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Abstract: Early detection of the autosomal dominant polycystic kidney disease (ADPKD) is crucial
as it is one of the most common causes of end-stage renal disease (ESRD) and kidney failure. The
total kidney volume (TKV) can be used as a biomarker to quantify disease progression. The TKV
calculation requires accurate delineation of kidney volumes, which is usually performed manually
by an expert physician. However, this is time-consuming and automated segmentation is warranted.
Furthermore, the scarcity of large annotated datasets hinders the development of deep learning
solutions. In this work, we address this problem by implementing three attention mechanisms into
the U-Net to improve TKV estimation. Additionally, we implement a cosine loss function that works
well on image classification tasks with small datasets. Lastly, we apply a technique called sharpness
aware minimization (SAM) that helps improve the generalizability of networks. Our results show
significant improvements (p-value < 0.05) over the reference kidney segmentation U-Net. We show
that the attention mechanisms and/or the cosine loss with SAM can achieve a dice score (DSC) of
0.918, a mean symmetric surface distance (MSSD) of 1.20 mm with the mean TKV difference of
−1.72%, and R2 of 0.96 while using only 100 MRI datasets for training and testing. Furthermore, we
tested four ensembles and obtained improvements over the best individual network, achieving a
DSC and MSSD of 0.922 and 1.09 mm, respectively.

Keywords: attention; autosomal dominant polycystic kidney disease; cosine loss; deep learning; im-
age segmentation; magnetic resonance imaging; sharpness aware minimization; total kidney volume

1. Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disorder
with a slow and gradual development of cysts in the kidneys. ADPKD leads to renal
enlargement and eventually to end-stage renal disease (ESRD) with renal failure [1,2].
Daalgard et al. [3] reported that ESRD might occur within five years after detecting ADPKD.
Hence, it is important to monitor ADPKD progression in patients. The total kidney volume
(TKV) increases with ADPKD progression and, therefore, can be used as a risk predictor of
disease development [4] and to quantify disease progression [5].

Consequently, the Food and Drug Administration (FDA) has accepted TKV as an
important biomarker [6] for determining renal function in patients. Moreover, the TKV
is the only MRI-established biomarker so far [7] and can be determined by segmenting
the kidneys from the MRI volumes. Manual segmentation by an experienced physician
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is, however, time-consuming and prone to observer variability [8]. Alternatively, deep
learning approaches are generally much faster and have recently achieved state-of-the-art
results in medical imaging [9].

In the past, kidney segmentation has been approached via classical image process-
ing techniques, such as algorithmic segmentation methods, model-based segmentation
methods, and their combinations. An overview of related work is given in two reviews
by Zöllner et al. [7,8]. However, only a few machine learning (especially deep learning
approaches) for kidney segmentation have recently been proposed.

Kline et al. [10] approached kidney segmentation of ADPKD patients with 2000 train-
ing and 400 test cases. They employed multi-observer artificial neural networks consisting
of 11 CNNs with variable depths and parameters. They post-processed the prediction map
using the two largest connected components and then applied active contours and edge
detection to finalize the segmentation. The resulting average dice score (DSC) was 0.97.
Based on this work, van Gastel et al. [11] used T2-weighted MR images from 440 ADPKD
patients for training and extended the method to also include liver segmentation. They
added inception blocks and residual connections to the network in [10], obtaining a DSC of
0.96. In another approach, Bevilacqua et al. [12] implemented R-CNN to first determine the
ROI containing kidneys and then a semantic segmentation CNN to delineate the kidneys.
Their approach reached a DSC of 0.88 with a dataset of 57 images from four patients. Mu
et al. [13] employed a multi-resolution method using a modified V-Net [14] to segment
ADPKD kidneys in 305 patients. The resulting DSC reached 0.95. Daniel et al. [15] de-
veloped an automated system using the U-Net [16] to segment kidneys and ultimately
determine TKV for renal disease detection. They used T2-weighted MR images from
30 healthy and 30 chronic kidney disease (CKD) patients. Their system achieved a DSC of
0.93 on a test dataset consisting of 10 patients.

