nd order polynomial) and vector normalization to correct for random
noise, baseline distortions and physical difference between samples [14]. All resulting
pre-processed data was mean-centred prior to model construction for discriminant analysis.
All models were trained and tested with pre-processed data only.

2.5. Multivariate Analysis

In order to identify any natural clustering patterns or trends in the pre-processed data,
principal component analysis (PCA) is a multivariate technique that was used for initial
exploratory analysis and data reduction. In this process, the initial spectral wavenumber
variables are reduced to a few principal components (PC) responsible for the majority of the
original data variance. Each PC is composed of scores and loadings. The scores represent
the variance on sample direction, therefore being used to identify similarity/dissimilarity
patterns between the samples, whereas the loadings represent the variance on the variable
direction, therefore being used to identify possible spectral markers responsible for the
patterns observed and any potential class separation on the scores plot.

In each model, the spectral data from both tissue and urine samples was segregated
according to the presence of recorded histological data to generate the experimental classes
of the assigned Berden classification (focal, crescentic, sclerotic, and mixed) [6], the percent-
age of normal glomeruli (N0 > 25%, N1 10–25%, N2 < 10%), the severity of IFTA (T1 > 25%,
T0 ≤ 25%) and the presence of interstitial infiltrate, necrotising glomerular lesions, extra-
glomeruli arteritis, and vessel wall necrosis. A lower proportion of normal glomeruli
indicates greater disease burden with their composition guiding the degree of acute disease
vs. chronicity. A higher burden of IFTA and sclerosed glomeruli represent chronic damage,
whereas the remaining lesions described are indicative of active disease. An experimental
class according to ANCA seropositivity and, in positive cases, ANCA serotype were also
generated. For each, the total data obtained were used to build the models, without divid-
ing samples by selection methods due to the limited sample availability in certain classes.
The models were evaluated using the Venetian blinds cross-validation method. Analysis of
the spectral mean was used as the test set for blind predictive modelling. These test samples
are independent from training data as they are not used in the model training process
and are considered new data to the model. The overall performance of each discriminant
analysis algorithm was then compared.

2.6. Chemometric Models

The discriminant analysis algorithms of principal component analysis linear discrimi-
nant analysis (PCA-LDA), partial least squares discriminant analysis (PLS-DA), support
vector machines (SVM), and genetic algorithm linear discriminant analysis (GA-LDA) were
subsequently applied to the pre-processed data for supervised classification. Models were
constructed using the PLS Toolbox and Classification Toolbox graphical user interface of
the Milano Chemometrics group [15].

PLS-DA is a well-established chemometric technique for supervised classification. For
this process, the dataset was broken down into a few latent variables (LVs) responsible for
maximizing the covariance between the spectral data and the response information, which
in this the case is the histological or serological category. The number of latent variables
was determined by the leave-one-out type cross-validation to prevent overfitting. The key
distinguishing spectral peaks were then identified using the PLS-DA coefficient.

While PCA and PLS perform a reduction in the number of original variables generating
another set of variables, the genetic algorithm (GA) selects the most important variables
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based on a selection, recombination, and mutation of a set of the original variables. Thus,
its main objective is to reduce the number of variables, taking advantage of not changing
the type of variable and original information according to an adjustment function. The GA
routine was carried out during 100 generations with 200 chromosomes each. Mutation and
crossover probabilities were adjusted to 10% and 60% respectively. The best solution set for
this algorithm is based on the fitness value. The adjustment function is calculated as the
inverse of the cost function G, which can be defined as follows:

G =
1

NV

NV

∑
n = 1

gn (1)

where NV is the number of validation samples and gn is defined as follows:

gn =
r2
(

xn, mI(n)

)
minI(m) 6=I(n)r2

(
Xn, mI(m)

) (2)

where the numerator is the squared Mahalanobis distance between object xn of class index
I(n) and the sample mean mI(n) of its true class; and the denominator is the squared
Mahalanobis distance between object x(n) and the centre of the closest wrong class.

The classifiers used here were LDA and SVM. LDA is based on the Mahalanobis
distance between samples and considers that all classes have a similar variance structure,
building a model based on pooled covariance matrix. The input data used for LDA are
scores obtained via PCA. The LDA classifier, non-Bayesian form, can be obtained by the
following equation for a sample i in a given class k:

Lik = (xi − x̄k)
TC−1

pooled(xi − x̄k) (3)

where xi is a vector with variables for sample i; x̄k is the mean of class k; and Cpooled is the
pooled covariance matrix between the classes.

