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Abstract: Mitochondria play a critical role in maintaining cellular function by ATP production.
They are also a source of reactive oxygen species (ROS) and proapoptotic factors. The role of
mitochondria has been established in many aspects of cell physiology/pathophysiology, including
cell signaling. Mitochondria may deteriorate under various pathological conditions, including
ischemia-reperfusion (IR) injury. Mitochondrial injury can be one of the main causes for cardiac and
other tissue injuries by energy stress and overproduction of toxic reactive oxygen species, leading
to oxidative stress, elevated calcium and apoptotic and necrotic cell death. However, the interplay
among these processes in normal and pathological conditions is still poorly understood. Mitochondria
play a critical role in cardiac IR injury, where they are directly involved in several pathophysiological
mechanisms. We also discuss the role of mitochondria in the context of mitochondrial dynamics,
specializations and heterogeneity. Also, we wanted to stress the existence of morphologically and
functionally different mitochondrial subpopulations in the heart that may have different sensitivities to
diseases and IR injury. Therefore, various cardioprotective interventions that modulate mitochondrial
stability, dynamics and turnover, including various pharmacologic agents, specific mitochondrial
antioxidants and uncouplers, and ischemic preconditioning can be considered as the main strategies
to protect mitochondrial and cardiovascular function and thus enhance longevity.

Keywords: heart; ischemia-reperfusion; cytoskeleton; energy metabolism; mitochondria; mitochondrial
heterogeneity; preconditioning; reactive oxygen species; signaling

1. Introduction

Mitochondria are the main source of ATP production under the aerobic conditions necessary for
normal cell function and viability. In addition to ATP synthesis, mitochondria regulate a wide range of
metabolic processes and signaling pathways in the cell (Figure 1A). They synthesize different metabolites,
regulate cellular redox potential and play an important role in ion regulation, in particular, in Ca2+

homeostasis, thermogenesis, and programmed cell death (apoptosis) [1–5]. Mitochondria actively
participate in cellular Ca2+ signaling [6–10]. A crucial role of mitochondria has been established in
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many aspects of entire cell physiology and pathophysiology in a broad spectrum of diseases including
heart and brain ischemia-reperfusion (IR) injury, heart failure (HF), inherited diseases, diabetes, obesity,
toxicology, side effects of pharmacological treatments and other pathological conditions as well as in
aging [11–20]. For example, significant impairment in energy metabolism and mitochondrial function
has been demonstrated in the skeletal muscle during diabetes and obesity [21,22].
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production of reactive oxygen species (ROS) including superoxide anions, hydrogen peroxide (H2O2), 
hydroxyl radicals (OH.) and peroxynitrite [16] with the subsequent development of oxidative stress. 
Furthermore, mitochondrial damage is associated with the release of several apoptosis activated 
factors, leading to programmed cell death [4,23–25]. Disturbances in ionic balance, particularly an 
increase in mitochondrial and cytoplasmic Ca2+, stimulates mitochondrial permeability transition 
(PT) accompanied by the opening of non-selective channels known as the PT pores (PTP) that allow 
free movement of ions and other solutes with a molecular mass <1.5 kDa across the inner 
mitochondria membrane (IMM). As a result, PTP opening enhances colloid-osmotic pressure in the 
matrix, leading to mitochondrial swelling associated with the activation of proteases and lipases that 
eventually lead to cell death and permanent loss of cardiomyocytes in the heart [26–28]. In addition, 
decreased mitochondrial function leads to a low level of cellular ATP, together with elevated Ca2+, 

resulting in cardiomyocyte super-contracture, disruption of plasmalemma and therefore necrotic cell 
death [28]. However, due to the complex relationship between decreased cellular ATP level and 
increased ROS and Ca2+, precise molecular mechanisms and consequences of these events are not 
completely understood. So, the relationship between organ dysfunction and mitochondrial 
impairment is not simple and certainly is not limited to the failure in ATP production. Rather, 
mitochondrial damage can affect cell viability in several ways, including different signaling 
mechanisms that can co-exist simultaneously in the same cell and communicate with each other in 
response to specific stimuli. 

Mitochondria may be separate or found in a network, where permanent dynamic fission and 
fusion can occur. Moreover, specific mitochondrial quality control may use the interplay between 
fusion and fission, removing damaged or incorrect organelles. This selective autophagy of damaged 
or defective mitochondria (mitophagy) can be dependent on their low mitochondrial membrane 
potential (ΔΨm) [29–33]. Mitochondria play a key role in the pathogenesis of cardiovascular diseases 
such as IR injury, loss of cardiomyocytes, HF and various cardiomyopathies [12,13–16]. They are 
central in the induction of apoptotic and necrotic cell death associated with the accumulation of ROS 
which causes oxidative stress and cell injury due to protein, lipid and DNA oxidation, although at 

Figure 1. (A) The roles of mitochondria in normal cell function; and (B) in various cell damage/injuries.
Mitochondrial function and dysfunction contribute to cell viability and injury by several mechanisms.
ROS—reactive oxygen species.

Mitochondrial dysfunction causes cell/organ injury through several mechanisms (Figure 1B),
including diminished cellular energy status (low cellular ATP level, energy stress), enhanced
production of reactive oxygen species (ROS) including superoxide anions, hydrogen peroxide (H2O2),
hydroxyl radicals (OH.) and peroxynitrite [16] with the subsequent development of oxidative stress.
Furthermore, mitochondrial damage is associated with the release of several apoptosis activated
factors, leading to programmed cell death [4,23–25]. Disturbances in ionic balance, particularly an
increase in mitochondrial and cytoplasmic Ca2+, stimulates mitochondrial permeability transition
(PT) accompanied by the opening of non-selective channels known as the PT pores (PTP) that
allow free movement of ions and other solutes with a molecular mass <1.5 kDa across the inner
mitochondria membrane (IMM). As a result, PTP opening enhances colloid-osmotic pressure in the
matrix, leading to mitochondrial swelling associated with the activation of proteases and lipases that
eventually lead to cell death and permanent loss of cardiomyocytes in the heart [26–28]. In addition,
decreased mitochondrial function leads to a low level of cellular ATP, together with elevated Ca2+,
resulting in cardiomyocyte super-contracture, disruption of plasmalemma and therefore necrotic cell
death [28]. However, due to the complex relationship between decreased cellular ATP level and
increased ROS and Ca2+, precise molecular mechanisms and consequences of these events are not
completely understood. So, the relationship between organ dysfunction and mitochondrial impairment
is not simple and certainly is not limited to the failure in ATP production. Rather, mitochondrial damage
can affect cell viability in several ways, including different signaling mechanisms that can co-exist
simultaneously in the same cell and communicate with each other in response to specific stimuli.