The drawback of such deep learning approaches is that they require huge amounts of
data to train the networks to achieve high (segmentation) accuracy. This problem is further
escalated in the medical sector where image data are rare in most cases. The reason is that
acquiring large medical datasets is hindered by the complexity and high cost of large-scale
experiments or in the case of a rare disease, a limited number of patients. Additionally, a
class imbalance between the background and the segmented object exists. To mitigate this
problem, data augmentation techniques [17] or approaches to generate synthetic data are
proposed [18,19].

Our contribution in this work is to address the problem of a small dataset by introduc-
ing a cosine loss function, which, to the best of our knowledge, has not been implemented
so far for medical image segmentation tasks. Moreover, we integrate sharpness aware mini-
mization (SAM) [20] with the loss function to improve model generalizability. We further
investigate and incorporate three attention mechanisms [21–25] with convolutional neural
networks (CNNs) so that the networks can focus on relevant image regions. As a final
experiment, we explore four ensembles that consist of different attention networks and loss
functions with SAM for automatic kidney volume segmentation in patients with ADPKD.

2. Materials and Methods
2.1. Image Data

The patient image data were obtained from the National Institute of Diabetes and
Digestive and Kidney Disease (NIDDK), National Institutes of Health, USA, and were
recorded in the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease
(CRISP) study [2]. It contains T1- and T2-weighted MRI scans of patients with different
stages of CKD. For this work, we retrieved 100 datasets from the NIDDK database. The
male-to-female ratio is 50:50 with an average age of 30± 10 years. It includes patients from
healthy (CKD stage 1) to ADPKD (CKD stage 3) cases. The number of cases belonging to
CKD stages 1, 2, and 3 is 41, 41, and 18, respectively. We only focused on T1-weighted
MRIs. Images were recorded with a matrix of 256 × 256 and 30–80 slices with an in-plane
resolution of 1.41 × 1.41 (±0.13) mm2 and slice thickness of 3.06 (±0.29) mm. Images were
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recorded in the coronal orientation. More details of the imaging protocol can be found in
the original study in [2].

2.2. Image Annotation

For each dataset, left and right kidneys including cysts, were segmented manually as
a reference standard. Two experienced physicians independently performed segmentation
on coronal MR images using an in-house developed annotation tool based on MeVisLab
SDK (MeVis Medical Solutions, Inc., Bremen, Germany), which also allowed for an analysis
of the inter-user agreement of kidney segmentations. The mean inter-user agreement was
found to be 0.91 ± 0.06 (Dice) with a coefficient of variation of 0.07.

2.3. Pre-Processing

We first normalized the images using Equation (1),

Î =
I − µ(I)

σ(I)
, (1)

where µ(I) and σ(I) are the mean and standard deviations, respectively, of the original
image I. Î is the normalized image. Furthermore, as a data augmentation technique, we
used a constrained label sample mining approach where patches were extracted from
MRI slices with patch center probability of 50:50 on the label:background pixel for each
batch [26]. We trained the networks on patches of size 96 × 96 and 128 × 128. For testing,
we used the whole image size of 256 × 256. The pre-processing was implemented using
SimpleITK 1.2.4 [27].

2.4. Attention Module

Oktay et al. [21] proposed attention gates in the U-Net to guide the network in selecting
relevant features and disregard irrelevant ones by using higher-level features as a guide to
suppress trivial and noisy responses in the lower-level skip connections. Figure 1 illustrates
this attention module.

Figure 1. Attention module used in the Attention U-Net. It takes two inputs: g and xl where g
is the higher-level feature and spatially smaller than the previous layer feature xl . g is used to
guide lower-level features xl to emphasize relevant image regions. This is achieved by calculating α

coefficients that are element-wise multiplied with xl to produce attention maps. Adapted from [21].