SVM is a machine learning technique that uses the kernel transformation [16]. This
projects data in a non-linear fashion into a feature dimension to provide the radial basis
function (RBF) and classify samples according to a linear threshold. This has the advan-
tage of being able to adjust for different data distributions to provide a more powerful
discriminant analysis but may carry a higher risk of overfitting. The RBF is calculated
as follows:

k
(
xi, zj

)
= exp

(
−γ
∣∣∣∣∣∣xi − z2

j

∣∣∣∣∣∣) (4)

where xi and zj are sample measurements vectors and γ is a tuning parameter that controls
the RBF width. In the RBF function, the γ parameter was set to 1. The SVM classification is
obtained by the following equation:

f(x) = sign

(
NSV

∑
i = 1

αiyik
(
xi, zj

)
+ b

)
(5)

where NSV is the number of support vectors; αi is the Lagrange multiplier; yi is the class
membership, ranging from −1 to +1; k

(
xi, zj

)
is the kernel function and b is the bias

parameter. The parameters used were obtained through an internal validation dataset.

2.7. Model Validation

The calculation of accuracy, sensitivity, specificity, F-scores, and G-scores were calcu-
lated for the test set for model validation. Accuracy represents the total number of samples
correctly classified, considering true and false negatives. The sensitivity represents the pro-
portion of positive samples correctly classified and the specificity represents the proportion
of negative samples correctly classified. The F-score measures the models performance
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considering imbalanced data, whereas the G-score is a metric that is used to evaluate the
models performance independent of class size [17]. The statistical parameters presented
can be calculated as follows:

Accuracy (AC) =

(
TP + TN

TP + FP + TN + FN

)
× 100 (6)

Sensitivity (SENS) =

(
TP

TP + FN

)
× 100 (7)

Specificity (SPEC) =

(
TN

TN + FP

)
× 100 (8)

F-Score (Fs) =

(
2× SENS × SPEC

SENS + SPEC

)
× 100 (9)

G-Score (Gs) =
(√

SENS × SPEC
)
× 100 (10)

where FN stands for false negative, FP for false positive, TP for true positive, TN for true
negative, AC for accuracy, SENS for sensitivity, SPEC for specificity, Fs for F-score, and
Gs for G-Score. Herein, although both were derived from the same experiment, the test
samples are independent from the training samples. The validation performance depicted
here are ideal for small datasets in order to have a good approximation of the real blind
performance [13]. For further model validation, it would be necessary to realise a second
experiment with completely new samples in order to assess the blind model performance.

3. Results
3.1. Study Population

Over the 6-month study period 28 patients were recruited for the present study; 11 with
new presentation AAGN and 17 currently in disease remission. One patient was excluded
due to the development of dual positivity with anti-glomerular basement autoantibodies.
Table 1 outlines the characteristics of the overall study population. Recently processed
and archived renal tissue samples taken at the time of active disease were obtained for
all remaining 27 participants, with paired urine samples prior to biopsy in all ten cases of
newly presenting AAGN.

Amongst those participants with a paired urine sample at the time of renal biopsy
(n = 10), mean age was 63 ± 7.6 with 80% (n = 8) female predominance, median serum
creatinine of 282 µmol/L (IQR 447–201) and 90% (n = 9) seropositivity; four with anti-MPO
and five with anti-PR3 associated disease. The mean number of glomeruli per biopsy
sample was 19± 9, with a distribution of disease of 50% (n = 5) focal, 40% (n = 4) mixed and
10% (n = 1) crescentic according to the Berden classification system [6]. The proportion of
samples with >25% normal glomeruli (grade N0) was 70% (n = 7) and 30% (n = 3) exhibited
<10% (grade N2) normal glomeruli. A similar distribution for IFTA was seen; 70% (n = 7)
≤25% (grade T0) and 30% (n = 3) >25% (grade T1). The observed frequency of necrotising
glomerular lesions and interstitial infiltrate were 30% (n = 3). For extra-glomerular arteritis
and vessel wall necrosis 20% (n = 2) were affected. The median uPCR and urine white cell
count was 89 mg/mmol (IQR 258-63) and 31 × 109/L (IQR 34-27) respectively. None of the
collected urine samples displayed any bacterial growth.
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Table 1. Characteristics of study population.

