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Long range haplotyping of paired-
homologous chromosomes by 
single-chromosome sequencing of 
a single cell
Deng Luo1, Meng Zhang1, Ting Liu1, Wei Cao1, Jiajie Guo1, Caiping Mao2, Yifan Li3,  
Juanmei Wang4, Weiren Huang5, Daru Lu6, Shuo Zhang7, Zhoufang Li1 & Jiankui He1

The longest possible haplotype is chromosome haplotype that is a set of co-inherited alleles occurred 
on a single strand chromosome inherited from one parent. Standard whole-genome shotgun 
sequencing technologies are limited by the inability to independently study the haplotype of 
homologous chromosomes due to the short-reads sequencing strategy and disturbance of homologue 
chromosomes. Here, we investigated several types of chromosomal abnormalities by a dilution-based 
method to separate an intact copy of homologous chromosome from human metaphase cells, and 
then single chromosomes were independently amplified by whole-genome amplification methods, 
converted into barcoded sequencing libraries, and sequenced in multiplexed pools by Illumina 
sequencers. We analyzed single chromosome derived from single metaphase cells of one patient with 
balanced chromosomal translocation t(3;5)(q24;q13), one patient with (47, XXY) karyotype and one 
with (47, XY, 21+) Down syndrome. We determined the translocation region of chromosomes in patient 
with t(3;5)(q24;q13) balanced chromosomal translocation by shallow whole-genome sequencing, which 
is helpful to pinpoint the chromosomal break point. We showed that SCS can physically separate and 
independently sequence three copies of chromosome 21 of Down syndrome patient. SCS has potential 
applications in personal genomics, single-cell genomics, and clinical diagnosis, particularly in revealing 
chromosomal level of genetic diseases.

Human genomes are naturally diploid, and contain pairs of homologous chromosomes derived from each par-
ent. Haplotype information is very important for understanding molecular physiology and phenotypic expres-
sion. For example, compound heterozygosity in single genes can result in different clinical conditions and 
disorders1,2. The combination of unique gene-specific haplotypes has profound effects on complex phenotypes3. 
Chromosomal balanced translocation is a disease that affects 1 in 500 humans, and is due to the rearrangement 
of parts of chromosome sequences between nonhomologous chromosomes4. Balanced translocation is difficult 
to be detected by regular short-read high-throughput sequencing, whereas classical karyotyping can only detect 
breakpoints at low resolution5.

Statistical and computational methods have been proposed to obtain haplotype information from conven-
tional genotype data when the family trio datasets are available6. Methods for determining haplotype without 
parental samples have also been developed, such as long fragment read technology, dilution-based haplotyp-
ing, and deep sequencing of large-insert clones7–10. Determining haplotype information at the single-cell level 
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is even more challenging. Microfluidic devices combined with SNP array genotyping were reported to obtain 
whole-genome phasing information11. Partial haplotype information can also be obtained in a single cell by chro-
mosome microdissection methods and SNP array genotyping12. Single chromosome sorting developed by Yang, 
H., X. Chen, et al. can be used to analyze single chromosome, but not capable of identify the paired-homologous 
chromosome in single cells10. More recently, 10x Genomics developed the method to build human diploid de 
novo assemblies with phase blocks longer than 2.5 Mb by partitioning ~1ng (about 160 cells) high molecular 
weight DNA by 10x Genomics microfluidic platform and sequencing to 56x on HiSeq instruments13. However, 
since multiple cells were used, it lost the different characteristics from single cells and it was hard to phase across 
the entire chromosome because it would be hindered by the low heterozygosity region and the centromere region. 
The 56x sequencing depth and the specific 10x Genomics platform added up the cost too. Single-cell DNA tem-
plate strand-seq to phase diploid genomes in single cells had been reported by Porubsky et al.14. It made use of 
the random nature of passing Watson and Crick stands from parental cells to offspring cells and introduced BrdU 
so as to remove the newly synthesized strands. However, waiting the single cells to separate into the daughter 
cells and the introducing of BrdU added the complexity of the experiment. It was difficult to reveal the chromo-
somal translocation events in the single cells because the whole diploid genome was in the same sequencing pool. 
However, most of these existing methods use multiple cells as the starting material, or they may need special 
devices or chips11,15,16, which limits the practical applications of these methods.