The gating signal g is the higher-level feature and xl is the corresponding previous
layer skip connection. Since g is spatially smaller and has more feature maps than xl , it
is convoluted with a 1 × 1 filter to obtain the same number of features. Afterward, g is
upsampled to have the same spatial dimensions as xl . Then, both g and xl are concatenated
followed by ReLU, 1 × 1 convolution, sigmoid activation, and eventually an upsampling
layer resulting in the attention coefficients α. The attention coefficients are then multiplied
with the skip connection to obtain the final attention feature maps.
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2.5. Convolutional Block Attention Module

The convolutional block attention module (CBAM) calculates and combines both
spatial and channel attention into one network [23]. Briefly, a 1D channel attention map and
thereafter a 2D spatial attention map are computed. The spatial attention map is generated
by performing max and average-pooling operations along the channel dimension of the
input feature map. The pooled feature maps are concatenated and fed forward through a
convolution layer to yield a 2D spatial attention map. There are two versions of channel
attention: (1) squeeze and excitation attention proposed by Hu et al. [22] and (2) channel
attention, as outlined in [23]:

2.5.1. Squeeze and Excitation Attention

This attention mechanism focuses on channel relationships in a network. Briefly, the
attention module performs two operations sequentially to form a squeeze and excitation
(SE) block. First, a squeeze operation on the input layer is executed, which is then followed
by an excitation operation. The squeeze operator does a global average-pooling of spatial
information into a channel descriptor of size 1 × 1 × C, where C is the number of channels
in the input layer. This output vector is then processed by an excitation operation that
captures full channel-wise dependencies [22]. The following equation describes the exact
excitation operation,

Ex = φsig(W2φReLU(W1 z)), (2)

where z is the output from the squeeze operation, φReLU the ReLU activation, W1 & W2
are two fully connected (FC) layers, and φsig is the sigmoid activation. The final output is
obtained by multiplication of Ex and the input layer. The squeeze and excitation operation
is depicted in Figure 2.

Figure 2. Squeeze and excitation module. The module first squeezes the input features to a vector
with the shape 1xC (C: number of channels in the input features). This is followed by the excitation
operation where a multi-layer perceptron processes the input vector. The final output feature map is
calculated by multiplication between the output vector and the input feature map. Adapted with
permission from Ref. [22]. 2018, IEEE.

2.5.2. Channel Attention in CBAM

The CBAM’s channel attention [23] is calculated by squeezing the spatial dimension
of the input feature map using average and max-pooling and then feeding them forward
through a small multi-layer perceptron (MLP).

The channel and spatial attention modules used in CBAM are illustrated in Figure 3a.
The complete CBAM block is shown in Figure 3b. In our experiments, we incorporate SE
and CBAM blocks in the Attention U-Net [21] encoder to implement the SE U-Net and
CBAM U-Net, respectively.
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(a) Channel and spatial attention blocks in CBAM

(b) Convolutional Block Attention Module (CBAM)

Figure 3. The scheme of the convolutional block attention module. (a) The channel attention module
implements max and average pooling along the channel dimension. It produces a refined 1D channel
attention vector. Meanwhile, the spatial attention module applies max and average pooling along
spatial dimensions to produce a 2D spatial attention map. (b) The CBAM combines the channel and
spatial attention maps (red-colored squares) detailed in (a) and applies them to the input feature map
sequentially to produce an output feature map, which is refined along both the channel and spatial
dimensions. Adapted with permission from Ref. [23]. 2018, Springer Nature.

2.6. Cosine Loss

The cosine loss has been shown to improve the image classification accuracy for small
datasets [28]. Hence, we adapt this loss function for our kidney segmentation task. The
loss is given by,

S(Ŷ, Y) =
〈Ŷ, Y〉

‖Ŷ‖2 · ‖Y‖2
, (3)

LCOS(Ŷ, Y) = 1− S(Ŷ, Y), (4)

where S and LCOS are the cosine similarity and cosine loss, respectively, between the
prediction Ŷ and the ground truth Y.

2.7. Sharpness Aware Minimization

Foret et al. [20] introduced a technique called sharpness aware minimization (SAM)
that helps improve the generalizability of neural networks. Briefly, the method searches for
a neighborhood of parameters with homogeneous low loss values, signifying a wide loss
curve at the minimum, thereby, reducing the loss value and sharpness of the loss curve.
A wide minimum suggests that the parameters in the neighborhood will generally yield
consistently better predictions compared to a minimum with a sharp curve.
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2.8. Networks

All networks implemented in this work are based on the 2D U-Net architecture
by Ronneberger et al. [16] extended with residual connections. The baseline 2D U-Net
architecture is illustrated in Figure 4a. For the baseline experiments, the 2D U-Net is used
with DSC loss (cf. Equation (5)) and a combination of DSC and cross-entropy (CE) loss.