AAGN
(n = 27)

Mean Age (SD) 63 ± 10

Sex
Male 15/27 (55.6%)
Female 12/27 (44.4%)

Median serum creatinine at biopsy (µmol/L) 215 (338–164)

Median eGFR at biopsy (mls/min/1.73 m2) 22 (33–12)

ANCA serotype at biopsy
MPO 12/27 (44.4%)
PR3 12/27 (44.4%)
Negative 3/27 (11.1%)

Mean number of glomeruli per biopsy sample
Berden classification 20 ± 9

Focal 15/27 (55.6%)
Crescentic 3/27 (11.1%)
Sclerosed 0
Mixed 9/27 (33.3%)

Normal glomeruli
N0 (>25%) 21/27 (77.8%)
N1 (10–25%) 2/27 (7.4%)
N2 (<10%) 4/27 (14.8%)

IFTA
T0 (≤25%) 20/27 (74.1%)
T1 (>25%) 7/27 (25.9%)

Necrotising glomerular lesions 16/27 (59.3%)

Interstitial infiltrate 10/27 (37%)

Extra-glomerular arteritis 5/27 (18.5%)

Vessel wall necrosis 4/27 (14.8%)
ANCA, anti-neutrophil cytoplasmic autoantibody; MPO, myeloperoxidase; PR3, proteinase-3; IFTA, interstitial
fibrosis & tubular atrophy.

3.2. Spectral Data & Classification Models: All Renal Tissue Samples

For the three spectra obtained from each sample image, one representative mean
spectrum was generated per sample. As such, there are a total of 81 spectra for the 27-
sample cohort and consequently 27 representative mean spectra. The total raw spectra,
total pre-processed spectra and average pre-processed spectral data for the overall study
population are shown in Figure 1A, B and C, respectively. For the construction of supervised
classification models, both the total raw spectra and pre-processed spectra were used as
training data with known categories according to each experimental class. Following
cross-validation using the leave-one-out approach, the mean spectral data was applied as
the test set for blind predictive modelling to validate the classification systems performance.
In this construct, the cross-validation data is the most significant result that should be
considered, representing the model’s ability to correctly predict new data based on the
existing knowledge obtained from any training data. This process helps to mitigate any
potential overfitting. Due to the unbalanced sample size distribution amongst all four
Berden classes, comparative analysis was only feasible between focal (n = 15) and mixed
(n = 9) disease. Similarly, evaluation of normal glomeruli was undertaken as a sample
distribution of those with >25% normal glomeruli (group N0) (n = 21) vs. those exhibiting
<25% normal glomeruli (groups N1 & N2) (n = 6).
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Figure 1. Raman spectral data—(A) Total raw spectra for all tissue samples (n = 81) (B) Total pre-
processed spectra for all tissue samples (n = 81) (C) Average pre-processed spectra for all tissue
samples (n = 27) (D) Total raw spectra for paired urine samples (n = 100) (E) Pre-processed spectra for
paired urine samples (n = 100) (F) Average pre-processed spectra paired urine tissue samples (n = 10).