In this report, we applied a simple dilution-based method to perform single chromosome sequencing (SCS) 
of single cells. SCS physically separated and sequenced single chromosomes from a single cell. Although the 
conception for dilution-based technique has been reported by other groups for chromosome sequencing, there is 
no report published so far determining the single cell single chromosome haplotyping, which can simultaneously 
obtained the paired homologous chromosomes of a single cell. We demonstrated the clinical value of SCS method 
in identifying the chromosomal abnormal.

Results
SCS by dilution, amplification, and sequencing.  To assess whether diluting chromosomes from a sin-
gle cell to multiple pools can separate homologous chromosomes, we performed computer simulation to deter-
mine the probability of perfectly separating homologous chromosomes (Fig. S1). The simulation data indicated 
that diluting a metaphase-single cell in 8–24 tubes is recommended for SCS experiments to separate homologous 
chromosomes (Fig. S2).

We performed a wet lab experiment to test the method (Fig. 1). We picked individual metaphase cells by 
microinjection system. We lysed the single cells and performed serial dilutions into 4, 8, 16, 24, or 32 tubes 
respectively (Fig. S3). The mapping ratio in 8-pools (mostly > 60%) was much higher than that of the 32-pools 
(mostly < 30%) so as to the number of clean reads. It did seem that more chromosomes yielded more reads, like in 
the healthy control sample (HC) (Table 1–3, because pool6 had the highest number of reads and correspondingly 
the highest number of total chromosomes (Table S3). The number of mapped reads showed better correlation 
with the total number of present chromosomes, although it was not strictly mathematically proportional.

We observed that dilution into eight tubes was the most cost-effective and also worked best in our experi-
ment (Fig. S4). If 23 pairs of chromosomes were arbitrarily deposited into eight tubes, 20 pairs of homologous 
chromosomes were expected, on average, to be physically separated into different tubes. The DNA in each tube 
was subjected to whole-genome amplification, followed by sequencing library construction and sequencing on 
Illumina sequencer. Bioinformatics pipelines were developed to identify the chromosomes in each tube (Fig. S5).

In Fig. 2, we show one example of an SCS experiment. The sample is from a white blood cell of a healthy 
individual. The majority of homologous chromosomes were separated into different tubes after mapping to the 
reference genome hg19 (Fig. 2). Forty chromosomes were recovered from the sequencing data, and six chromo-
somes were missing. The missing chromosomes may have been lost because of binding to the PCR tubes or tip. 
Eighteen pairs of chromosomes were successfully separated. Therefore, to recover all 23 pairs of chromosomes, 
the experiment must be repeated for two or more cells. The chromosomes were intact, because the sequenced 
reads were distributed throughout entire chromosomes, and no fragmental breakdown was observed (Fig. 2a). 
The coverage of a single chromosome varied from 5% to 22%, depending on amplification method and sequenc-
ing depth (Fig. S6).

Identifying the chromosome breakpoint in a balanced chromosomal translocation patient 
T35.  A single cell was selected and diluted into eight tubes. Shallow sequencing using an Illumina Miseq 
sequencer was performed to identify the translocation sites. We sequenced 9.4 million reads for this sample in 
total, which provided 0.26x coverage of the genome. We predicted, using SCS, that the translocation site was at 
t(3;5)(q24;q13) (Fig. 3 and Table S4). A repeat experiment was performed to confirm the reproducibility of SCS 
method (Fig. S7 and Table S3). For comparison, traditional karyotyping analysis was performed (Fig. 3b). The 
karyotyping analysis result, t(3;5)(q25;q13), was consistent with the SCS results, with a slight difference. SCS 
predicted that the translocation site was at the end of q24 but close to q25, whereas the karyotyping analysis 
predicted that the translocation site was at q25. SCS further narrowed down the break point to a 15-kb region in 
chromosome 3:148,556,760–148,571,990 and 5:73,590,780–73,605,850 (Fig. S8 and Tables 5–7. Therefore, the 
SCS method provided better resolution than karyotyping methods, even with shallow sequencing.