LDSC
(
Ŷ, Y

)
= 1−

2 ·
3
∑

c=1

N
∑

i=1
ŷi,c · yi,c

3
∑

c=1

N
∑

i=1
ŷi,c +

3
∑

c=1

N
∑

i=1
yi,c

(5)

The cross-entropy loss is given by,

LCE
(
Ŷ, Y

)
= −

3
∑

c=1

N
∑

i=1
yi,c log(ŷi,c)

3 · N (6)

where ŷi,c and yi,c correspond to the individual voxel probabilities and label, respectively,
with c and N being the number of classes and voxels in a batch, respectively. Equation (7)
depicts the combination of LCE and LDSC where LCE is weighted with λ = 10 [29].

(a) Baseline U-Net

(b) Attention U-Net

(c) SE or CBAM Attention U-Net

Figure 4. The network architectures for kidney segmentation: (a) baseline U-Net without any
attention modules, (b) U-Net with attention modules as described by Oktay et al. [21] and (c) U-Net
combining SE or CBAM [22,23] with attention modules from [21].
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LCE+DSC
(
Ŷ, Y

)
= LDSC

(
Ŷ, Y

)
+ λ LCE

(
Ŷ, Y

)
(7)

The Attention U-Net as introduced in Section 2.4, is depicted in Figure 4b. The other
variants that involve SE modules/CBAMs in the Attention U-Net encoder part are shown
in Figure 4c. In preliminary experiments, we found that modifying baseline U-Net with
only CBAMs or SE modules performed worse or similar to the baseline. Hence, for any
further experiments, we combined them only with the Attention U-Net. All described
networks were implemented using TensorFlow 2.0 and Python 3.7.

2.9. Training

We trained the networks on T1-weighted MR images and implemented a batch size
of 16 and 8 for patch sizes 96 and 128, respectively, using the Adam optimizer [30] and a
learning rate of 10−3. We used exponential linear units (elus) [31] as activation functions
with batch normalization, L2-regularization (10−7) and drop-out with probability of 0.01.
Furthermore, we performed 5-fold cross-validation with a split of 70:10:20 patient image
volumes in train:validation:test sets. We selected 160 samples per patient MRI volume
during training.

Each network was trained for at least 20 epochs. After that, the training stopped as
soon as the difference in segmentation accuracy of each kidney in the validation data were
less than 10−4 over the last ten epochs. We then selected the network’s weights with the
highest average accuracy on the validation data from these last ten epochs.

2.10. Ensembles

We created two ensembles from our proposed networks. The first one consists of four
networks (SE U-Net, CBAM U-Net, Attention U-Net, and U-Net) trained using cosine loss
with SAM (LCOS + SAM). The second ensemble consists of seven networks that include
the four networks from the first ensemble plus three networks (SE U-Net, CBAM U-Net, and
Attention U-Net) trained using cross-entropy + DSC loss with SAM (LCE+DSC + SAM).
We selected these networks to test all attention networks and loss functions. We employed
two methods for calculating the ensemble result: (1) simultaneous truth and performance
level estimation (STAPLE) [32] and (2) majority voting.

2.11. Evaluation

To compare the proposed models, we used the DSC, the mean symmetric surface
distance (MSSD), and the TKV as evaluation metrics. Firstly, we used the DSC similarity
coefficient to assess the overlap between the ground truth Y and the segmentation Ŷ,

DSC
(
Ŷ, Y

)
=

2 |Ŷ ∩Y|
|Ŷ|+ |Y|

(8)

Secondly, we employed the MSSD (in mm) that is more perceptive to alignment and shape:

MSSD
(
Ŷ, Y

)
=

∑
ŷ∈Ŷ

min d(ŷ, Y) + ∑
y∈Y

min d(y, Ŷ)

|Ŷ|+ |Y|
(9)

Finally, we calculated the TKV (in mL) by multiplying the number of voxels belonging to
the segmented kidneys by their voxel volume (mm3) divided by 1000 to convert the result
to mL.

We compared the TKVs of the manual and the obtained segmented kidneys of our
networks using scatter plots and the coefficient of determination (R2).

Furthermore, we used a paired t-test to check for the significance between the results
from the baseline and our implemented methods. Here, the null hypothesis is that the base-
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line network configuration is better than the developed methods for the given evaluation
metric. It is rejected at p < 0.05.