PLS-DA discriminant function graphs and the classification model performance ac-
cording to histological data for all renal biopsy samples are shown in Figure 2 and Table 2,
respectively. The mean Raman spectral data for each histological group is shown in
Figure 3. The spectral profiles for necrotising glomerular lesions, interstitial infiltrate, and
IFTA yielded the most accurate results. This is evident with an F-score 95% for >25%
interstitial fibrosis and tubular atrophy (sensitivity 100%, specificity 90%, area under ROC
0.98), 100% for necrotising glomerular lesions (sensitivity 100%, specificity 100%, area under
ROC 1), and 100% for interstitial infiltrate (sensitivity 100%, specificity 100%, area under
ROC 0.97). The predictive performance in distinguishing focal from mixed disease, >25%
normal glomeruli, and the presence of vessel wall necrosis was limited with a sensitivity of
<60% in each model. Similarly, the discriminant model for ANCA was not significant with
a sensitivity of only 56% in seropositive cases.
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Figure 2. PLS-DA discriminant function graphs for the classification of histological data using
spectral data from all tissue samples with corresponding receiver operating characteristic curve
data. Train 1 and Train 2 represent training sample data for each histological group. CV Pred
1 and CV Pred 2 represent test sample data for each histological group analysed by the cross-
validation (CV) prediction process: (A) Mixed vs. focal disease (train 1 & CV Pred 1 vs. train 2 & CV
Pred 2) area under ROC 0.85 (B) Normal glomeruli N0 vs. N1 & N2 (train 1 & CV Pred 1 vs. train
2 & CV Pred 2) area under ROC 0.96 (C) Interstitial fibrosis and tubular atrophy (IFTA) severity T0 vs.
T1 (train 1 & CV Pred 1 vs. train 2 & CV Pred 2) area under ROC 0.98 (D) Necrotising glomerular
(GN) lesions absent vs. present (train 1 & CV Pred 1 vs. train 2 & CV Pred 2) area under ROC 1
(E) Interstitial infiltrate absent vs. present (train 1 & CV Pred 1 vs. train 2 & CV Pred 2) area under
ROC 0.97 (F) Extraglomerular arteritis absent vs. present (train 1 & CV Pred 1 vs. train 2 & CV Pred
2) area under ROC 0.89 (G) Vessel wall necrosis absent vs. present (train 1 & CV Pred 1 vs. train
2 & CV Pred 2) area under ROC 0.92.



Molecules 2022, 27, 2312 10 of 17
Molecules 2022, 27, x FOR PEER REVIEW 12 of 18 
 

 

Figure 3. Mean Raman spectral data for each histological group—(A) focal vs. mixed disease, (B) 

proportional of normal glomeruli, (C) severity of interstitial fibrosis and tubular atrophy (IFTA), (D) 

presence of necrotising glomerular (GN) lesions, (E) presence of interstitial infiltrate, (F) presence of 

extra-glomerular arteritis, (G) presence of vessel wall necrosis. 

3.3. Spectral Data and Classification Models: Comparative Results for Tissue & Paired Urine 

Samples 

Based on the findings observed in the overall cohort, a comparative subgroup analy-

sis was undertaken amongst those with a paired urine sample at the time of renal biopsy 

(n = 10). This sought to determine if equally good discrimination for necrotising glomeru-

lar lesions, interstitial infiltrate, and >25% IFTA could be demonstrated in both bi-

osamples. For the three spectra obtained from each tissue sample, one representative 

mean spectrum was generated per sample, resulting in a total of 30 spectra and 10 repre-

sentative mean spectra for the subgroup. Ten individual spectral points were obtained 

from each urine sample, generating a total of 100 spectra and 10 representative average 

spectra. Findings are shown in Table 3 and exhibit limited accuracy in distinguishing the 

presence of each category in urine on blind predictive modelling with a sensitivity <60% 

and F-score <65% for each. Subgroup model data for normal glomeruli, Berden classifica-

tion, vessel wall necrosis, and extra-glomerular arteritis are not presented in view of their 

suboptimal performance in tissue analysis amongst the overall cohort. 
  

Figure 3. Mean Raman spectral data for each histological group—(A) focal vs. mixed disease,
(B) proportional of normal glomeruli, (C) severity of interstitial fibrosis and tubular atrophy (IFTA),
(D) presence of necrotising glomerular (GN) lesions, (E) presence of interstitial infiltrate, (F) presence
of extra-glomerular arteritis, (G) presence of vessel wall necrosis.

3.3. Spectral Data and Classification Models: Comparative Results for Tissue & Paired
Urine Samples

Based on the findings observed in the overall cohort, a comparative subgroup analysis
was undertaken amongst those with a paired urine sample at the time of renal biopsy
(n = 10). This sought to determine if equally good discrimination for necrotising glomerular
lesions, interstitial infiltrate, and >25% IFTA could be demonstrated in both biosamples. For
the three spectra obtained from each tissue sample, one representative mean spectrum was
generated per sample, resulting in a total of 30 spectra and 10 representative mean spectra
for the subgroup. Ten individual spectral points were obtained from each urine sample,
generating a total of 100 spectra and 10 representative average spectra. Findings are shown
in Table 3 and exhibit limited accuracy in distinguishing the presence of each category in
urine on blind predictive modelling with a sensitivity < 60% and F-score < 65% for each.
Subgroup model data for normal glomeruli, Berden classification, vessel wall necrosis, and
extra-glomerular arteritis are not presented in view of their suboptimal performance in
tissue analysis amongst the overall cohort.
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Table 2. Classification model performance according to histological data for renal biopsy samples
(n = 27).