Mitochondria may be separate or found in a network, where permanent dynamic fission and
fusion can occur. Moreover, specific mitochondrial quality control may use the interplay between
fusion and fission, removing damaged or incorrect organelles. This selective autophagy of damaged
or defective mitochondria (mitophagy) can be dependent on their low mitochondrial membrane
potential (∆Ψm) [29–33]. Mitochondria play a key role in the pathogenesis of cardiovascular diseases
such as IR injury, loss of cardiomyocytes, HF and various cardiomyopathies [12–16]. They are
central in the induction of apoptotic and necrotic cell death associated with the accumulation of ROS
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which causes oxidative stress and cell injury due to protein, lipid and DNA oxidation, although at
low concentrations (under physiological conditions), ROS participate in cellular signaling [34–36].
Thus, new pharmacological agents and conditional strategies (e.g., ischemic preconditioning and
postconditioning) designed to modulate/stabilize mitochondria can provide effective therapeutic
approaches to prevent cell/organ dysfunction in response to pathological stimuli. This is especially
important for organs with high energy demands such as the heart, where mitochondria occupy
about 35% of the volume of adult cardiomyocytes and provide about 90% of ATP through oxidative
phosphorylation (OXPHOS).

Modern scientific technologies in cellular and mitochondrial research remarkably improve
our ability to elucidate molecular mechanisms of cardiac function and cellular longevity as well
as the role of mitochondria in cell dysfunction. As mentioned above, mitochondria are directly
involved in the pathophysiological mechanisms of IR injury. Although restoring blood flow and
tissue reoxygenation after myocardial ischemia can partially recover cardiac function, it also induces
additional (up to 50%) damage known as “reperfusion injury” due to excessive ROS production and
Ca2+ overload [37]. Therefore, it is critically important to improve the recovery of organ function
and reduce injury at reperfusion. Both the ischemic and reperfusion phases are associated with
the obliteration of the cellular/mitochondrial energy production necessary for cardiac contractile
function. Mitochondria interact with the environment and hence their function can be modulated
depending on the concentration of growth factors, oxygen, ATP, ROS and Ca2+ in the cytoplasm
and matrix [35]. Mitochondria play a key role in maintaining Ca2+ homeostasis through spatial and
functional interaction with both cytoplasm and sarcoplasmic reticulum (SR) Ca2+ [6–10]. Disturbances
in Ca2+ homeostasis are known to play a central role in the pathogenesis of cardiac dysfunction.
However, the mechanisms regulating mitochondrial ROS (mitoROS) production and Ca2+ homeostasis
as well as the crosstalk between these two processes remain unknown. Future studies aim to develop
new pharmacological substances that can selectively target mitochondrial damage and restore the
functional capacity of the heart through the improvement of mitochondrial metabolism and function.
Here, we summarize and discuss the main regulatory aspects of mitochondrial physiology: function,
intracellular organization, dynamics, and the role of mitochondrial interactions with other cellular
systems such as energy transfer systems, the cytoskeleton and the SR. Also, we discuss the role of
mitochondria in cardiac dysfunction during coronary heart diseases, particularly focusing on cardiac
IR injury.

2. An Overview of the Techniques Used for the Analysis of Mitochondrial Function, Dynamics
and Intracellular Organization

The analysis of mitochondrial function/dysfunction is important in the study of the mechanisms
of mitochondria-mediated IR injury, as well in the diagnosis and therapy.

Regulation of mitochondrial function is one of the fundamental problems in understanding
cell/organ energy metabolism and cellular bioenergetics. Mitochondrial respiratory function reflects the
capacity for aerobic energy production, which is more indicative of organ function/viability and injury
than a simple assessment of the cellular ATP levels [18,19]. Therefore, the analysis of mitochondrial
function is extremely important in basic research of mitochondrial physiology and clinically oriented
studies, as well as in the diagnosis of various metabolic diseases, including cardiac IR injury. Usually,
mitochondrial respiratory function is analyzed by routine oxygraphy by measuring the rate of oxygen
consumption in isolated mitochondria in vitro, permeabilized muscle fibers or cells in situ or in intact
cells in vivo [38–41]. In addition, organ heat release can be measured as an indicator of myocardial
energy metabolism activity and its changes after IR [42]. Analysis of mitochondrial respiratory function
in situ in permeabilized preparations of cells or muscle fibers has a number of serious advantages as
various artifacts of mitochondrial isolation can be avoided and important contacts with other cellular
systems (cytoskeleton, SR) can be preserved [38–41]. Importantly, the technique requires a small
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quantity (15–20 mg) of biological material and it can be successfully used when samples with limited
size are available, for example in human biopsies or transgenic animals.

The combination of high-resolution respirometry and fluorescent confocal imaging of mitochondria
can be optimal for detailed studies of mitochondrial function, dynamics, and regulatory pathways,
as well as metabolic and functional changes during cell/organ dysfunction. Further development
of such complex analysis represents a current challenge for biomedical research. Confocal imaging
studies of changes in mitochondrial function, arrangement, morphology, ROS/Ca2+ and ∆Ψm using
specific fluorescent probes, significantly help to analyze the time course of ROS and mitochondrial Ca2+

changes and the consequences of events during reversible or irreversible IR injury [43,44]. A deeper
insight into the sequence of pathological episodes which lead to organ damage under IR is important
to define sites and approaches for therapeutic intervention and protection.

