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Peptide and protein identification remains challenging in
organisms with poorly annotated or rapidly evolving ge-
nomes, as are commonly encountered in environmental
or biofuels research. Such limitations render tandem
mass spectrometry (MS/MS) database search algorithms
ineffective as they lack corresponding sequences re-
quired for peptide-spectrum matching. We address this
challenge with the spectral networks approach to (1)
match spectra of orthologous peptides across multiple
related species and then (2) propagate peptide annota-
tions from identified to unidentified spectra. We here
present algorithms to assess the statistical significance of
spectral alignments (Align-GF), reduce the impurity in
spectral networks, and accurately estimate the error rate
in propagated identifications. Analyzing three related
Cyanothece species, a model organism for biohydrogen
production, spectral networks identified peptides from
highly divergent sequences from networks with dozens of
variant peptides, including thousands of peptides in spe-
cies lacking a sequenced genome. Our analysis further
detected the presence of many novel putative peptides
even in genomically characterized species, thus suggest-
ing the possibility of gaps in our understanding of their
proteomic and genomic expression. A web-based pipe-
line for spectral networks analysis is available at http://
proteomics.ucsd.edu/software. Molecular & Cellular
Proteomics 15: 10.1074/mcp.O116.060913, 3501–3512,
2016.

Microorganisms have evolved their cellular metabolism to
generate energy for life in unusual environments (1), and their

capabilities are of great interest in the production of renew-
able bioenergy and could contribute toward managing the
world’s current energy and climate crisis (2). Genomics stud-
ies have increased the number of sequenced bioenergy-re-
lated microbial genomes and revealed the possible biological
reactions involved in bioenergy production (3). Studies of
photosynthetic microorganisms, for example, have yielded
insights into how they harvest solar energy and use it to
produce bioenergy products (4). Despite this importance of
microorganisms, the characterization of diverse microbial
phenotypes by proteomics tandem mass spectrometry (MS/
MS) has been limited. The dominant approaches for MS/MS
analysis heavily rely on the availability of completely anno-
tated genomes (i.e. accurate protein databases) (5–7), yet
most microorganisms populating the planet have unse-
quenced or poorly annotated genomes. Thus it remains chal-
lenging to identify proteins from environmental and uncultur-
able organisms.

One solution to protein identification in a species with no
sequenced genome is to use the genomes of closely related
species (8). This requires matching MS/MS data to slightly
different peptides in amino acid sequences (polymorphic, or-
thologous peptides); but matching shifted masses of peptides
and their fragment ions is computationally expensive and
challenging. Moreover, different species-specific post-trans-
lational modifications (PTMs)1 can make the cross-species
identification more complex. The common computational ap-
proach is tolerantly matching de novo sequences derived
from MS/MS data to the database while allowing for amino
acid mutations and modifications (9–11). However, this ap-
proach critically depends on good de novo interpretations,
which are nearly always partially incorrect and yield high-
quality subsequences only for a small fraction of all spectra.
The blind database search approach, developed to identify
peptides with unexpected modifications, can also be used to
directly match MS/MS data from unknown species to a da-
tabase of closely related species, but its utilization is limited
because of its exceptionally large search space (12–18).
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These spectrum-database matching approaches to cross-
species identification pose significant challenges in its speed
and sensitivity with a huge database, which leads to a much
longer search time and more false positive identifications (19,
20).

As a complementary approach to spectrum-database
matching, spectral library searching is an emerging and prom-
ising approach (21). A spectral library is a large collection of
identified MS/MS spectra, and an unknown query spectrum
can then be identified by direct spectral matching to the
library. The great advantage of this approach is the reduction
of search space and the use of fragmentation patterns of
peptides. The spectral networks approach expands this con-
cept to the identification of modified peptides in MS/MS data
sets (22, 23). Spectral networks do not directly search a
database, but groups MS/MS spectra by computing the pair-
wise similarity between MS/MS spectra of peptide variants
and then constructs networks where each spectrum defines a
node and each significant spectral pair, highly correlated in
the fragmentation pattern, defines an edge (Fig. 1). In spectral
networks, identification of spectra belonging to the same
subnetwork should be related and thus the peptide sequence
for an identified spectrum can be propagated to neighboring
unidentified spectra.

We recently reported that a vast number of polymorphic,
orthologous peptides across species are present in MS/MS
data sets (24). We propose a new approach in cross-species
proteomics research that aggregates MS/MS of multiple re-
lated species followed by spectral networks analysis of the
pooled data to capitalize on pairs of spectra from orthologous
peptides, as shown in Fig. 1. This approach does not require
advance knowledge of the genomes for all species, and en-
ables the identification of novel, polymorphic peptides across
species via interspecies propagation. Compared with previ-
ous approaches, cross-species spectral network analysis has
two major advantages. First, by matching spectra to spectra
instead of spectra to database sequences, spectral networks
only consider the sequence variability of peptides present in
the samples instead of considering all possible variability
across the whole database of related species; thus the per-
formance of spectral networks is independent of database
size. Second, the analysis of the set of highly related spectra
increases the reliability in identifying polymorphic peptides in
that multiple different spectra can support the same novel
identification. The utility of spectral networks can be also
expanded to the proteomic analysis of microbial communities
that often contain hundreds of distinct organisms (25, 26). But
despite the success of spectral networks in low complexity
data sets (22, 23), the analysis of large multi-species proteom-
ics data requires significantly higher reliability in spectral sim-
ilarity scores because the number of pairwise spectral com-
parisons grows quadratically with the number of spectra.