Presence of
Histological Features as
an Experimental Class

Best
Discriminate

Model

Spectral
Data

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F-Score
(%)

G-Score
(%)

Berden classification:
Focal vs. Mixed

PLS-DA
(3 LVs))

Training: TPS 81 82 78 80 80
CV: TPS 75 80 67 73 73
Test: MPS 69 69 70 69 69

Normal Glomeruli:
N0 vs. N1&N2

PLS-DA
(3 LVs))

Training: TPS 90 89 90 89 89
CV: TPS 77 56 83 67 68
Test: MPS 93 83 95 89 89

IFTA: T0 vs. T1
PLS-DA
(3 LVs))

Training: TPS 91 86 93 89 89
CV: TPS 78 67 82 74 74
Test: MPS 93 100 90 95 95

Necrotising glomerular
lesions

PLS-DA
(8 LVs))

Training: TPS 100 100 100 100 100
CV: TPS 87 88 85 86 86
Test: MPS 100 100 100 100 100

Interstitial Infiltrate
PLS-DA
(3 LVs))

Training: TPS 88 87 88 87 87
CV: TPS 80 73 84 78 78
Test: MPS 100 100 100 100 100

Extra-glomerular arteritis PLS-DA
(2 LVs))

Training: TPS 74 80 73 76 76
CV: TPS 72 67 73 70 70
Test: MPS 78 100 73 84 85

Vessel Wall Necrosis
PLS-DA
(2 LVs))

Training: TPS 74 92 71 80 81
CV: TPS 69 58 71 64 64
Test: MPS 81 100 78 88 88

Berden classification, Focal: ≥50% normal glomeruli, Mixed: no predominant lesion; Normal glomeruli, N0 > 25%,
N1 10–25%, N2 < 10%; IFTA, interstitial fibrosis & tubular atrophy, T1 > 25%, T0 ≤ 25%; PLS-DA, partial least
squares discriminant analysis; LVs, latent variables; TPS, total processed spectra; MPS, mean processed spectra,
CV; cross-validation.

Table 3. Classification model performance according to histological data: comparative results for
paired tissue & urine samples (n = 10).

Presence of
Histological Features as
an Experimental Class

Sample
Best

Discriminate
Model

Spectral Data Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F-Score
(%)

G-Score
(%)

Presence of IFTA:
T0 vs. T1

Tissue PLS-DA (6 LVs))
Training: TPS 100 100 100 100 100

CV: TPS 83 67 90 77 78
Test: MPS 100 100 100 100 100

Urine PLS-DA (10 LVs))
Training: TPS 100 100 100 100 100

CV: TPS 66 57 70 63 63
Test: MPS 100 100 100 100 100

Presence of Necrotising
glomerular lesions

Tissue PLS-DA (3 LVs))
Training: TPS 100 100 100 100 100

CV: TPS 87 78 90 84 84
Test: MPS 100 100 100 100 100

Urine PLS-DA (4 LVs))
Training: TPS 93 93 93 93 93

CV: TPS 67 53 73 61 62
Test: MPS 100 100 100 100 100

Presence of
Interstitial Infiltrate

Tissue PLS-DA (6 LVs))
Training: TPS 100 100 100 100 100

CV: TPS 90 89 90 89 89
Test: MPS 100 100 100 100 100

Urine PLS-DA (10 LVs))
Training: TPS 99 97 100 98 98

CV: TPS 72 53 80 64 65
Test: MPS 100 100 100 100 100

IFTA, interstitial fibrosis & tubular atrophy, T1 > 25%, T0 ≤ 25%; PLS-DA, partial least squares discriminant
analysis; LVs, latent variables; TPS, total processed spectra; MPS, mean processed spectra, CV; cross-validation.
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3.4. Key Discriminating Spectral Biomarkers: Tissue & Paired Urine Samples