3. Results

The quantitative results for all experiments are displayed in Table 1 where the DSC and
MSSD values are averaged over both the kidneys for better comprehension. For the baseline
U-Net (Figure 4a), the DSC loss (LDSC) performs worse for all metrics and patch sizes
than the combination of cross-entropy and DSC loss (LCE+DSC). Furthermore, all proposed
methods perform better than the baseline. Post-processing employing the largest connected
components further improves the DSC and MSSD. In most cases, improvements are sig-
nificant (see Table 2). The best results among individual networks were obtained using
the U-Net with LCOS + SAM and patch size of 128. Here, an average DSC of 0.918± 0.044
and an MSSD of 1.199± 1.525 mm were achieved. The segmentation quality was further
improved using ensembles. The DSC and MSSD of 0.922± 0.047 and 1.094± 1.376 mm,
respectively, were achieved using the ensemble of seven models with the majority voting
scheme. Table A1 displays results for the left and right kidneys.

Table 1. The DSC and MSSD (in mm) values for various networks with loss functions as DSC (LDSC),
cross-entropy+DSC (LCE+DSC), and cosine loss (LCOS). The experiments were performed for two
patch sizes: 96 and 128, with the numbers in bold implying significant difference (p-value < 0.05)
between the baselines and the corresponding network configuration. The underlined numbers signify
the best in the respective category excluding ensemble results. As can be seen, adding attention to
the U-Net can improve the results significantly (Attention and CBAM U-Nets). Furthermore, cosine
loss alone (U-Net) or with Attention and CBAM U-Nets provides better DSC than the corresponding
cross-entropy+DSC loss networks. Finally, the ensembles outperform the best model in each category.
The ensembles in italics imply significantly better results (p-value < 0.05) than the corresponding best
performing model.

Architecture Loss DSC ↑ MSSD (mm) ↓ DSC ↑ MSSD (mm) ↓
96× 96 96× 96 128× 128 128× 128

Baseline U-Net LDSC 0.789 ± 0.109 8.803 ± 5.947 0.855 ± 0.079 5.435 ± 5.257
LCE+DSC 0.865 ± 0.075 4.229 ± 4.094 0.888 ± 0.067 3.297 ± 3.951

SE U-Net LCE+DSC 0.889 ± 0.060 3.199 ± 3.941 0.892 ± 0.060 2.805 ± 3.087
LCOS 0.879 ± 0.080 3.566 ± 4.164 0.892 ± 0.057 2.654 ± 2.843
LCE+DSC + SAM 0.895 ± 0.060 2.357 ± 2.790 0.903 ± 0.052 2.248 ± 2.719
LCOS + SAM 0.902 ± 0.055 2.228 ± 3.045 0.899 ± 0.058 2.450 ± 3.272

CBAM U-Net LCE+DSC 0.878 ± 0.080 3.517 ± 4.327 0.899 ± 0.056 2.490 ± 3.013
LCOS 0.894 ± 0.056 2.636 ± 2.648 0.898 ± 0.057 2.332 ± 2.568
LCE+DSC + SAM 0.880 ± 0.064 3.689 ± 4.120 0.903 ± 0.060 2.549 ± 4.997
LCOS + SAM 0.885 ± 0.073 3.520 ± 5.274 0.902 ± 0.056 2.090 ± 2.683

Attention U-Net LCE+DSC 0.882 ± 0.069 3.331 ± 3.681 0.898 ± 0.057 3.158 ± 4.191
LCOS 0.892 ± 0.060 3.382 ± 4.790 0.901 ± 0.061 2.427 ± 3.250
LCE+DSC + SAM 0.886 ± 0.068 3.144 ± 4.266 0.903 ± 0.054 2.461 ± 2.717
LCOS + SAM 0.896 ± 0.060 2.621 ± 3.270 0.907 ± 0.057 2.338 ± 3.987

U-Net LCOS 0.885 ± 0.069 3.007 ± 3.317 0.902 ± 0.061 2.228 ± 2.856
LCOS + SAM 0.899 ± 0.056 2.754 ± 3.541 0.909 ± 0.049 2.417 ± 3.542