In this work, we present algorithmic and statistical ad-
vances to spectral networks to improve its utility with large

and diverse spectral data sets. To statistically assess the
significance of spectral alignments in pairing millions of spec-
tra, we propose Align-GF (generating function for spectral
alignment) to compute rigorous p values of a spectral pair
based on the complete score histogram of all possible align-
ments between two spectra. We show that Align-GF success-
fully addressed the reliability challenge in a large data set
analysis and demonstrated its utility by leading to a 4-fold
increase in the sensitivity of spectral pairs. Even with this
dramatically improved accuracy, a very small number of in-
correct pairs in a network can still complicate propagation of
annotations. To further progress toward the ideal scenario
where each subnetwork consists of only spectra from a single
peptide family, we introduce new procedures to split mixed
networks from different peptide families and show that these
effectively eliminate many false spectral pairs. Finally, we
propose the first approach to calculation of false discovery
rate (FDR) for spectral networks propagation of identifications
from unmodified to progressively more modified peptides.
The proposed FDR estimation was conservative and was
more rigorous for highly modified peptides, and thus now
makes propagation results comparable to other peptide iden-
tification approaches.

The cross-species spectral networks techniques proposed
here enabled the proteomic analysis of three different Cyan-
othece species, including a strain where the genome se-
quence is not known. Cyanobacteria are one of the most
diverse and widely distributed microorganisms and have re-
ceived significant consideration as satisfying various de-
mands required in bioenergy generation (27). We show that
spectral networks can improve peptide identification by up to
38% compared with mainstream approaches, including many
polymorphic and modified peptides. Spectral networks could
identify peptides with highly divergent sequences (with 7
amino acid mutations) by leveraging networks of variant pep-
tides, and one example subnetwork of species-specific vari-
ants of phycobilisome proteins reflects the diversity of pho-
tosynthetic light-harvesting strategies (28). Our approach thus
demonstrates the potential gains in multi-species proteomics
and sets the stage for related developments in higher-com-
plexity metaproteomics samples. Finally, spectral networks
revealed many unidentified subnetworks containing only un-
identified spectra, thus strongly suggesting the presence of
novel peptides that are missing from current protein data-
bases. Although we illustrate the potential of our approach on
a specific set of bioenergy-related species, we note that the
proposed approach is generic and should be applicable to
any other set of related species. The diversity of biologically
important protein families could be studied by comparing
closely and more remotely related species.

EXPERIMENTAL PROCEDURES

MS/MS Data Set—MS/MS data from Cyanothece sp. ATCC 51142
was previously described (29, 30), and MS/MS data for Cyanothece
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sp. PCC 8801 and Cyanothece sp. ATCC 51472 were prepared in a
similar manner. Briefly, proteins from Cyanothece sp. 51142, Cyan-
othece sp. 8801, and 51472 were treated identically, using 8 M urea
and 5 mM tributylphosphine (Sigma-Aldrich, Saint Louis, MO) at 37 °C
for 60 min, except for the addition of 1% CHAPS for 45 min prior to
digestion in the insoluble protein fraction of 51142. Samples were not
alkylated prior to LC-MS/MS analysis. The trypsin-digested samples
were separated using strong cation exchange chromatography (SCX)
with a PolySulfoethyl A, 200 mm � 2.1 mm, 5 �M, 300-Å column and
a 10 mm � 2.1 mm guard column (PolyLC, Inc., Columbia, MD) at a
flow rate of 0.2 ml/min. The fractions were subjected to the LC-
MS/MS analysis that coupled a constant pressure (5000 psi) reversed
phase capillary liquid chromatography system (150 �m i.d. � 360 �m
o.d. � 65 cm capillary; Polymicro Technologies Inc., Phoenix, AZ)
with a LTQ Orbitrap Mass Spectrometer (Thermo, San Jose, CA).
MS1 scans were acquired at 100,000 resolution in the Orbitrap.
MS/MS analysis of the ten most abundant precursors was performed
at low resolution in the CID ion trap. All RAW files were converted to
mzXML using ProteoWizard (ver. 3.0.5655; http://proteowizard.
sourceforge.net) which is a set of open-source, cross-platform tools
and software libraries that convert various vendor formats to read-
able standard formats and facilitate proteomics data analysis. All
data files and results including annotated mass spectra were de-
posited on MassIVE (http://massive.ucsd.edu), with the accession
MSV000079552.