Based on PLS-DA coefficients, the key distinguishing spectral peaks and wavenum-
ber assignments identified for necrotising glomerular lesions, interstitial infiltrate, and
IFTA in the subgroup of paired tissue and urine samples are shown in Figure 4. Peaks
associated with necrotising glomerular lesions in tissue were 1680 cm−1 (C=O, stretching
vibrations of cortisone), 1443 cm−1 (CH2 bending mode of proteins & lipids CH2 deforma-
tion), 1539 cm−1 (amide carbonyl group vibrations & aromatic hydrogens) [18]. The only
corresponding peak seen in urine was reflective of cortisone (1716 cm−1, C=O of cortisone),
which is not specific to this type of lesion [18]. Although peaks representative of increased
collagen deposition were seen in urine for IFTA, which would be anticipated (1247 cm−1,
amide III collagen assignment), this was not observed in tissue [18]. Similarly, parallel
biochemical activity for interstitial infiltrate was not seen between the two biosamples.
Figure 5 demonstrates the key wavenumber variables for these same experimental classes
amongst the overall cohort of 27 tissue samples.
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Figure 4. PLS-DA coefficients for identification of spectral biomarkers in tissue and correspond-
ing paired urine samples (n = 10)—(A) Wavenumber variables associated with interstitial fibro-
sis & tubular atrophy (IFTA) in tissue samples—891.92 cm−1 (saccharide band) (B) Wavenumber
variables associated with necrotising glomerular (GN) lesions in tissue samples—1680 cm−1 (C=O,
stretching vibrations of cortisone), 1443 cm−1 (CH2 bending mode of proteins & lipids CH2 deforma-
tion), 1539 cm−1 (amide carbonyl group vibrations & aromatic hydrogens) (C) Wavenumber variables
associated with interstitial infiltrate in tissue samples—1309 cm−1 (CH3/CH2 twisting or bending
mode of lipid & collagen), 1631 cm−1 (amide I), 1692 cm−1 (amide) (D) Wavenumber variables associ-
ated with interstitial fibrosis & tubular atrophy (IFTA) in paired urine samples—1247 cm−1 (amide III
collagen assignment), 1175 cm−1 (cytosine, guanine), 932 cm−1 (proline, hydroxyproline), 1607 cm−1

(C=C phenylalanine, tyrosine) (E) Wavenumber variables associated with necrotising glomerular
(GN) lesions in paired urine samples—1716 cm−1 (C=O of cortisone), 1316 cm−1 (guanine), 800 cm−1

(phosphate ion interactions) (F) Wavenumber variables associated with interstitial infiltrate in paired
urine samples—1458 cm−1 (nucleic acid), 911 cm−1 (glucose).



Molecules 2022, 27, 2312 13 of 17

Molecules 2022, 27, x FOR PEER REVIEW 14 of 18 
 

(1247 cm−1, amide III collagen assignment), this was not observed in tissue [18]. Similarly, 

parallel biochemical activity for interstitial infiltrate was not seen between the two bi-

osamples. Figure 5 demonstrates the key wavenumber variables for these same experi-

mental classes amongst the overall cohort of 27 tissue samples. 

 

Figure 4. PLS-DA coefficients for identification of spectral biomarkers in tissue and correspond-

ing paired urine samples (n = 10)—(A) Wavenumber variables associated with interstitial fibrosis 

& tubular atrophy (IFTA) in tissue samples—891.92 cm−1 (saccharide band) (B) Wavenumber varia-

bles associated with necrotising glomerular (GN) lesions in tissue samples—1680 cm−1 (C=O, stretch-

ing vibrations of cortisone), 1443 cm−1 (CH2 bending mode of proteins & lipids CH2 deformation), 

1539 cm−1 (amide carbonyl group vibrations & aromatic hydrogens) (C) Wavenumber variables as-

sociated with interstitial infiltrate in tissue samples—1309 cm−1 (CH3/CH2 twisting or bending mode 

of lipid & collagen), 1631 cm−1 (amide I), 1692 cm−1 (amide) (D) Wavenumber variables associated 

with interstitial fibrosis & tubular atrophy (IFTA) in paired urine samples—1247 cm−1 (amide III 

collagen assignment), 1175 cm−1 (cytosine, guanine), 932 cm−1 (proline, hydroxyproline), 1607 cm−1 

(C=C phenylalanine, tyrosine) (E) Wavenumber variables associated with necrotising glomerular 

(GN) lesions in paired urine samples—1716 cm−1 (C=O of cortisone), 1316 cm−1 (guanine), 800 cm−1 

(phosphate ion interactions) (F) Wavenumber variables associated with interstitial infiltrate in 

paired urine samples—1458 cm−1 (nucleic acid), 911 cm−1 (glucose). 