The various imaging approaches, in contrast to in vitro analyses of isolated mitochondria,
are well suited to study mitochondria in different subcellular compartments as well as complex
mitochondrial dynamics and organization, which are critical for understanding the role of various
mitochondrial properties, functions and networks in the cell [43–45]. Confocal microscopy, using various
mitochondria-specific fluorescent probes, together with the autofluorescence of mitochondrial flavoproteins
and NADH, was widely used for the imaging and characterization of mitochondria in situ, in permeabilized
muscle fibers/cells, or in vivo in intact cells [44–50]. Importantly, mitochondrial confocal imaging
can not only visualize mitochondrial intracellular arrangement, morphology, dynamics, networks,
and heterogeneity but also quantitatively analyze mitochondrial redox state, ∆Ψm, ROS, and Ca2+.
This provides a suitable way to detect and study many structural and functional changes, damage or
defects in mitochondrial and metabolic pathologies, including IR injury. Also, mitochondrial green
fluorescent proteins specifically targeted to mitochondria, fluorescence resonance energy transfer (FRET)
and beam-scanning multifocal multiphoton (4Pi)-confocal and stimulated emission depletion (STED)
microscopy [51] can be helpful in the investigation of specific protein–protein interactions, conformational
changes and mitochondrial interactions with other cellular systems (i.e., cytoskeleton and ER).

3. Mitochondrial ROS (mitoROS)

MitoROS are Linked to the Consequences and Physiological Effects of IR Injury
One of the main cellular ROS producers are mitochondrial respiratory chain complexes, but, at the

same time, mitochondria and mitochondrial membranes can be significantly damaged by ROS
over-production generated either by mitochondria themselves or by other cellular sources of
ROS [52–54]. Therefore, pharmacological protection against cellular injury requires targeting of
mitochondria. MitoROS generation is tightly linked to the cellular redox state, and ROS are central
to the general cellular metabolism, also playing an important role in cellular signaling [36,55].
Also, increased ROS production can be directly linked to increased Ca2+ and the induction of apoptosis.
The mitochondrial respiratory chain complexes I–IV transfer electrons to oxygen, producing superoxide
radicals as a byproduct of this process due to the incomplete reduction of oxygen. Complexes I and III
are considered as the main producers of mitochondrial superoxide radicals [17,56–62], which then can
be converted to hydrogen peroxide by mitochondrial superoxide dismutase (SOD), which in turn can
be scavenged in catalase reactions [17]. At low concentrations, ROS can mediate the physiological
effects; however, the overproduction of ROS is involved in the pathogenesis of heart coronary diseases
including IR injury.

Thus, the deterioration of both mitochondrial Ca2+ and mitoROS are responsible for triggering cell
death/loss during cardiac IR. It has been found that in cardiac and other cells types, biphasic mitoROS
dynamics may occur, which include gradual mitoROS increase followed by mitoROS flash [63–65].
Also, such a flash can be initiated by an external ROS, which is a well-known and important phenomenon
of ROS-induced ROS-release, first described by Zorov et al. in cardiomyocytes [63]. In our very
recent study, we have also demonstrated similar mitochondrial ROS-ROS communications/interactions
and ROS flashes (self-amplifying ROS bursts) in several cancer cell lines, where these effects were
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very heterogeneous but always in parallel with mitochondrial Ca2+ sparks and severe depolarization
(dramatic drop in ∆Ψm) of these organelles [47]. However, the exact interplay between different ROS,
as well as the effects of ROS produced by different cellular sources (including mitochondrial respiratory
chain complexes), is still not clear.

4. Mitochondrial Dynamics: Fission/Fusion and Motility

Mitochondria are Dynamic and Well Organized Organelles in the Cell
Importantly, the intracellular mitochondrial position/arrangement, morphology, heterogeneity

and dynamics (fission/fusion, motility) are tightly regulated by several important proteins [66–74].
All these processes present an important part of general mitochondrial physiology and may significantly
change under various pathologies and diseases [68–70], including IR, various effects of ROS, and
during programmed cell death (in particular, mitochondrial fragmentation can be the first sign of
apoptosis induction) [75,76]. In many cases, mitochondrial motilities can be very important for energy
production, as well as Ca2+ regulation in specific cell regions, and this process can be injured in
certain diseases. Importantly, pathology-associated changes in mitochondrial morphology/dynamics
can be strongly linked to programmed cell death [69,75–77]. Also, myocardial infarction was found
to be associated with changes in the balance between actions of the fission and fusion proteins in
rats [70,78,79].

Mitochondrial fusion and fission, together with mitophagy (removal of defected mitochondria) and
mitochondrial biogenesis/turnover, are important components of mitochondrial quality control [29–33].
The mechanism of removal of defective mitochondria is mostly based on their low ∆Ψm. While fusion
allows for the exchanging of mitochondrial matrix content between normal and defective mitochondria
(e.g., redistribution of mtDNA), further fission will produce a normal mitochondrial population again,
therefore supporting a repair mechanism. This may also play a role in the protection against IR
injury [29,80]. It has been suggested that autophagy can be activated in prolonged ischemia and
reperfusion [80,81] or during hypoxia–reoxygenation injury [82]. The lack of proper quality control
of mitochondria and the enlargement of mitochondrial defects can be part of the mechanism of
organ injuries.

5. The Role of Cytoskeleton Proteins in the Regulation of Mitochondrial Function

Cytoskeletal Elements are Involved in the Control of Mitochondrial Respiratory Function
Notably, cellular function, intracellular arrangement/organization and the morphology of

mitochondria are frequently defined by the specific internal cell structure [83] and mitochondrial
communication with the sarcoplasmic reticulum and certain cytoskeletal elements [84–86], such as
tubulin beta (Figure 2, [86]) and specific isoforms of the cytolinker protein, plectin [87,88]. For example,
in the skeletal muscle of conditional plectin knockout mice (MCK-Cre/cKO), mitochondrial content was
reduced; mitochondria were aggregated in the sarcoplasmic and subsarcolemmal regions, and were no
longer associated with Z-disks [88]. The communication of the mitochondria–cytoskeleton elements
(tubulin and plectin) is suggested to include their tight structural connections with Mitochondrial
Voltage-Dependent Anion Channel (VDAC) [84–91] and, therefore, they can actively manipulate
the outer mitochondrial membrane permeability to ADP and other important metabolites [91].
Possibly, some other cytoskeletal proteins such as desmin [84] and vimentin [90] can also be
involved here.