MS-Clustering—Typically, MS/MS data sets contain substantial
amounts of redundancy, with multiple spectra coming from the same
peptide. We used MS-Cluster (ver. 2.0) (31) to group spectra of the
same peptides and compute cluster consensus spectra prior to spec-
tral networks analysis. In brief, MS-Cluster retains peaks in a cluster
consensus spectrum based on peak occurrences in the clustered
spectra. MS-Cluster reduced the MS/MS data set to a smaller set of
spectra, consequently improving the speed of spectral networks by
reducing the number of spectra that undergo pairwise comparisons.
Originally, the data consisted of 275,756 MS/MS spectra for Cyan-
othece sp. 8801, 481,411 spectra for Cyanothece sp. 51142 and
257,442 spectra for Cyanothece sp. 51472. MS-Cluster was applied
to each species with the precursor window size of 0.1 Da and the
fragment ion mass tolerance of 0.4 Da (MS-Cluster does not support
ppm tolerance). MS-Cluster yielded 141,140 cluster-consensus spec-
tra for Cyanothece sp. 8801, 171,430 cluster-consensus spectra for
Cyanothece sp. 51142 and 126,148 cluster-consensus spectra for
Cyanothece sp. 51472. The clustered spectra were used for all sub-
sequent data analysis.

Seed Identification and Gold-standard Spectral Pairs—The clus-
tered spectra were searched using MS-GF� (ver. 9881) (32) to iden-
tify seed peptides for propagation in our constructed spectral net-
works. Spectra were searched with the following parameters:
enzyme � trypsin, the number of enzymatic termini � 1/2, the number
of missed cleavages � any, precursor mass tolerance � � 20 ppm,
variable modifications � oxidation (Met) and pyro-glu (N-terminal
Gln), the number of modifications/peptide � up to 1. The database
consisted of 4,335 and 5,239 protein sequences of Cyanothece sp.
8801 and 51142, respectively, downloaded from NCBI (August 2014)
and was appended with their reversed sequences for target-decoy
FDR estimation (33). Finally, the identifications were filtered using a
spectrum probability of 1 e-10 (which corresponded to 0.03% spec-
trum level FDR), resulting in 61,799 peptide-spectrum matches
(PSMs). These identifications were also used as the gold standard to
evaluate the correctness of spectral pairs: A spectral pair is i) true if
two peptides are identical, one peptide is a prefix/suffix of the other,
or one peptide is a singly modified form of the other, ii) ambiguous if
two peptides share 12 or more consecutive amino acids or the
overlap of theoretical fragment ions of the two peptides is more than

60% iii) false for other cases. Ambiguous pairs were not counted
when evaluating spectral pairs (i.e. these were neither true nor false).

Spectral networks analyses—Spectral networks analyses were per-
formed against the clustered spectra from each data set with � 0.4
Da mass tolerance for fragment ions; mass tolerance for precursor
masses was not required as the mass difference between the pre-
cursor masses of aligned spectra was assigned to the mass of mod-
ification. The maximum possible mass of considered modifications
was � 375 Da. Typically samples digested with trypsin include many
partially tryptic peptides (where only one end corresponds to a tryptic
cleavage) and peptides containing tryptic cleavages (i.e. missed
cleavages). Besides amino acid mutations and modifications, spectral
networks can detect those truncated/extended peptides from exact
tryptic peptides. The mass range of 375 Da would allow the amino
acid deletion/extension up to two Trp residues. Initial spectral pairs
were accepted if Align-GF p value was less than 5 e-9 (see Generation
of Align-GF score histogram section), and then were filtered out to
restrict the number of precursor masses (100 in our work) contained
in a subnetwork (see Splitting mixed subnetworks section below).
When seed identifications were loaded into spectral networks for
propagation, the edge FDR and Align-GF p value threshold could be
calculated based on the annotated spectral pairs. Finally, spectral
pairs were filtered out to bring the edge FDR to the specified value.

Generation of Align-GF Score Histogram—Align-GF computes the
score histogram of all possible alignments against a spectrum using
the generating function approach, and computes rigorous p values of
spectral pairs matched to the spectrum based on the score histo-
gram. Each MS/MS spectrum was converted into a Prefix-Residue
Mass (PRM) spectrum (scored version of spectrum) using PepNovo
(34), where MS/MS peak intensities were converted into log-likelihood
scores by considering complementary ions (b/y), multiply charged
ions, neutral losses (-H2O and -NH3), and 13C isotopes for each peak.
In PRM spectra, peaks at masses corresponding to fragmentation of
peptide bonds tend to have high scores whereas peaks at other
masses tend to have very low scores (or are removed if the resulting
likelihood scores are negative), thus improving the signal-to-noise
ratio. Align-GF score histograms were computed on converted PRM
spectra. A possible alignment against a spectrum S is defined as a
subset of peaks in S, and all possible alignments against S can be
represented as all possible subsets of peaks in S (i.e. 2N possible
alignments, where N is the number of peaks in S). The score of an
alignment is calculated as the sum of peak scores in the correspond-
ing subset of S, and its probability is calculated as �m(1 � �)N�m,
where m is the number of peaks in the subset, and � is the probability
of randomly matching a peak in a spectrum, modeled as an inde-
pendent Bernoulli event (we use � � 0.05 as estimated by matching
randomly generated theoretical peak lists to identified spectra in our
data set using fragment mass tolerance of 0.4 Da). Calculated scores
and probabilities for all possible subsets of S define the Align-GF
score histogram as the probability density function for all possible
alignments against S. Supplemental Fig. S1 shows an example of
generating the Align-GF score histogram and illustrates the difference
between the score histogram generated by Align-GF and the previ-
ously used Gaussian empirical approximation (22, 23).