Ensemble-4-STAPLE LCOS + SAM 0.904 ± 0.058 2.479 ± 3.621 0.913 ± 0.052 1.967 ± 2.841
Ensemble-7-STAPLE LCE+DSC + SAM + LCOS + SAM 0.903 ± 0.059 2.472 ± 3.575 0.916 ± 0.052 1.732 ± 2.467
Ensemble-4-VOTING LCOS + SAM 0.910 ± 0.051 1.886 ± 2.615 0.914 ± 0.049 1.506 ± 2.018
Ensemble-7-VOTING LCE+DSC + SAM + LCOS + SAM 0.910 ± 0.051 1.934 ± 2.690 0.918 ± 0.048 1.484 ± 2.083

Examples of obtained segmentation after post-processing for each network are dis-
played in Figure 5. The top row depicts a case with a DSC of 0.96 (stage: 1, female, age:
34), where the two networks (U-Net (LCOS ) & Attention U-Net (LCE+DSC )) surpass the
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baseline only by a DSC of ≈ 0.002. The lower row depicts the obtained segmentation from
a case with a high load of cysts that are distributed not only in the kidneys but all over
the abdomen (stage: 2, female, age: 32). We observe that every network has difficulties
obtaining a DSC > 0.80. Nonetheless, the proposed networks outperform the baseline
U-Net by up to 18% (U-Net (LCOS + SAM)).

Table 2. Results after post-processing with the largest-connected components. The two evaluation
metrics are the DSC and the MSSD with the bold values being significantly better (p-value < 0.05)
than the corresponding baseline network. The underlined values represent the best outcomes in
their respective category excluding ensemble results. Meanwhile, the highlighted values in yellow
imply a significantly better (p-value < 0.05) score than the results from the corresponding networks
without post-processing from Table 1. The ensembles in italics signify significantly better results
(p-value < 0.05) than the corresponding best performing model.

Architecture Loss DSC ↑ MSSD (mm) ↓ DSC ↑ MSSD (mm) ↓
96× 96 96× 96 128× 128 128× 128

Baseline U-Net LCE+DSC 0.880 ± 0.071 2.382 ± 2.950 0.902 ± 0.600 1.530 ± 2.542
SE U-Net LCE+DSC 0.897 ± 0.058 1.687 ± 1.970 0.899 ± 0.055 1.630 ± 2.054

LCOS 0.884 ± 0.088 2.002 ± 3.000 0.899 ± 0.051 1.579 ± 1.791
LCE+DSC + SAM 0.894 ± 0.070 1.580 ± 1.941 0.904 ± 0.057 1.290 ± 1.225
LCOS + SAM 0.902 ± 0.060 1.438 ± 1.600 0.900 ± 0.079 1.593 ± 2.912

CBAM U-Net LCE+DSC 0.890 ± 0.070 1.937 ± 2.620 0.906 ± 0.052 1.395 ± 1.480
LCOS 0.901 ± 0.057 1.367 ± 1.158 0.903 ± 0.058 1.504 ± 1.863
LCE+DSC + SAM 0.892 ± 0.059 1.947 ± 2.228 0.910 ± 0.054 1.294 ± 1.644
LCOS + SAM 0.896 ± 0.065 1.926 ± 2.717 0.908 ± 0.054 1.346 ± 1.705

Attention U-Net LCE+DSC 0.891 ± 0.076 1.794 ± 2.046 0.910 ± 0.042 1.371 ± 1.297
LCOS 0.904 ± 0.056 1.588 ± 1.912 0.910 ± 0.052 1.377 ± 1.671
LCE+DSC + SAM 0.895 ± 0.065 1.922 ± 2.757 0.911 ± 0.051 1.398 ± 1.852
LCOS + SAM 0.905 ± 0.056 1.470 ± 1.713 0.913 ± 0.051 1.312 ± 1.708

U-Net LCOS 0.896 ± 0.074 1.812 ± 2.643 0.909 ± 0.057 1.358 ± 1.970
LCOS + SAM 0.908 ± 0.054 1.480 ± 1.885 0.918 ± 0.044 1.199 ± 1.525