In summary, recent data shows that the tubulin beta II isoform and the plectin 1b isoform can be
involved in the control of fluxes via the energy transferring super-complex—VDAC, mitochondrial
creatine kinase (mitCK) and ATP-ADP translocase (ANT), regulating mitochondrial respiratory function,
cell bioenergetics and therefore entire cellular physiology.
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6. Mitochondrial Heterogeneity and Subpopulations: Possible Physiological and
Pathophysiological Roles

Mitochondria are, in Many Aspects, Heterogeneous in the Cell
Confocal fluorescent imaging of mitochondria in cardiac tissue or in isolated cardiomyocytes has

revealed that mitochondria are either clustered or arranged in a highly organized manner. Some specific
features of mitochondrial function and, in particular, their communication with other structures can be
considered as an important component in the mechanism of apoptosis transmission [92]. Importantly,
mitochondria localized in different compartments of the cell can have different morphologies and
biochemical properties, so they can be rather heterogeneous in various structural and functional aspects
under normal [45,93–101] and pathological [18,43,46,97,102] conditions.

The main mitochondrial function (ATP production), their shape/morphology, redox state,
also mitochondrial ROS and Ca2+, as well as other important properties of mitochondria can be
dependent on the numerous communications of these organelles with the rest of cell, including
mitochondrial “signaling in” and “signaling out” phenomena (Figure 3).

Intracellular ADP and oxygen gradients, as well as a local and region-specific increase in cellular
Ca2+, may also contribute to the control of mitochondrial function, dynamics, and morphology, thus
playing an important role in the formation of mitochondrial heterogeneity. Moreover, the specific
role of the p66Shc protein in the cellular mechanisms leading to ROS increase, oxidative stress and
activation of programmed cell death by apoptosis [103] during IR and other pathologies has been
demonstrated [104–106]. The involvement of various protein kinase C (PKC) isoforms during redox
stress (differing in their biochemical properties and sensitivities) produces a complex pattern of PKC
signaling (Figure 3, [104]) potentially also contributing to mitochondrial heterogeneity.

All these processes should be taken into account considering the general basis for the well-known
phenomenon of mitochondrial heterogeneity found in many cell types such as cardiomyocytes,
hepatocytes, human umbilical vein endothelial cells (HUVEC), astrocytes and various human carcinoma
cells, which can be associated with (or served for) mitochondrial region-specific functions [93–95,100]
(Figure 4A).
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PKC—protein kinase C; UCPs—uncoupling proteins; AIF—apoptosis- inducing factor; Raf—rapidly
accelerated fibrosarcoma (RAF protein kinases); AKT—Protein kinase B (Akt, serine/threonine protein
kinase); Bcl-2—(B-cell lymphoma 2 protein) antagonist of cell death.

Antioxidants 2019, 8, 454 7 of 22 

Figure 3. A scheme summarizing hypotheses regarding the possible origin and mechanisms 
contributing to the heterogeneity of mitochondria and mitochondrial function. Complex 
communications of mitochondria with a cell at rest and factors which can be involved in the formation 
of mitochondrial heterogeneity are shown. ΔΨ—mitochondrial potential. AMPK—AMP-activated 
protein kinase; PKC—protein kinase C; UCPs—uncoupling proteins; AIF—apoptosis- inducing 
factor; Raf—rapidly accelerated fibrosarcoma (RAF protein kinases); AKT—Protein kinase B (Akt, 
serine/threonine protein kinase); Bcl-2—(B-cell lymphoma 2 protein) antagonist of cell death. 

Intracellular ADP and oxygen gradients, as well as a local and region-specific increase in cellular 
Ca2+, may also contribute to the control of mitochondrial function, dynamics, and morphology, thus 
playing an important role in the formation of mitochondrial heterogeneity. Moreover, the specific 
role of the p66Shc protein in the cellular mechanisms leading to ROS increase, oxidative stress and 
activation of programmed cell death by apoptosis [103] during IR and other pathologies has been 
demonstrated [104–106]. The involvement of various protein kinase C (PKC) isoforms during redox 
stress (differing in their biochemical properties and sensitivities) produces a complex pattern of PKC 
signaling (Figure 3, [104]) potentially also contributing to mitochondrial heterogeneity. 

All these processes should be taken into account considering the general basis for the well-
known phenomenon of mitochondrial heterogeneity found in many cell types such as 
cardiomyocytes, hepatocytes, human umbilical vein endothelial cells (HUVEC), astrocytes and 
various human carcinoma cells, which can be associated with (or served for) mitochondrial region-
specific functions [93–95,100] (Figure 4A).  

 

Figure 4. Mitochondrial heterogeneity and subpopulations. Mitochondrial subsets may have different 
region-specific specializations depending on their intracellular localization and environment (A). 
Mitochondrial subpopulations in a cardiac cell: SS—subsarcolemmal, IM—intermyofibrillar and 
PN—perinuclear mitochondria visualized by TMRM (red) (B). SS (subsarcolemmal) mitochondrial 
clusters in soleus muscles (M. soleus) visualized from the auto-fluorescence of mitochondrial 
flavoproteins, fluorescent in their oxidized state (green) (C). 

Cardiac cells contain discrete pools of mitochondria known as perinuclear (PNM), 
intermyofibrillar (IFM) and subsarcolemmal (SSM) mitochondria (Figure 4B) with different 
functions, shape, absolute size and internal cristae arrangement [99,107]. Notably, these 
mitochondrial subpopulations may not only differ by morphology and biochemical properties, but 
they may also have different region-specific specializations depending on their intracellular 
localization/environment and particular cellular demands. Most importantly, mitochondrial 
subpopulations may be differently involved in pathological processes like IR injury [108] and various 
cardiomyopathies [109], showing their different sensitivity to injury. It can be suggested that distinct 

Figure 4. Mitochondrial heterogeneity and subpopulations. Mitochondrial subsets may have different
region-specific specializations depending on their intracellular localization and environment (A).
Mitochondrial subpopulations in a cardiac cell: SS—subsarcolemmal, IM—intermyofibrillar and
PN—perinuclear mitochondria visualized by TMRM (red) (B). SS (subsarcolemmal) mitochondrial
clusters in soleus muscles (M. soleus) visualized from the auto-fluorescence of mitochondrial
flavoproteins, fluorescent in their oxidized state (green) (C).