The calculation of Align-GF histograms can be done rapidly by
dynamic programming. Let a variable D[i, t] be the overall probability
of alignments that have score t up to the i-th peak in S. The variable
D[i, t] can be calculated using the following recursion:

D�i, t� � � � D�i � 1, t � score	i
� � 	1 � �
 � D�i � 1, t�

(Eq. 1)

where � is the probability of randomly matching a peak and score(i) is
the score of i-th peak. The first term in the sum updates the distribu-
tion when i-th peak is matched, and the second term updates the
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distribution when i-th peak is not matched. D[0,0] is initialized to 1 and
elsewhere to zero.

Then, if an alignment in S has score T, the probability that the
alignment randomly obtained a score of at least T is calculated as
follows, where e is the last peak index:

Probs	T
 � �t�T D�e, t� (Eq. 2)

Splitting Mixed Subnetworks—In spectral networks, the ideal sce-
nario is that each subnetwork consists of only spectra from a single
“peptide family” (where the subnetwork remains connected if using
only correct edges), whereas a mixed subnetwork contains spectra
from different peptide families. Mixed subnetworks can be caused by
incorrect spectral pairs because just one incorrect spectral pair with
spectra from distinct peptide families is sufficient to combine the two
peptide families into a single subnetwork.

Mixed subnetworks can also be caused by co-fragmented, multi-
plexed MS/MS spectra. For example, if there is a multiplexed spec-
trum S(A, B) including fragment ions from both peptides A and B, the
multiplexed spectrum could possibly be paired with S(A) and S(B),
and as a result, a subnetwork of peptide A would be connected with
that of peptide B by S(A, B). Co-fragmentation is commonly observed
with 5�10% of MS/MS spectra often coming from cofragmented
precursors (35). Although most multiplexed spectra S(A, B) have
suboptimal Align-GF p values against S(A) or S(A), frequent cofrag-
mentation could still lead to mixed subnetworks consisting of up to
tens of thousands of spectra, which can substantially complicate
propagation of annotations.

An intuitive way of splitting mixed subnetworks into single peptide
family subnetworks is to remove all incorrect pairs or pairs including
multiplexed spectra. But because this information is not available, we
limited the potential impact of this issue by restricting the number of
unique precursor masses in a single subnetwork to less than a certain
predefined value. This was implemented as follows: starting with the
best-scoring spectral pair, spectral pairs were introduced into spec-
tral networks by the order of increasing Align-GF p values. When two
subnetworks would be connected by a newly considered spectral
pair, the spectral pair was skipped if the resulting number of unique
precursor ion masses in the mixed subnetwork exceeded the pre-
defined value. This process stops when all edges are considered. The
rationale is that combining two different subnetworks into a subnet-
work larger than a certain size should require highly significant spec-
tral pairs. The p values of incorrect pairs are relatively high, and the p
values of multiplexed spectra would be also high because when the
multiplexed spectrum is aligned to spectra of its isolated component
peptides, fragment ions from the other peptide would remain un-
matched. This approach significantly improved the quality of the
spectral network and supplemental Fig. S2 shows the gains in
performance.

FDR from Propagation—The errors in both seed identification and
spectral pairs are involved in the overall error of propagation of
identifications in spectral networks. A propagated identification would
be correct only if i) the seed identification is correct and ii) all prop-
agation steps are correct. Thus, propagation FDR can be estimated
as the probability that, given a seed and all propagation steps, at least
one of these is incorrect. Supplemental Fig. S3 illustrates the propa-
gation FDR calculation. FDR is calculated for every propagation step
and FDRn after the n-th propagation to the current node is calculated
as follows:

FDRn � 1 � 	1 � a
 	1 � r
n (Eq. 3)

where a is the FDR in seed identification, and r is the FDR in spectral
pairs. Note that a is known because seeds are given (we used a �
0.0003), and r can be estimated using spectral pairs annotated by the

seeds (we used r � 0.005). This formula implements the intuition that
identifications via more steps of propagations would include a greater
error because of accumulated edge errors.

The aggregate FDR for overall identification up to current step was
calculated as follows

aggregate FDR �

�
k�0

n IDk � 	1 � 	1 � a
 	1 � r
k


�
k�0

n IDk

(Eq. 4)

where IDk is the number of identifications added at k-th propagation
The propagation procedure is stopped when the aggregate FDR

reaches a prespecified FDR threshold.
Modification Localization—Once a peptide sequence from an iden-

tified spectrum is propagated to an unidentified spectrum, new iden-
tification to the unidentified spectrum can be determined. A putative
modification mass is calculated as a precursor mass difference be-
tween the two spectra, and then the position of the modification in the
propagated peptide is assigned as follows. Every amino acid in the
peptide is assumed as a possible modification site. A modification to
each amino acid would generate a theoretical spectrum, where the
masses of fragment ions are shifted according to the modification
mass and location. All theoretical spectra are scored against the
unidentified spectrum, and then the modification site with the highest
score is determined. This new identification would be also propa-
gated to other unidentified spectra. Supplemental Fig. S4 illustrates
the procedure.