Ensemble-4-STAPLE LCOS + SAM 0.909 ± 0.055 1.560 ± 2.087 0.919 ± 0.048 1.204 ± 1.508
Ensemble-7-STAPLE LCE+DSC + SAM + LCOS + SAM 0.909 ± 0.054 1.534 ± 1.881 0.921 ± 0.048 1.174 ± 1.528
Ensemble-4-VOTING LCOS + SAM 0.914 ± 0.053 1.204 ± 1.367 0.917 ± 0.048 1.125 ± 1.340
Ensemble-7-VOTING LCE+DSC + SAM + LCOS + SAM 0.914 ± 0.052 1.299 ± 1.620 0.922 ± 0.047 1.094 ± 1.376

Investigating the cases with DSC ≤ 0.80, we observe that our proposed networks can
reduce the number of such cases by half: 13 for the baseline U-Net (LCE+DSC) versus 5 for
the other networks. It is also worth noting that these 5 cases were among the 13 cases
with low DSC of the baseline U-Net. Moreover, the ensemble with 7 networks reduces this
number to only 3 cases.

3.1. Attention Mechanisms

The networks SE U-Net, CBAM U-Net, and the Attention U-Net with LCE+DSC as
loss function all outperform the baseline results across all metrics (Table 1). For CBAM
and Attention U-Net with LCE+DSC, the results are significantly better (p-value < 0.05)
than the baseline U-Net (LCE+DSC) for 3/4 metrics (both the DSC scores and one MSSD
value). In this configuration, the SE U-Net outperforms the other two for patch size of 96,
however, for patch size of 128, CBAM and Attention U-Net perform better in terms of the
DSC (0.899 and 0.898, respectively).

Within the test set, five cases had a DSC ≤ 0.8. The average DSC of these five cases in
baseline U-Net (LCE+DSC) is 0.638 ± 0.081, while for the Attention U-Net (LCE+DSC), this
score rises by 6% to 0.704 ± 0.072.
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3.2. Cosine Loss

Meanwhile, for the cosine loss (LCOS), we again observe that the U-Net, the Attention
U-Net, and the CBAM U-Net outperform the baselines significantly (p-value < 0.05) over
all the patch sizes and metrics. We also find that U-Net and CBAM U-Net with LCOS
provide the best DSC and MSSD values for patch sizes 128 and 96, respectively, among
the networks without SAM. Furthermore, the Attention U-Net with LCOS surpasses its
corresponding network with LCE+DSC over both the DSC and one MSSD value (patch: 128).

For the Attention U-Net (LCOS) an improvement of 3% in DSC is recorded (from DSC
of 0.647 to 0.677) as compared to the baseline U-Net for the five cases with DSC ≤ 0.8.

Baseline U-Net (LCE+DSC ) U-Net (LCOS) Attention U-Net (LCOS) U-Net (LCOS + SAM) Ensemble-7-VOTING

Figure 5. Qualitative results after post-processing (128 x 128): random slices of the best (top row)
and the worst case segmentation (bottom row) from the baseline U-Net (LCE+DSC ) compared to
its corresponding U-Net (LCOS & LCOS + SAM), Attention U-Net (LCE+DSC ), and Ensemble-7-
VOTING predictions. The best case has stage 1 CKD, while, the worst case has stage 2 CKD. The
ground truth segmentation is colored in green and yellow, while the network segmentations are
colored in red and blue. Top row DSC (left to right): Baseline U-Net = 0.963, U-Net (LCOS ) = 0.965,
Attention U-Net (LCE+DSC ) = 0.965, U-Net (LCOS + SAM) = 0.962 and Ensemble-7-VOTING = 0.969.
Bottom row DSC: Baseline U-Net = 0.606, U-Net (LCOS ) = 0.713, Attention U-Net (LCE+DSC ) = 0.747,
U-Net (LCOS + SAM) = 0.784 and Ensemble-7-VOTING = 0.780. There is no significant difference
between the baseline and our modified U-Nets in the case of the best segmentation. However, there
is a maximum of 18% improvement in the DSC for the worst case. The worst case has cysts all over
the abdomen region, which makes model prediction difficult, nonetheless, the attention mechanisms,
cosine loss, SAM, and ensembles help improve the segmentation and can be useful in locating cysts
in other regions as well.