 

Figure 5. PLS-DA coefficients for identification of spectral biomarkers from tissue samples (n = 

27)—(A) Wavenumber variables associated with necrotising glomerular (GN) lesions: 1726 cm−1 

(C=O stretching vibrations of cortisone), 1031 cm−1 (C-H in-plane bending mode of phenylalanine), 

833 cm−1 (asymmetric O-P-O stretching of tyrosine), 1787 cm−1 (C=O stretching vibrations of corti-

sone) (B) Wavenumber variables associated with interstitial fibrosis & tubular atrophy (IFTA): 893 

Figure 5. PLS-DA coefficients for identification of spectral biomarkers from tissue samples
(n = 27)—(A) Wavenumber variables associated with necrotising glomerular (GN) lesions: 1726 cm−1

(C=O stretching vibrations of cortisone), 1031 cm−1 (C-H in-plane bending mode of phenylalanine),
833 cm−1 (asymmetric O-P-O stretching of tyrosine), 1787 cm−1 (C=O stretching vibrations of cor-
tisone) (B) Wavenumber variables associated with interstitial fibrosis & tubular atrophy (IFTA):
893 cm−1 (phosphodiester deoxyribose) (C) Wavenumber variables associated with interstitial infil-
trate: 1533 cm−1 (amide carbonyl group vibrations and aromatic hydrogens), 1787 cm−1 (C=O stretch-
ing vibrations of cortisone), 978 cm−1 (C-C stretching in β-sheet proteins), 1459 cm−1 (deoxyribose).

4. Discussion

In this exploratory work, we demonstrate for the first time that biospectroscopy offers
a potential novel method of machine learning with automated computational detection of
AAGN disease activity in renal biopsy specimens. This was demonstrated with the ability
of spectral data to distinguish the presence of histological lesions indicative of chronic
damage and active disease with a high degree of accuracy, inclusive of IFTA, interstitial
infiltrate, and necrotising glomerulonephritis.

Histological evaluation of renal biopsy samples remains the optimum method for
diagnosing disease, but certain challenges remain. Key histological findings such as IFTA
and interstitial infiltrate are potentially subject to inter-observer variability, with important
prognostic implications of the former. As such, there remains scope for adjuvant techniques
to complement and aid current tissue analysis. One evolving area of interest is machine
learning. In a recent study, based on tissue staining with Masson trichrome and periodic
acid-Schiff, Ginley et al. applied machine learning algorithms to digital images in order to
reliably identify IFTA and glomerulosclerosis in cases of diabetic nephropathy and renal
transplant specimens [19].

Biospectroscopy offers a means of extracting biochemical information that would not
otherwise be accessible with current standard methods. By exploiting the interaction of light
with the constituent molecules present within any given biosample, biospectroscopy has
the capacity to generate a unique spectral fingerprint that is representative of the chemical
bonds present. In doing so, the cellular activity unique to any given pathological state
can be characterised. Two key analytical techniques are available, infrared spectroscopy
and Raman spectroscopy. Both benefit from being low cost and label-free with minimal
sample preparation required. Additionally, technological improvements and advancements
in chemometric analysis over the past decade have enabled a high throughput of large
datasets with increasing investigation of its potential application in renal medicine. In
recent years, infrared spectroscopy has been successfully used to detect early biochemical
variations that may precede histological changes seen in diabetic nephropathy amongst
both native and transplant renal biopsy samples [20–22]. The same modality has also
been applied in a large study by Vuiblet et al., to correctly quantify interstitial fibrosis and
inflammation in renal transplant biopsies with >90% accuracy and good correlation with
clinical outcomes [23]. Whereas the complementary method of Raman microspectroscopy
has been investigated and validated as a viable technique to distinguish malignant renal
tissue from both healthy parenchyma and benign disease [24,25], as well as successful
tumour staging using spectra from surface-enhanced Raman scattering [26].
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We applied Raman spectroscopy to unstained renal tissue samples from patients
with histopathology reports consistent with AAGN. The resulting spectral data was able
to correctly identify the presence of necrotising glomerular lesions, interstitial infiltrate
and IFTA with a high degree of diagnostic accuracy on blind predictive modelling. The
wavenumber-variables responsible for largest between group differences for the former two
were associated with increased amino acid and cortisone activity, whereas IFTA tended to be
associate with increased nucleic acid expression. The poor performance of the classification
models according to the Berden classification system, presence of vessel wall necrosis. and
the proportion of normal glomeruli likely reflects the limited sample distribution amongst
these groups.