MS-GF� and MODa searches—For the performance comparison
with established tools, two searches were conducted. One was a
standard database search, MS-GF� (ver. 9881) (32), and the other
was an unrestrictive blind modification search, MODa (ver. 1.23) (18).
MS-GF� search parameters were as follows: enzyme � trypsin, the
number of enzymatic termini � 1/2, the number of missed cleav-
ages � any, precursor mass tolerance � � 20 ppm, C13 errors in
precursor mass � up to 2, variable modifications � oxidation (Met)
and pyro-glu (N-terminal Gln), the number of modifications/peptide �
up to 2. MODa search parameters were as follows: enzyme � trypsin,
the number of enzymatic termini � 1/2, the number of missed cleav-
ages � any, precursor mass tolerance � auto correction, fragment
mass tolerance � � 0.4 Da, modification mass size � �200, the
number of modifications/peptide � any. The database consisted of
4,335 and 5,239 protein sequences of Cyanothece sp. 8801 and
51142 downloaded from NCBI (August 2014) and was appended with
their reversed sequences. Finally, peptide identifications were ob-
tained at FDR 1% using target-decoy FDR estimation (33).

Software Implementation—Algorithms and software for spectral
networks analysis were integrated to a pipeline (supplemental Fig.
S5), which is available at http://proteomics.ucsd.edu/software. The
spectral networks pipeline supports various MS/MS spectral types:
(1) mzML, mzXML, mgf, and pkl as file formats; (2) CID, HCD, and ETD
as fragmentation methods; (3) high-resolution MS/MS instruments
such as Q-Tof and Q-Exactive. The results page provides a tabular list
view for peptide/protein report, which can be filtered and arranged by
various criteria, and a graphical view for the annotation of MS/MS
spectra.

RESULTS

Biohydrogen is an emerging renewable and green energy
source, and several microalgae and bacterial species are
studied as model organisms for photobiological hydrogen
production. Cyanothece sp. 51142, a unicellular, diazotrophic
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cyanobacterium, is capable of performing oxygenic photo-
synthesis during the day and nitrogen fixation at night, result-
ing in remarkably high rates of hydrogen production under
aerobic condition (36). Studying related Cyanothece species
is of great interest to identify variants with potentially im-
proved biofuel production mechanisms. However, as is gen-
erally the case with organisms with poorly annotated ge-
nomes, proteomics analysis for various environmental
isolates is challenging because of the lack of accurate and
complete proteomes. Here we show how this proteomics
challenge can be addressed for Cyanothece 51472 (which
lacks a sequenced genome) by using spectral networks of
MS/MS data of related species (Cyanothece 8801 and Cyan-
othece 51142) (see Fig. 1).

Analogous to the pairwise alignment of sequence reads in
genome assembly, the fundamental operation in spectral net-
works is pairwise alignment of spectra to spectra. Starting
with over 1 million spectra from all three Cyanothece species,
the search space contains �500 billion spectrum/spectrum
pairs where �99.9% are expected to be incorrect. To address
this challenge we first used MS-Cluster (31) to condense

redundant spectra into 438,718 representative consensus
spectra and then scored pairwise alignments between con-
sensus spectra using our new Align-GF approach to compute
rigorous p values of spectral alignments (see Fig. 2A and
supplemental Fig. S1; details under Experimental Proce-
dures). Align-GF successfully detected a very high fraction of
all true spectral pairs from many billions of false positive pairs,
resulting in a 393% increase in sensitivity at 99% precision in
comparison with the previous method (see Fig. 2B and sup-
plemental Fig. S1D). In particular it should be noted that
Align-GF detected pairs of variant peptides (e.g. mutated,
modified or truncated) equally well as pairs of identical pep-
tides (dotted curve in Fig. 2B). Generally, pairing the spectra
of slightly different peptides is more valuable because they
capture post-translational modifications and sequence diver-
gence between species, but it is more difficult than pairing
spectra of identical peptides.

As pairs are aggregated into networks, ideal subnetworks
should consist of only spectra from related variants of one
peptide, a kind of “peptide family.” However, incorrect spec-
tral pairs connect otherwise correctly disjoint subnetworks.

FIG. 1. Overview of multi-species spectral networks. Nodes represent individual spectra and edges between nodes represent significant
pairwise alignment between spectra; edges are labeled with amino acid mutations (dotted edges) or parent mass differences (solid edges). In
spectral networks, a peptide and its related variants are ideally grouped into a single subnetwork. If at least one spectrum in a subnetwork is
annotated (filled node), all the neighboring spectra (unfilled nodes) can potentially become identified by propagating the annotation over
network edges. For example, all spectra in the subnetwork of “peptide A” (top left, blue network) can be annotated via up to three iterative
propagations, first from A to {A1, A2, A3}, second from {A2, A3} to {A4, A5}, and third from {A4, A5} to A6. This paradigm can be equally applied
to cross-species data analysis, as “peptide L” identified in species 1 (top middle, olive-colored network) is propagated to a node unidentified
in species 2, identifying its orthologous “peptide l”, with a serine to alanine polymorphism. Thus, spectral networks enable the detection of
orthologous peptide pairs between different species.