We further pinpointed the break point by whole genome sequencing using Illumina X10. We sequenced 
33,377,290,500 bases for this sample in total, which provided 11x coverage of the genome. We searched for chi-
meric reads in the chromosome 3:148,556,760–148,571,990 and 5:73,590,780–73,605,850 region that partially 
mapped to chromosomes 5 and 3 (Fig. 4). There were five chimeric reads that crossed the breakpoint; thereafter, 
the breakpoint was identified to be at position 148,560,043 in chromosome 3, and position 73,593,601 in chro-
mosome 5 (Fig. 4a). This result was further validated by Sanger sequencing after PCR with a forward primer 
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in chromosome 3 and a reverse primer in chromosome 5 near the break point (Fig. 4b,c). We found that one 
of the break points is located in the CPB1 gene region. Mutant CPB1 was previously reported to be related to 
infertility17.

Long-range haplotype phasing.  Although great progress had been made in genome phasing by both 
computational and experimental methods, long-range haplotype phasing is still technically challenging18. In SCS, 
because the homologous chromosomes are physically separated, we could obtain haplotype phasing information 
of the entire chromosome.

We demonstrated long-range haplotype phasing using SCS by phasing three distant loci in chromosome 16 
(Fig. 5). In SCS, few heterozygous mutations were observed, because only one copy of a homologous chromosome 
was present in each tube (Fig. 5b). SCS has relatively low genome coverage. Therefore, phasing all loci in an entire 
chromosome requires multiple experiments.

Detecting chromosomal abnormality in XXY and Down syndrome patient.  To demonstrate other 
potential use of SCS in clinical and basic research, we performed SCS on a sample with XXY chromosomal 
abnormality [47(+X)] and a Down syndrome sample [47(+21)] (Fig. 6 and Fig. S9). Two X chromosomes were 
detected in tubes 5 and 8, and one chromosome Y was detected in tube 3 for the XXY patient (Fig. 6A). For the 
Down syndrome sample, the three chromosome 21 each was found in tubes 1, 6, and 8 (Fig. 6B). By separating 
the three copies of chromosome 21, this method may help us better understand the genetics of Down syndrome.

Discussion
We developed SCS of a single cell. This method physically separated homologous chromosomes from a single cell, 
amplification of the whole genome, and sequencing. SCS had less genome coverage compared with single-cell 
sequencing, because SCS had only one copy of each chromosome, hence with less chance to be captured, how-
ever, the accuracy is very good, similar as single-cell sequencing. SCS deep sequencing phased 5.48% of the SNPs 
and achieved an average accuracy of 97.72% (Table S4). Besides, we performed the analysis thoroughly which 
included the WGS result and a relatively deep sequencing results from four pools of a chromosomal transloca-
tion sample (T35). Among the four deep sequencing pools of SCS, eight homologous chromosomes could be 
phased (Table S8). The WGS data included 33,377,290,500 bp, and the equivalent sequencing depth was 11×. The 

Figure 1.  (a) Schematic diagram of single-chromosome sequencing work flow. First, a single metaphase 
lymphocyte cell that contained homologous chromosomes (one pair of homologous chromosomes is shown 
in blue and red) was selected by a microinjection system. Second, the cell was carefully transferred to a drop of 
cell lysis buffer, and the chromosomes were released from the membrane. After a few seconds, the lysis buffer 
was transferred to a low-binding PCR tube. Third, serial dilution was performed, and the chromosomes were 
separated into multiple tubes. Fourth, each tube was subjected to whole-genome amplification, next-generation 
sequencing library construction, index barcoding, and sequencing. (b) An image of a metaphase cell selected 
with a microinjection system.
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coverage should be increased if we further increase the depth of sequencing. The reads were processed through 
the first part of the SCS analysis pipeline.