Cardiac cells contain discrete pools of mitochondria known as perinuclear (PNM), intermyofibrillar
(IFM) and subsarcolemmal (SSM) mitochondria (Figure 4B) with different functions, shape, absolute size
and internal cristae arrangement [99,107]. Notably, these mitochondrial subpopulations may not only
differ by morphology and biochemical properties, but they may also have different region-specific
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specializations depending on their intracellular localization/environment and particular cellular
demands. Most importantly, mitochondrial subpopulations may be differently involved in pathological
processes like IR injury [108] and various cardiomyopathies [109], showing their different sensitivity to
injury. It can be suggested that distinct mitochondrial subsets, clusters, or even single mitochondrion may
perform diverse tasks for specific cellular requirements [93,94,100,110]. By monitoring (using fluorescent
imaging) flavoprotein autofluorescence (fluorescent only in the oxidized state), a higher oxidation of SSM
was shown [45,46,101]. Similar phenomena have been demonstrated for rat soleus and gastrocnemius
muscles, where a higher oxidative state correlated with elevated mitochondrial Ca2+ (monitored by
Rhod-2) [45]. The heterogeneity of mitochondrial Ca2+-induced PTP induction has also been studied in
brain mitochondria [102]. At the same time, PNM subsets (Figure 4B) may generate ATP close to the
nucleus for nuclear import [110,111] and for a variety of other nuclear functions.

Thus, various mitochondrial subpopulations are present in the cell that may be differently involved
in physiological and pathological processes, clearly demonstrating mitochondrial heterogeneity.

Exposure of cells loaded with the ∆Ψm-specific probe tetramethylrhodamine methyl ester (TMRM, red)
and 2,7-dihydrodichlorofluorescein diacetate (DCF-DA, green) to laser irradiation activates extensive
mitoROS production, detected as a strong increase in DCF fluorescence, together with a collapse of
mitochondrial ∆Ψm, visible as a strong decrease in TMRM fluorescence (the appearance of green
mitochondria). This effect can be used as a convenient tool for mitoROS generation and the induction of
photo-oxidative stress and Ca2+ transients. Heterogeneity of mitoROS and ∆Ψm has been demonstrated
in various cells during IR, oxidative stress and photo-oxidative stress [112] (see Figure 5).
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Figure 5. Laser irradiation as a tool for mitochondrial production of ROS. Note a significant heterogeneity of
mitochondria in the cell in relation to mitoROS levels and degrees of mitochondrial depolarization (decline in
the inner-membrane potential). mitoROS were visualized with 2,7-dihydrodichlorofluorescein (DCF) by
488 nm laser irradiation. Mitochondrial membrane potential was monitored with tetramethylrhodamine
methyl ester (TMRM) by simultaneous 543 nm laser irradiation.

Taken together, the study of the mitochondrial heterogeneity may thus represent a new challenging
area in mitochondrial and cellular physiology.

6.1. Heterogeneity of Mitochondria in Pathology

Mitochondrial defects can also be heterogeneously distributed due to the phenomenon
of their mosaic expression and existence of metabolic gradients and micro-compartmentation.
The heterogeneity of the mitochondrial redox state, ∆Ψm, and Ca2+ have been studied in cardiac
cells under pathological conditions. It has been shown that mitochondrial defects can be
heterogeneously distributed and may have a different degree of damage in distinct mitochondrial
subpopulations [18,108,109,113,114]. Also, morphological alterations of mitochondria and myofibrils
are not uniformly distributed in the ischemic zone, showing a striking heterogeneity in the extent of IR
damage. This is in accordance with the fact that, in the heart, the ischemic injury does not evolve in a
uniform manner and regional differences in metabolism and energy requirements may exist in the
myocardium [113] where large metabolic perturbations are expected. It is known that myocardium
injury and tissue necrosis usually originate in the endocardium and, with time, may migrate as a
“wave front of cell death” towards the epicardial surface.
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The intrinsic heterogeneity of mitochondria includes the existence of subpopulations with
different biochemical and morphological properties, possibly due to differences in metabolism and
energy requirements in various cell regions. SSM and IFM populations have been obtained in
skeletal and cardiac muscles by selective isolation procedures [99]. Moreover, different functional
(redox state) behavior of these mitochondrial subpopulations was observed in in situ mitochondria [101].
Mitochondrial subpopulations may be differently involved in physiological and pathological processes
including cardiomyopathy, apoptosis and normothermic IR injury [108,109,114]. Also, it has been
shown that substrate (i.e., glucose, serum, growth factors) deprivation may increase the subcellular
heterogeneity of mitochondrial energization in intact cells [35,44]. Heterogeneous damage of
mitochondria may be a result of heterogeneous oxygen, Ca2+, or ROS distribution in the ischemic cell,
or it can be secondary to heterogeneous mitochondrial functioning, due to heterogeneity in redox state,
Ca2+ and ∆Ψm (see Figure 3). Analysis of the functional/structural diversities of mitochondria may
therefore be important in the study of the mechanisms of cardiac IR injury.

6.2. Mitochondrial Heterogeneity and Apoptosis

It is well known that a component of the mitochondrial respiratory chain, cytochrome c,
together with other pro-apoptotic factors, participate in the mechanism of apoptosis for the formation
of the apoptosome. The release of cytochrome c from mitochondria decreases mitochondrial
respiration and thus ATP production. However, ATP is needed for apoptosis at several sites.
Thus, it can be suggested that the cytochrome c derived from one mitochondrion will support
apoptosis, while cytochrome c not released will further support oxidative phosphorylation (and ATP),
demonstrating its possible heterogeneity. This phenomenon has been suggested and obliquely shown
in heart preservation, transplantation and reperfusion, and in cardiac cold ischemia-reperfusion injury
(CIR) [18]. Heterogeneous mitochondrial damage has also been shown more directly by fluorescent
confocal microscopy [43,45,99].