Cross-species Spectral Networks

Molecular & Cellular Proteomics 15.11 3505

http://www.mcponline.org/cgi/content/full/O116.060913/DC1
http://www.mcponline.org/cgi/content/full/O116.060913/DC1
http://www.mcponline.org/cgi/content/full/O116.060913/DC1


Even at Align-GF’s 99.99% specificity and 99% precision, the
remaining high-scoring incorrect spectral pairs can create
large mixed networks. Two issues generally lead to mixed
subnetworks: false positive spectral pairs and co-fragmented
peptides in MS/MS spectra (37). We addressed this issue
using a network-splitting procedure to separate mixed net-
works by limiting the number of distinct precursor masses per
subnetwork (Experimental Procedures and supplemental Fig.
S2). Network splitting removed 37% of incorrect spectral
pairs from the spectral network and resulted in �5000 more
properly disjoint subnetworks while removing only 0.2% of
correct pairs. In contrast, a corresponding adjustment of the

Align-GF threshold eliminates only �2% of incorrect pairs
(�18� less) with the same sensitivity loss.

The final spectral network covered 242,341 spectra from
the three Cyanothece species (55% of the input consensus
spectra) combined into 33,188 subnetworks with 99.5%
precision of spectral pairs. Spectral networks yield addi-
tional peptide identifications via propagation across spec-
tral pairs and retain final identifications at FDR 1% (see
Experimental Procedures for details). Prior to propagation
16,932 annotated subnetworks (covering 180,236 spectra)
contained at least one identified spectrum (out of 61,799
PSMs used as seed annotations). The remaining 16,256

FIG. 2. Align-GF algorithm overview. A, Matching a spectral pair. Two MS/MS spectra are aligned allowing up to one modification,
matching red peaks in S1 with blue peaks in S2. The total score T1 of red peaks indicates how well S1 is explained by this alignment, and the
same for blue peaks in S2 and T2. Align-GF assesses each score, Ti, based on the histogram of all possible alignments against the
corresponding spectrum, Si, and computes its p value - the probability of randomly matching a spectrum with a score at least as high as T
(e.g. the probability that T1 is the result of a random match to S1). More details are provided under Experimental Procedures. If both p values
of T1 and T2 are less than the predefined cutoff, the two spectra are accepted as a spectral pair. Edges in spectral networks are thus defined
by spectral alignments between spectra Si and Sj. B, Align-GF performance. The correctness of spectral pairs was evaluated using MS-GF�
annotations. The blue curve represents the performance of Align-GF, whereas the red curve represents the previous method. The previous
method assumed that alignment scores between unrelated spectra conform to a Gaussian distribution (22, 23). The dotted curve shows the
performance in detecting variant pairs, in which one peptide is a prefix/suffix or a singly modified/mutated form of the other.
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unidentified subnetworks (62,105 spectra) did not contain
any identified spectra.

Spectral Networks Across Species—To evaluate the effec-
tiveness of spectral networks across species, we separated
the 16,932 annotated subnetworks into 7 groups (see Fig. 3).
This readily revealed that species 8801 and 51472 were
closely related in that subnetworks across the two species
were most frequently found (covering �95% of all networked
spectra from species 8801 and 51472), whereas species
51142 was comparatively distant from the other species in
that intraspecies subnetworks were more frequently observed
(33% of all networked spectra from species 51142).

We next focused on subnetworks containing variant pairs -
spectral pairs where the parent mass difference between the
spectra in the pair is larger than 5 Da (to avoid ambiguities
because of precursor mass errors). It should be noted that
subnetworks consisting of spectra from multi-species are
more likely to contain peptide variants because orthologous
peptides are commonly observed in proteomics data from
different species. For example, �90% of the 2,378 subnet-
works consisting of spectra from all three species contained
variant pairs, compared with 36% for those including only
spectra from species 51142. In Fig. 3, the presence of or-
thologous peptides is also supported by a strong peak at 14

Da (corresponding to 8 different amino acid mutations: Asp/
Glu, Gly/Ala, Ser/Thr, Asn/Gln, Asn/Lys, Thr/Asp, Val/Leu, and
Val/Ile) in the delta mass histogram from interspecies pairs.
Moreover, subnetworks across all three species contain a
majority of spectra and the spectral count from each species
is evenly abundant, indicating that abundantly observed pep-
tides in one species have their orthologous ones that are also
abundantly observed in different species.