Then, for the mapped reads with mapping quality scores >30, we used GATK best practice to find germline 
SNPs. For WGS data, we filtered the SNPs by keeping only those with a depth >10 and quality >30. We further 
filtered the SNPs in WGS by retaining only those records that were found to be common SNPs (≥1% minor allele 
frequency in at least one 1000 Genomes population and was found in two or more people in that population) in 
dbSNP build149. The records after filtering served as reference heterozygous SNPs that could be phased by SCS 
deep sequencing. These findings served as a proof-of-concept that SCS can be used to phase the SNPs in a single 
cell. In principle, we could perform SCS for up to 50–100 cells from one sample and obtain higher phasing cov-
erage. By doing so, we would lose the uniqueness of each cell, which is of critical use for research such as studies 
on cell lineages and cancer cell subtypes. While we find it valuable that SCS can actually separate intact physical 
copies of the homologous chromosomes, we admit that further improvements need to be done to increase ampli-
fication efficiency when starting from a tiny amount of initial DNA, such as reduction of the reaction volume or 
modification of other experimental settings and parameters.

In addition, physically separating the homologous chromosomes has advantages over other more com-
plex labeling methods (such as including BrdU or massively barcoding multiple cells). Moreover, SCS will be 
more available for clinical use when all target pools are freely available (it is not possible to only select target 

Figure 2.  Whole-genome haplotyping. (a) The chromosomes from a single cell were diluted into eight tubes 
and sequenced. Each ring in the Circos plot represents data from one tube, and there were eight rings in total. 
The length of each line represents the mapped reads of each 1 million-bp window. Whether a chromosome was 
found in a tube was determined by the quantity of mapped reads. (b) Table that summarizes the chromosomes 
found in each tube. Eighteen pairs of homologous chromosomes were successfully separated. Chromosomes 11, 
12, 15, 16, and 21, each was found in one tube or one copy was missing. The missing chromosomes may have 
been lost because of binding to the tube, or during transfer from the dish to the tube.
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Figure 3.  Single-chromosome sequencing (SCS) identified the balanced chromosomal translocation of a 
patient sample by shallow sequencing in an Illumina Miseq. (a) Circos plot of the SCS results of the patient 
sample. Each ring represents data from one tube, and eight tubes are ranked from the outer layer (tube 1) to 
inner layer (tube 8). Chromosomes 3 and 5 are shown in blue and red, respectively. (b) One copy of intact 
chromosome 3 was found in tube 6, whereas two fragments of partial chromosome 3 were found in tubes 3 
and 4. One copy of intact chromosome 5 was found in tube 1, whereas two fragments of partial chromosome 5 
were found in tubes 3 and 4. The schematic diagram of the balanced translocation of chromosomes 3 and 5 was 
reconstructed using SCS results. SCS identified the correct translocation, and this was validated by karyotyping 
results from the same patient; the SCS result indicated that the translocation was at t(3,5)(q24,q13), whereas 
karyotyping analysis showed that the translocation was at t(3,5)(q25,q13).

Figure 4.  Pinpointing the chromosome break point by single-chromosome sequencing (SCS) using Illumina 
X10 deep sequencing. (a) Five chimeric reads crossed the translocation break point sequences were identified. 
(b) The patient and a normal control were further examined by PCR and Sanger sequencing. The break point 
is located at 148560043 for chromosome 3, and 73593601 for chromosome 5. We observed one base from 
chromosome 5 (73593602) that was lost during the translocation. Sanger sequencing verified the break points 
identified by SCS. (c) The break point was verified by PCR with one primer in chromosome 3 and another 
primer in chromosome 5, and the primers were near the break points identified by SCS. 3–5_P1_p, 3–5_P2_p, 
5–3_P1_p, and 5–3_P2_p are patient samples, and 3–5_P1_n, 3–5_P2_n, 5–3_P1_n, and 5–3_P2_n are normal 
control samples.
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chromosomes for further analysis with other approaches). Time and cost will also not be drastically increased 
because constructing eight libraries takes a similar amount of time as constructing one library, and the cost of 
library construction is slightly increased (approximately 25 US dollars/library); however, once we have deter-
mined which pools contain the chromosome of interest, we can dramatically reduce sequencing cost by only deep 
sequencing the target pools.