Direct imaging of the mitochondrial functional state in permeabilized myocardial fibers from rat
hearts is able to demonstrate flavoprotein autofluorescence as an indicator of mitochondrial redox state,
mitochondrial Ca2+ from the fluorescence of Rhod-2 and ∆Ψm from TMRE fluorescence. This imaging
was compared between control fibers and after cold ischemia (organ preservation), transplantation and
reperfusion, the conditions that produce a complex pattern of multiple damages. In controls, the regular
mitochondrial arrangement typical of cardiomyocytes was clearly seen, and relatively homogeneous
fluorescence of mitochondrial flavoproteins and the specific mitochondrial Ca2+ indicator Rhod-2 showed
homogeneity of mitochondrial redox state and Ca2+ content. Similarly, imaging of TMRE fluorescence
demonstrated a homogeneous pattern of ∆Ψm. After CIR, myocardial fibers showed heterogeneity of
redox states of mitochondria and numerous “black holes” in Rhod-2 fluorescence, indicating mitochondria
that lost Ca2+ (more clearly visible as green spots in the merge image). Moreover, “black holes” in TMRE
fluorescence and spots with only green flavoprotein fluorescence in merge images show depolarized
mitochondria (collapse of ∆Ψm) and localized PTP opening after CIR [43].

All these effects may be associated with heterogeneous cytochrome c release, leading to heterogeneous
mitoROS generation and mitochondrial permeability transitions [18,43]. However, the development
and role of apoptosis in CIR (organ preservation for transplantation) of the myocardium is still unclear.
Confocal imaging of mitochondria allows for the topological assessment of mitochondrial defects,
providing new insights into the mechanisms of cardiac IR injury, demonstrating spatial and temporal
heterogeneity in mitochondrial redox potential and ∆Ψm including local transients and propagated
metabolic waves. Imaging of mitochondria allows topological assessment of mitochondrial defects,
therefore providing new insights into the mechanisms of the cardiac IR injury.
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7. The Role of Mitochondria in Cellular Signaling and The Role of Kinase Signaling Pathway

Mitochondria Actively Participate in Cellular Signaling
Mitochondria communicate with the rest of the cell using numerous pathways and second

messengers. These organelles came to be considered an integral part of multiple cellular signaling
cascades (see Figure 3 and [3,34–36,63,92,115–118]). It has been shown that C-Raf kinase can form
a complex with mitochondrial VDAC in vivo, blocking in vitro reconstitution of VDAC channels in
bilayer membranes. It was suggested that the C-Raf (Figure 3) interaction with VDAC may play a
role in the Raf-induced inhibition of cytochrome c release from mitochondria, as well as in regulating
mitochondrial function [116,117]. More recent results have demonstrated that some ligands to VDAC,
e.g. erastin, which binds to VDAC2, alters the permeability of the outer mitochondrial membrane
(OMM) and may induce non-apoptotic cell death selectively in tumor cells harboring activating
mutations in the RAS–RAF–MEK pathway (RAS is a product of the KRAS2 gene). However, whether
this can also be associated with changes in the permeability of VDAC for ADP (and sensitivity of
mitochondria to ADP in situ) is not known.

A direct link between the expression of oncogenic RAF and alterations in mitochondrial
matrix Ca2+ and ROS levels has been demonstrated [35]. The studies demonstrated that the
RAS–RAF–MEK–extracellular signal-regulated kinase (ERK) signaling pathway, protein kinase B
(Akt), and Bcl-2 family proteins (Figure 3) actively participate in regulating mitochondrial Ca2+ and
ROS [35]. Mitogen-activated protein kinases (MAPKs) including ethanolamine kinase (ETK1/2), p/38,
and c-Jun N-terminal kinase (JNK) are thought to exist downstream of the Src–PKC signaling module,
although the role of MAPK remains undetermined. This mechanism involves the redox-sensitive
activation of transcription factors through PKC and tyrosine kinase signal transduction pathways.

8. Mitochondrial Energy Metabolism in Cardiac IR Injury

Mitochondria are Vitally Involved in the Molecular Mechanisms of Cardiac IR Injury
Mitochondria can be significantly damaged during both prolonged normothermic or cold

(during organ preservation) IR injury [18,19,26,118–123]. Mitochondrial dysfunction plays a key role
in the pathogenesis of this injury and various other heart pathologies [12,19,124]. Both mitochondria
and the energy transfer networks may deteriorate under pathological conditions, leading to severe
organ injury. In IR injury, the lack of oxygen and respiratory substrates stops OXPHOS, leading to
collapses of ∆Ψm, swelling of mitochondria, Ca2+ overload, cytochrome c release, disruption of cellular
membranes and finally cell necrosis [28]. Thus, mitochondria play central roles in both types of cell
death: necrosis and apoptosis.

Reestablishing blood flow and reoxygenation of the tissue can restore organ function, but leads to
cardiac tissue/organ damage due to ROS production, oxidative stress and reperfusion injury. Increased
production or insufficient elimination of toxic ROS by mitochondria upon reperfusion leads, in turn,
to subsequent peroxidation of proteins and mitochondrial respiratory complexes and phospholipids;
for example peroxidation of cardiolipin required for complex III and complex IV activities [125–127].
In particular, respiratory complex I can be damaged in IR due to oxidation of SH groups. At the same
time, complex I can intensify its ROS production during IR injury [123]. Furthermore, impairment
of intracellular Ca2+ homeostasis, PTP opening, ∆Ψm loss, cytochrome c release, apoptosis and
modification of DNA are associated with, and/or are the consequences of IR injury [120,123,128–131].

Among the main mechanisms that underlie mitochondrial dysfunction in IR injury are
cardiomyocyte death/loss, cellular Ca2+ dysregulation and ATP depletion, the release of proapoptotic
proteins, and induction of oxidative stress by the mitochondrial transition to ROS generation
immediately after reperfusion/reoxygenation [129]. However, the complex interrelationships between
mitoROS, ∆Ψm and Ca2+ are not completely understood. On the other hand, ROS contribution to
organ injury may be remarkably dependent on the capacity of cellular antioxidant systems shown to
be reduced in pathologies.
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Several factors were suggested to contribute to mitochondrial injuries, such as altered phospholipid
composition (especially of the IMM) and an excess of the long-chain fatty acid, CoA. Mitochondrial DNA
has an increased mutation level; it has a lower repair ability, less protection against oxidative stress and
an increased level of ROS, and therefore may have more ROS damage. However, some ROS formation
in low (sub-lethal) concentrations is critical for cellular signaling [35,132]. Damaged complexes I and III
are thought to be the major sources for mitochondrial free radical production [56–60]. In addition, it has
been proposed that ROS generation after IR injury can also stimulate an inflammatory response [133].