One example of a multi-species spectral network with spe-
cies-specific mutations is shown in Fig. 4. Twenty-three poly-
morphic peptides from allophycocyanin proteins, two from
species 8801 (blue series) and two from species 51142 (red
series), constructed a single subnetwork. Paired peptides dif-
fered by one and two amino acid mutations, oxidation or
truncation events. These chromophore containing phycobili-
some proteins are key components of light harvesting com-
plexes, found within specialized thylakoid membranes, and
which facilitate the capture and transfer of light energy into
the cellular reaction centers. Polymorphisms in these proteins
have significant implications on energy harvesting and
transfer, photosynthetic efficiency, and hence production of
downstream bioenergy related molecules. As such, they are
of high interest for optimizing synthetic bioenergy produc-
tion. This subnetwork is highlighted to show that two pep-

FIG. 3. Annotated spectral networks. This Venn diagram classifies 16,932 annotated subnetworks into seven groups by combinations of
species based upon the origin of the spectra in each subnetwork; blue represents Cyanothece sp. 8801, red Cyanothece sp. 51142, and green
Cyanothece sp. 51472. There are 2,378 subnetworks that include spectra from all species; 97% of all networked spectra from Cyanothece
51472 (with unknown genome) were contained in multi-species subnetworks. For each group, two properties are shown: 1) #Spectra from
species is the number of spectra in the group from species 8801 at the first column, 51142 at the second, and 51472 at the third, respectively;
2) #Networks with variants is the number of subnetworks that include variant pairs - spectral pairs in which the parent mass difference between
the two spectra is larger than 5 Da. In the right bottom, the delta mass histogram is shown for variant pairs in the group that includes spectra
from species 51142 and 51472 (dotted rectangle), where the gray distribution was calculated from interspecies pairs.
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tides with seven amino acid mutations were connected via
intermediate mutated and truncated peptides, showing how
spectral networks can detect distantly related peptide
variants.

Peptide Identification Via Propagation—Propagating anno-
tations is a unique feature in spectral networks, and can lead
to significant increases in the number of identified spectra,
including multiply modified peptides. The accuracy of propa-
gation relies on both the accuracy of seed identifications and
the reliability of spectral pairs. For example, if seed identifi-
cations were obtained at FDR 1%, all identifications propa-
gated from the 1% false-positives must be also incorrect.
Additionally, because spectral networks contain a small frac-
tion of incorrect edges, errors also accumulate with more
steps of propagation. After a systematic analysis of the errors
in propagation, we propose a new approach to estimate the
FDR of peptide identifications in spectral networks so that we
can control the propagation procedure and make the identi-
fication results comparable to other search tools (Experimen-
tal Procedures and supplemental Fig. S3).

In the spectral networks of three Cyanothece, we started
propagation with 61,799 seed identifications from MS-GF�

(32). Nonannotated nodes received their annotation from the
incoming edge with the lowest Align-GF p value (supplemen-

tal Fig. S6). Spectral networks identified 121,204 additional
spectra at FDR 1%, leading to the identification of 95% of
spectra in annotated subnetworks. Fig. 5A shows the num-
bers and directions of propagations across species. The in-
traspecies propagations (shown as the circled arrows) mainly
identify modified peptides, whereas interspecies propaga-
tions identify orthologous peptides. We note that propagation
through spectral networks increases the confidence and sen-
sitivity in the assignment of modified/mutated peptides, as
spectral pairs provide additional evidence that the corre-
sponding spectra contained highly correlated peptide frag-
mentation patterns. This strength is maximized in multi-spe-
cies analysis, where grouping multiple variants of a peptide
across species increases the chance of reliably identifying
novel peptides through alignment with multiple related pep-
tides. As illustrated in Fig. 5B, the novel peptide identification
in sp. 51472 is supported by high correlation with both seed
identifications from sp. 8801 and 51142.

Multistep propagation allows spectral networks to be ex-
tremely flexible in the identification of highly modified pep-
tides and supplemental Fig. S7 shows an example of identi-
fying a triply modified peptide. Propagation via the network
avoids the large search space of blind searches (which allows
one modification of any mass anywhere in the database) by

FIG. 4. Multi-species spectral network with species-specific mutations. Twenty-three different peptides from four versions of “allophy-
cocyanin subunit beta” protein constructed a single subnetwork. Pairwise spectral alignments that pass the Align-GF cutoff are shown as
edges connecting the peptide sequences. The blue series of peptides were from species 8801 (Uniprot: B7K5Q5_CYAP8 in dark blue and
B7JYL9_CYAP8 in light blue), and red series from 51142 (Uniprot: B1WV60_CYAA5 in dark red and, B1X0K5_CYAA5 in light red). Through this
dense network, we are able to connect highly divergent peptides, e.g. peptides 1 and 4 differ by seven amino acids.
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allowing for any number of modifications but only as derived
from seed sequences. This is a great advantage in that the
performance of blind database searches tends to degrade
rapidly with increasing numbers of modifications and sites per
peptide, in both the accuracy of peptide identifications and
the speed of the searches (19, 20).

Competence in Identifications—To contrast the identifica-
tion performance of spectral networks with mainstream ap-
proaches, the results were compared with the standard da-
tabase search tool MS-GF� (32), and the blind search tool
MODa (18) (see Experimental Procedures). Spectral networks
initially used the subset of MS-GF� PSMs as seeds for prop-
agation (at FDR 0.03%) and increased the number of identi-
fications in networked spectra by �180% at FDR 1%. Con-
sequently, spectral networks resulted in a total of 38% more
PSMs than MS-GF� (Fig. 6A). Further examination of the
31,321 PSMs identified only by MS-GF� revealed that most
PSMs had low spectral probabilities (in Fig. 6A), and are thus
most likely derived from less informative spectra.