This method will have broad application in biological and medical research. First, by combining results with 
bulk-sample deep sequencing data, SCS provides whole chromosome-level haplotype phasing. Current computa-
tional methods usually require population genetic information, and current experimental methods can phase up 
to 90–97% of a genome7. In theory, SCS can phase 100% of the genome without population genetics information.

Figure 5.  Determining the haplotype phase of loci in one chromosome by single-chromosome sequencing. (a) 
Three distant loci in chromosome 16 are demonstrated. Whole-genome sequencing of bulk cells determined 
the genotypes of these three loci (G/A for position 587948, G/C for position 52021811, and G/A for position 
89176878). By separating the chromosomes and performing SCS, the haplotype phase of these three loci were 
resolved. In one copy of chromosome 16, the nucleotide at position 587948 was A, the nucleotide at position 
52021811 was G, and the nucleotide at position 89176878 was A. In another copy of chromosome 16, the 
nucleotide at position 587948 was G, the nucleotide at position 52021811 was C, and nucleotide at of position 
89176878 was G. (b) Alternative allele ratio measurement was used to decide whether a locus has a homozygous 
mutation (>80%), heterozygous mutation (20–80%), or is wild type (<20%). The alternative allele ratios for 
2163 SNPs were calculated. Here, only the common SNPs in the 1000 Genome Project were considered. The 
figure on the left shows the whole-genome sequencing bulk sample results, and the figure on the right shows the 
SCS results. Because the SCS result was from a single haplotype, heterozygous mutations were rarely found.
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Second, SCS provides a valuable tool for studying chromosomal abnormality diseases such as Down syn-
drome. By physically separating the three copies of chromosome 21, it is possible to individually study the genetic 
and epigenetic differences of these three copies, which could help pinpoint key variations in gene expression 
patterns that cause Down syndrome symptoms. The same approach can also be used to analyze the chromosomes 
in genetically unstable cancer cells.

Third, SCS will help facilitate de novo assembly of complex genomes, such as plant genomes, which usually 
have multiple copies of chromosomes19. Conventional next-generation sequencing cannot distinguish multiple 
homologous chromosomes in plant cells. By combining SCS and NGS, scientists will be able to elucidate the indi-
vidual chromosomes in plant and determine how they differ.

Fourth, SCS can also have medical applications. For example, human leukocyte antigen (HLA) haplotypes 
are associated with autoimmune disease and clinical outcomes after transplantation20. HLA has very complicated 
genomic regions and varies among populations, which is still a big challenge to reveal the mechanism. SCS may 
help provide high-resolution HLA genotyping; hence it is possible to better understand the biological mechanism 
of HLA-associated diseases.

SCS still requires a lot of improvement before it can be widely used. We need to further optimize the wet 
lab techniques to avoid chromosome loss and increase coverage (Fig. S10). Because the DNA template of single 
chromosome is much less than that of a single cell, the whole-genome amplification method should be optimized 
to improve coverage. Different single-cell amplification methods were tested to increase coverage, including the 
MDA, MALBAC, and Genomeplex WGA4 (Fig. S11).

Materials and Methods
Ethics.  This study was approved by the Southern University of Science and technology of China (SUSTC). All 
the experiments were performed in accordance with guidelines and regulations of the SUSTC. All methods are 
approved by the committee of SUSTC and carried out in accordance with relevant guidelines and regulations. All 
the analysis was performed anonymously. Written informed consent was obtained from each participant.

Patients and Blood samples.  Human blood sample of Healthy Control sample (HC) was obtained from 
Nanshan hospital, Shenzhen. Human blood sample of Down syndrome patients [47(+21)] were obtained from 
Hunan Provincial People’s Hospital. Human blood sample of balanced chromosomal translocation [T35] and 
XXY genotyping [47(+X)] were from the First Affiliated Hospital of Soochow University Hospital. The sample 
information is summarized in supplementary material Table S1.

Cell culture.  Twenty-five drops of blood were added to 5 mL cell culture medium. After 69 h incubation 
(37 °C and 5% CO2), 50 μL colchicine at 40 mg/mL was added to the medium, and incubated for another 3 h.