The most energy-consuming organ, the heart, containing the biggest mitochondrial content (30% of
cell volume), is also most sensitive to IR injury compared with other, less energy-dependent organs [134].
Damage to mitochondrial respiratory chain complexes after ischemia (including also cold ischemia and
organ preservation) alone is also significantly different and produces more pronounced injury after
reperfusion. In a rat heart model of cold ischemia, heart transplantation and 24 h of reperfusion (CIR)
and organ preservation, post-ischemic reperfusion resulted in a dramatic decline in NADH-linked
ADP stimulated respiration due to specific damage to respiratory complex I. Similar correlations
were found for succinate (complex II) and tetramethyl-1,4-phenylendiamin (TMPD) plus ascorbate
(complex IV supported respiration). Importantly, these respiration rates can be partially restored by
externally added cytochrome c, clearly indicating its release [18]. These data, together with confocal
mitochondrial imaging, show that myocardial CIR leads to multiple types of mitochondrial damage
and heterogeneous cytochrome c release. Importantly this damage correlated well with the decrease in
heart contractile function. Oxidative stress during reperfusion/reoxygenation leads to peroxidation of
proteins and phospholipids and in particular, to peroxidation of cardiolipin in the IMM. Phospholipid
cardiolipin is reported to be essential for the normal function of various mitochondrial enzymes
like cytochrome c oxidase, adenine dinucleotide translocase (ANT), mitochondrial creatin kinase
(mitCK), and complex III. Importantly, the localized destruction of cardiolipin at the sites of free radical
production would explain the different sensitivities of the different respiratory complexes to the same
source of damage [125–127]. For example, diminished cardiolipin content in cardiac mitochondria due
to peroxidation by ROS can lead to significant inhibition of cytochrome c oxidase [127]. Development
of oxidative stress plays a significant role in the aging process [122] and in mechanisms of inborn
(genetic) defects of mitochondrial complexes [124]. Alterations of mitochondrial function due to
the damage to the mitochondrial respiratory complexes I, III and IV which decreases their activities.
Also, alterations in mitochondrial membranes can cause an inhibition of several transport systems,
uncoupling of mitochondrial respiration from OXPHOS and may further lead to the loss of certain
mitochondrial components like enzymes of the intermembrane space and the matrix of mitochondria,
together with cytochrome c release. Depletion of mitochondrial pulls of ATP/ADP and NADH/NAD
are well documented [18,123,131]. However, less is known about consequences for the metabolic
channeling, intracellular compartmentalization and cellular–mitochondrial integrations, including
disruption of mitochondria–cytoskeleton interactions [119,135].

9. The Role of PTP Opening in Cardiac IR Injury

Mitochondrial PTP Opening is a Critical Factor in IR Injury
Multiple experimental studies provide evidence that mitochondrial PTP opening is convincingly

involved in the pathogenesis of cardiac IR [136–143] and can be targeted to attenuate
reperfusion-induced damage to the myocardium [138,139]. Patch-clamp studies on mitoplasts
demonstrated that PTP are the non-specific channels localized in the IMM [140]. Opening of the
pores increases colloidal osmotic pressure in the matrix and thereby induces swelling of mitochondria
which, in turn, leads to ∆Ψm loss, uncoupling of OXPHOS from respiration, and ROS overproduction.
The massive Ca2+ release from mitochondria can result in cardiomyocyte hyper-contracture and cell
death [28] in the heart. PTP opening has been shown to promote cell death through necrosis [141],
although whether the cell dies through apoptosis or necrosis depends on the ATP availability
(the number of mitochondria that undergo PTP opening). Thus, reperfusion injury causes mitochondrial
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dysfunction through increases in intracellular and mitochondrial Ca2+ and ROS, IMM depolarization
and PTP opening [136–138,142–144] where Ca2+ increase and ROS overproduction cooperate to activate
PTP opening. These effects, however, may be different in cardiac SSM and IFM. It has been demonstrated
that cyclosporin A (immunosuppressive drug and a PTP inhibitor) at low concentrations may reduce
IR injury in isolated cardiomyocytes and in Langendorff-perfused rat hearts [144–147]. Also, selective
elimination of damaged mitochondria via autophagy (mitophagy) may be involved to maintain
mitochondrial quality control in the cell. Moreover, mitoROS and the release of mitochondrial and cell
content may result in activation of the inflammatory response with further damaging effect [133,147].
Studies on PTP opening and the effect of cyclosporin A in subcellular mitochondrial populations
showed that IFM are more resistant to high Ca2+ [148].

The molecular identity of the PTP complex remains unidentified. Pioneering studies in this area
identified VDAC and adenine nucleotide translocase (ANT) as the main proteins involved in the PTP
complex. However, since 2004, several studies using genetic manipulations in mice and cells revealed
that PTP opening occurs in the absence of these proteins, suggesting that they are not involved in
the PTP complex and apparently play a regulatory role in pore formation (reviewed in [149–154]).
The main positive modulator of the PTP is cyclophilin D, a cis-trans isomerase with a chaperone
localized in the matrix. Pharmacological inhibition of cyclophilin D by cyclosporin A and sanglifehrin
A has been shown to exert cardioprotective effects against IR injury in animal models of heart IR and
in patients [155–159].