Spectral networks take advantage of spectral pairs and
emphasize the improvement of identification performance on
networked spectra. In Fig. 6B, spectral networks show the
significant improvement on networked spectra, resulting in 80
and 45% more PSMs than MS-GF� and MODa, respectively.
The loss of sensitivity in spectral networks mainly occurred at
nonnetworked spectra, which have poor PSM scores (Fig.
6A). This identification inconsistency for poor quality spectra
between search tools is common in MS/MS data analyses
(38).

DISCUSSION

Microorganisms are very diverse and their proteomics anal-
yses have been limited because of the lack of sequenced
genomes. Multi-species spectral networks provide a new way
to identify microbial peptides and proteins. The spectral net-
works analysis of three related Cyanothece confirmed that
orthologous peptides were commonly observed in multi-spe-
cies MS/MS data sets, and identified many polymorphic pep-
tides across species, leading to more identifications than
other approaches, even for organisms without a sequenced
genome. The algorithmic and statistical advances in spectral
networks successfully addressed reliability challenges in
large-scale analysis of multiple species data sets. Align-GF
rigorously assessed the statistical significance of each spec-
tral alignment using the score distribution of all possible align-
ments, and thus provided excellent separation between cor-
rect and incorrect spectral pairs. Align-GF detected spectral
pairs of variant peptides equally well as those of identical
peptides, resulting in a 4-fold increase in sensitivity. This core
improvement significantly expands the utility of spectral net-
works. We also, for the first time, proposed the FDR estima-
tion of propagating annotations through a spectral network.
Although some approaches have proposed the identification
of modified peptides by propagating annotations (39–41),
none has fully addressed FDR estimation. Our approach en-
sures a conservative estimate of the FDR and is increasingly
rigorous for higher-modified peptides. Most importantly, the
FDR estimation also makes spectral networks results compa-
rable with other methods and reveals that the resulting spec-

FIG. 5. Propagation over multi-species spectral networks. A, The numbers of intraspecies (circled arrows) and interspecies (arrows
between colored triangles) propagations are shown. B, Propagation into unknown species 51472 identified novel, orthologous peptides. The
fragment ion alignment is shown between a spectrum of a novel peptide (middle) identified by propagation from two seed peptides from
different species in the same subnetwork. The two seeds were identified from dihydrolipoyl dehydrogenase in each species.
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trum identification rates can be nearly complete (currently at
95%) as soon as there is at least one seed in a subnetwork.

Spectral networks emphasize the importance of analyzing
spectra as a group, which significantly increases both the
number of identified spectra and their confidence. Neverthe-
less, we acknowledge that spectra that do not group into
spectral networks or subnetworks which lack a seed annota-
tion are currently not suitable for spectral networks analysis.
Missing seeds may be because of database or search tool
limitations, and using several tools (including spectral net-
works de novo sequencing approaches (42)) or expanded
databases may help address the problem. However, in our
multi-species analysis, we note that a significant portion of
unidentified subnetworks consisted of spectra from multi-
species and contained variant pairs (supplemental Fig. S8),
strongly suggesting that these unidentified subnetworks con-
tain novel peptides that are still missing from the database.
The properties of unidentified subnetworks are similar to
those of annotated subnetworks.

Recent developments in high mass accuracy tandem mass
spectrometry (e.g. HCD) have significantly improved spec-
trum identification performance by reducing the chance of
randomly matching fragment ion peaks (43). Our approach
also supports the analysis of various types of high mass
accuracy MS/MS data (see Software Implementation under
Experimental Procedures), and users can specify low toler-
ances for fragment ion masses according to the instrument
accuracy. Although the data analyzed here was not obtained
using high mass accuracy MS/MS, previous spectral net-
works approaches have been applied to such types of data
and similar gains (44) are expected when applying the current
approach to high mass accuracy MS/MS.

Although current approach was based on the similarity in
fragmentation pattern between MS/MS spectra within the
specified mass difference, the utilization of additional infor-

mation could further improve the performance of spectral
alignment. For example, although we allowed any mass of
modifications to search for all known and even possibly un-
known types of modifications at once, more targeted analysis
could be performed by allowing only user-defined modifica-
tions or all modification types known in Unimod database
(http://www.unimod.org). This could filter out many incorrect
spectral alignments whereas possibly increasing the confi-
dence of modified peptide identifications. Retention time dif-
ferences (39, 45) could also be used to potentially reduce
incorrect spectral alignments. Finally, the impact of multi-
plexed spectra causing incorrect grouping of spectra into
mixed networks could also be potentially improved by invest-
ing and thresholding precursor ion fraction (37), defined as the
fraction of the targeted precursor ion in the MS/MS isolation
window.
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29. Aryal, U. K., Stöckel, J., Krovvidi, R. K., Gritsenko, M. A., Monroe, M. E.,
Moore, R. J., Koppenaal, D. W., Smith, R. D., Pakrasi, H. B., and Jacobs,
J. M. (2011) Dynamic proteomic profiling of a unicellular cyanobacterium
Cyanothece ATCC51142 across light-dark diurnal cycles. BMC Syst.
Biol. 5, 194
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