The aim of the subgroup analysis was to determine if the spectral data from urine could
potentially be used as a surrogate for renal biopsy, the premise being that the biomolecular
signature obtained from urine could characterise and reflect histological findings at a given
time point. To address this question, the histological categories associated with good dis-
criminatory function in the initial spectral analysis of the entire study cohort were evaluated
in those tissue samples with a corresponding paired urine sample at the time of biopsy.
These categories included necrotising GN lesions, interstitial infiltrate, and IFTA. Using
the same chemometric methodology, there was limited performance in the model’s ability
to reliably discriminate the presence of these categories in urine with a poor sensitivity in
each group. This may have resulted from the limited sample size in each category amongst
the subgroup and the possibility of insufficient training data. Taking this into account,
it should not dissuade further research in this area. Excellent results have previously
been obtained from the spectrochemical interrogation of other biofluids including plasma
and serum, demonstrating both infrared and Raman spectroscopy as viable non-invasive
candidate biomarker tools of disease activity in AAV [27,28]. Additionally, in the present
study, it is worth noting that there was some similarity in the key distinguishing spectral
peaks between the two biological samples, with increased protein and cortisone expression
observed in both tissue and urine for necrotising glomerular lesions. As would be expected,
notable biomolecular changes in urine for IFTA were representative of increased collagen
synthesis, although this was not observed in tissue samples. One consideration is that the
difference in the spectral acquisition method used for tissue and urine samples may account
for the lack of consistency between spectral profiles obtained and the metabolic activities
they represent. However, this would require a larger-sized and longitudinal temporal study
to elucidate. It is also very possible that different profiles of spectral biomarkers present
themselves depending on sample type.

Aside from sample size, one potential limiting factor is the absence of control groups.
However, this is not essential herein with a factorial-based design determining the presence
or absence of a feature in a cohort displaying a range of histological variation that is
common amongst patients with AAGN. A further limitation is the lack of assigned variables
to novel biomolecules reported in the literature. In our study, all experimental categories
from tissue samples were based on known key histological variables. Promising non-
invasive biomarkers of disease activity in AAGN include urinary monocyte chemoattractant
protein-1 (uMCP-1), urinary soluble CD163 (sCD163), and degradation products of the
complement cascade [29–36]. Each has been shown to correlate well with disease activity,
in addition to an associated upregulation of macrophage infiltration in inflamed glomeruli
with higher levels of uMCP-1 and the presence of fibrinoid necrosis and cellular crescents
with sCD163 [29,37]. Tissue depositions of alternative pathway cleavage products including
C3d, C3c, and Bb have been associated with a higher degree of cellular crescents and IFTA.
This was mirrored in urine with higher levels of C3a, C5a, and soluble C5b-9 present in
active disease, as well as higher urinary levels of Bb correlating with a lower proportion of
normal glomeruli [36]. Any future study evaluating the role of biospectroscopy in AAGN
would benefit from assay and analysis of these potential biomarkers with spectral data. In
addition to offering a potentially cheaper and faster surrogate technique for their detection,
their analysis may also help resolve the current lack of concordance in the spectral profiles
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between the two biosamples. Other potential areas of research include the application
of forward feature extraction algorithms to construct prediction outcome models based
extracted spectral features, as well as correlation of spectral data with imaging mass
spectrometry to aid in the delineation of any potential biomarkers.

Vibrational spectroscopy has the potential to offer a robust tool for machine learning
and standardised automated detection of disease activity in AAGN. Its application enables
the simultaneous analysis of a broad spectrum of biomolecules, providing an adjuvant
technique for biomarker extraction and additional potential insight into the molecular
mechanism of disease. This study highlights the potential for spectral profiles to be used as
a non-invasive surrogate marker of histological changes in order to aid disease monitoring
and guide patient care. The role of biospectroscopy in tissue warrants further research in a
larger study of varied renal pathology, with comparison alongside biofluids to determine
its plausible use as a liquid biopsy.
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