10. Possible Cardioprotective Strategies and Pharmacological Interventions

Several Cardioprotective Approaches and Specific Substances Can be Used to Reduce IR Injury
Currently, therapeutic strategies for the treatment of cardiac IR through targeting mitochondria

are mainly focused on the prevention of mitochondrial ROS production and Ca2+ overload [160].
Therefore, inhibition of excessive mitochondrial swelling through Ca2+-induced PTP opening
(cyclosporin A and other inhibitors) can be considered to be one of the promising therapeutic
strategies in the reduction of cardiac IR injury. It has been suggested that suppression of
mitochondrial respiratory chain activity (e.g., complex I inhibition) during ischemia can to some
degree decrease ROS and may thus be protective, but this inhibition must be reversible [123].
Various antioxidants like alpha-tocopherol, coenzyme Q10 and α-lipoic acid [161] and, in particular,
mitochondria-targeting drugs such as melatonin [162], polyphenols [163], idebenone derivative of
targeted to mitochondria triphenylphosphonium cation (ubiquinonyl) decyltriphenyl-phosphonium
bromide, MitoQ) and Skulachev developed lipophilic cation (SkQ) [161] and mitochondria-targeting
glutathione (mitoGSH) [164] are shown to have a capable cardioprotective effects in several
models. Also, manganese superoxide dismutase (MnSOD) overexpression or mimetics, some
cell/mitochondria-permeable antioxidant peptides [165,166] and Ca2+ antagonists or chelators like
cell-permeable analogs of ethylene-diamine-tetraacetate (EGTA) have been elucidated extensively to
prevent IR injury and its consequences [35,123,167].

Another approach for cardioprotection by the prevention of oxidative stress can be mild
uncoupling of mitochondria [168,169] chemically (e.g., by dinitrophenol [170] and propofol [171]),
or via overexpression of specific mitochondrial uncoupling proteins (e.g., UCP2 or UCP3), both leading
to a decrease of ∆Ψm and, therefore, reducing the intensity of superoxide production by mitochondrial
respiratory chain complexes [172,173]. In addition, a new methodology of mitochondrial transplantation
(by injection) in the IR injury of the myocardium, to support heart ATP level and thus cardiac contractile
function, has been proposed [174]. However, many questions remain and the benefit of mitochondrial
transplantation in clinics is still obscure [175].
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10.1. Protection Against Cardiac IR Injury by Ischemic Preconditioning

Preconditioning can be Considered as an Important Strategy in IR Injury
Ischemic preconditioning (IPC) induced by several brief (3–5 min) episodes of ischemia and

reperfusion prior to sustained ischemia has been recognized as a promising therapeutic strategy for the
treatment of cardiac IR injury [176–183]. It has been proposed that ROS produced by mitochondria and
several specific signaling pathways play a significant role in the cardioprotective effects of IPC [184].
For example, mild oxidative stress by heart perfusion with H2O2 in lower concentrations may have
some protective effects, thus simulating the effects of IPC. The cardioprotective effects of IPC have
been shown to be mediated through the inhibition of PTP opening during cardiac IR. Also, it has
been demonstrated that protein kinase C [184] with the involvement of mitochondrial ATP-sensitive
potassium channels [185,186] and several other signaling kinases can play an important role in the
mechanisms involved in IPC and protection against heart IR. However, the detailed mechanisms and
links between IPC and protection against heart IR needs further analysis.

Therefore, various cardioprotective approaches and drugs that protect mitochondrial function,
structure stability, complex dynamics and turnover, including various mitochondrial antioxidants
and uncouplers and ischemic pre- and post-conditioning, can be considered as the main strategies to
protect mitochondrial and cardiovascular function, and thus enhance longevity.

11. Intracellular Energy Transfer and its Changes in Cardiac IR: Creatine-Phosphocreatine Shuttle

Alterations in Mitochondrial Creatine Kinase and Intracellular Energy Transfer are Found in IR Injury
Mitochondrial injuries are implicated in intracellular signaling and mitochondrial respiratory

function plays a central role in cellular energy metabolism and redox regulation, particularly in
the heart as a continuously active tissue which depends on aerobic energy supply. Studies of the
delicate bioenergetic mechanisms in the heart have demonstrated a key role for the mitochondrial
creatine kinase (mitCK) for metabolic channeling and intracellular micro-compartmentalization,
and resulted in the discovery of mitochondrial functional complexes with other cellular organelles,
such as myofibrils and the sarcoplasmic reticulum, forming intracellular energetic units [83,187,188].
Importantly, mitCK and, in particular, its functional links with energy transferring systems [189–191],
can be very sensitive to cardiac ischemia (due to increases in cellular inorganic phosphate level) and
various cardiomyopathies [12,192–195]. Moreover, the mitCK system can be damaged by oxidative
stress, due to possible oxidation of the enzyme-essential –SH residues by ROS [196]. A detailed analysis
of mitochondrial respiratory function (ADP kinetics) and coupled mitCK systems in permeabilized
fibers from different muscles (heart, quadriceps, gastrocnemius) of creatine kinase knockout mice
revealed mitochondrial remodeling with subsequent effects on metabolic channeling, most probably
as an adaptive response to the lack of creatine kinase [197,198]. Moreover, significant changes in the
coupled mitCK system and mitochondrial remodeling have been demonstrated in various pathologies
including IR injury [193], heart failure [12,192] and various cardiomyopathies [194,195]. Also, mitCK
can protect mitochondria against PTP opening and depolarization [199]. Alterations in mitochondrial
energetics, micro-compartmentation of adenine nucleotides and cellular energy transfer play a pivotal
role in the mechanisms and pathophysiology of heart IR.

Therefore, the mitCK system and the creatine–phosphocreatine energy transferring shuttle may
be considered as additional important targets for protective mediation in cardiac IR injury [200].

12. Conclusions

In summary, mitochondrial damage and dysfunction are essential in the molecular mechanisms
leading to IR injury of the heart. The scientific information obtained from mitochondrial physiology
research can be useful for basic and clinically oriented studies, as well as for the development of new
diagnostic approaches and tests for cardioprotection strategies. Also, cardioprotective interventions
that can modulate mitochondrial dynamics/turnover and autophagy may be useful to improve
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energy metabolism and cardiovascular function after IR and enhance longevity. Moreover, a better
understanding of the molecular mechanisms responsible for mitochondrial damage in CIR may
provide the basis for interventional strategies aimed at the improvement of heart preservation in
organ transplantation, thus enhancing organ recovery. A detailed characterization of the molecular
mechanisms implicated in mitochondrial physiology and pathology will certainly help in the
development of several new therapeutic approaches.
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