Metaphase lymphocyte collection.  The cell culture medium was centrifuged at 500 × g for 5 min. The 
supernatant was discarded; then, 10 mL 75 mM KCl solution was added. The cells were gently suspended and 
kept at room temperature for 15 min. Subsequently, 200 μL acetic acid (final concentration 2%) was added and 
the solution was gently mixed. The cells were placed on ice for 30 min, and were centrifuged at 800 × g for 5 min, 
and the supernatant was then discarded. A 10-mL solution of ethanol and acetic acid at a 3:1 ratio was added to 
the cells. The cells were centrifuged at 800 × g for 5 min after suspension. The supernatant was then discarded. 
The cells were washed using 2 mL 75 mM KCl solution and centrifuged at 800 × g for 5 min. Cell resuspension 
solution (1 mM EDTA, 1% Triton-X100, 0.2 mg/mL RNase A, 75 mM KCL) were added to the cells. The cells were 
placed at 4 °C overnight.

Single cells selection and lysis.  Single metaphase lymphocyte cells were selected under a Zeiss Axiovert 
20 microscope, with an Eppendorf PatchMan microinjection system (Eppendorf, Hamburg, Germany). A sin-
gle cell was lysed in buffer (0.03% pepsin, 1% Triton-X100, 2% acetic acid, 75 mM KCL) and transferred to a 
low-binding PCR tube (Axygen, MA, USA) with 9 μL nucleic free water and centrifuged.

Figure 6.  Single-chromosome sequencing (SCS) analysis of an XXY chromosome abnormal patient and a 
Down syndrome (T21) patient. (A) SCS separated two X chromosomes and one Y chromosome in the XXY 
patient, and (B) the three copies of chromosomes 21 in Down syndrome.
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Dilution.  It is important that the dilution into multiple tubes (pools) should follow the order described in 
Fig. S3; we attempted different approaches to dilute the single chromosomes from individual metaphase cell. 
During dilution, we always use the same tip for the whole process without changing tips to avoid loss of chromo-
somes due to binding to the tips.

Whole-genome amplification and sequencing library construction.  We modified the protocol of 
the GenomePlex WGA4 kit (Sigma-Aldrich, CA, USA) to perform amplification. The detailed protocol was pro-
vided in the supplementary materials. This protocol was specially optimized for dilution in eight tubes. Dilution 
in more tubes may require protocol adjustment. We constructed the sequencing library for an Illumina Miseq or 
Hiseq X10 sequencer (Illumina, CA, USA).

Bioinformatics analysis.  We used mapping quality score as a metric to filter out low-quality reads and 
performed the analysis (Table S2 and Fig. S12). The sequence reads were mapped onto reference genome hg1921 
with bwa (version 0.7.16)22,23. We used mapping quality score as a metric to filter out low-quality reads. To pres-
ent the overall quality distribution of sequencing reads, we plotted the MAPQ distribution in Fig. S12 (MAPQ: 
MAPping Quality = −10 log10(P), Where P = probability that this mapping is NOT the correct one). We found 
that most of the reads had a MAPQ value of 60 (<10−6 probability that a read was incorrectly mapped), so 
we increased the MAPQ cutoff from 5 to 30 (<10−3 probability that a read was incorrectly mapped) and ana-
lyzed all data again. The resulting circos plots were very similar to the previous plots, and we could still distin-
guish individual chromosomes. For per base quality, we used trimmomatic to clean our raw data with the option 
“SLIDINGWINDOW:4:15,” which means that, for every four consecutive bases, the average base-calling quality 
(phred score) must be >15. By employing this parameter, we observed that all bases’ phred scores were >30 (less 
than 10−3 probability that a base was incorrectly called), as depicted in Fig. S13, which gave us high confidence 
in the downstream analysis.

The mpileup file was generated by Samtools (version 1.3.1)24, the mapped bases in each 1 million-bp window 
were counted, and a Circos (version 0.67–7)25 plot was generated to show the distribution of reads across all 
chromosomes for all tubes. The GC content bias and genome coverage uniformity were also investigated. To call 
variants, BWA (version 0.7.16)22 and GATK (version 3.8.0)26 best practice were used.

Availability of data.  Data are available from NCBI BioProject database under accession number 
[PRJNA419806].
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