3.3. SAM

The application of SAM on top of the networks yields the best performance overall for
the individual networks. The SE U-Net with LCOS + SAM provides the best DSC (0.902)
and MSSD (2.228 mm) values for patch size 96. Furthermore, the U-Net with LCOS + SAM
yields the best DSC of 0.909 with patch size 128 among all individual networks. Moreover,
the overall best MSSD value of 2.09 mm is provided by the CBAM U-Net with LCOS + SAM.
We further observe that in six out of eight cases, the LCOS + SAM performs better than the
corresponding LCE+DSC + SAM when the respective DSC and MSSD values are compared.

For cases with DSC ≤ 0.8, the Attention U-Net with LCOS + SAM produces similar
segmentation results as described before. Again, the network surpasses the baseline U-Net.
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3.4. Ensemble

We observe that every ensemble model achieves a higher DSC than any individ-
ual network for the same patch size. The same is observed for MSSD values except
for the ensembles with STAPLE and the patch size of 96. The highest results are ob-
tained using ensemble with seven models and majority voting (DSC: 0.918 ± 0.048 &
MSSD: 1.484± 2.083 mm, see Table 1). The DSC and MSSD after post-processing reach
0.922 ± 0.047 and 1.094 ± 1.376 mm, respectively. We also observe that some ensemble
results are significantly better (p-value < 0.05) than the corresponding best individual net-
work (marked in italic in Tables 1 and 2). Moreover, the ensembles with majority voting
outperform those using STAPLE. No significant differences in performance between the
ensembles with four and seven models were observed (p > 0.05).

3.5. Evaluation of Total Kidney Volume

Table 3 displays the R2 values of manual segmented TKVs (ground truth) versus
calculated TKVs from the selected networks’ segmentations. We observe that there is a
high correlation between ground truth and segmentation for smaller volumes, while for
larger volumes over- or under segmentation occurs. The R2 for all networks is greater
than 0.91, supporting the visual analysis. Furthermore, all the networks except one (U-Net
(LCOS)) outperform the baseline demonstrated by a higher R2 with less deviation in the
mean TKV difference (%) values. This conforms to increased segmentation accuracy in
DSC and MSSD (cf. Table 2). The highest R2 value of 0.9626 is achieved by the Attention
U-Net (LCE+DSC). It outperforms the baseline U-Net by 5%. Furthermore, the mean TKV
difference for the baseline is −4.43 ± 18.9%. In comparison, the mean TKV difference
for the Attention U-Net (LCE+DSC) and the U-Net (LCOS + SAM) are −2.04 ± 12.2% and
−1.72 ± 12.5%, respectively. The mean TKV differences for the ensembles of 7 networks
and majority voting or STAPLE are −0.65 ± 13.76% and −4.00 ± 14.82%, respectively.
Meanwhile, the mean TKV differences for four network ensembles with majority voting or
STAPLE are 2.34 ± 13.36% and −3.11 ± 14.63%, respectively.

Table 3. The R2 and mean TKV difference (%) of selected network configurations (post-processed,
patch size: 128) for ground truth TKV v/s predicted TKV (ml). The baseline linear fit has R2 value
of 0.915. The U-Net with LCOS and LCOS + SAM have R2 values of 0.914 and 0.958, respectively.
The Attention U-Net with LCOS and LCOS + SAM have R2 values of 0.946 and 0.951, respectively.
Among the Ensembles, the highest R2 is 0.957. Meanwhile, the Attention U-Net with LCE +DSC
achieves the overall highest R2 value of 0.962.

Architecture Loss R2 ↑ Mean TKV Difference (%) ↓

Baseline U-Net LCE+DSC 0.915 −4.43 ± 18.90

Attention U-Net LCE+DSC 0.962 −2.04 ± 12.20
LCOS 0.946 −1.94 ± 16.14
LCOS + SAM 0.951 −1.63 ± 15.73

U-Net LCOS 0.914 0.16 ± 16.79
LCOS + SAM 0.958 −1.72 ± 12.50

Ensemble-4-STAPLE LCOS + SAM 0.953 −3.11 ± 14.63
Ensemble-7-STAPLE LCE+DSC + SAM + LCOS + SAM 0.957 −4.00 ± 14.82
Ensemble-7-VOTING LCE+DSC + SAM + LCOS + SAM 0.952 −0.65 ± 13.76

4. Discussion

In this work, we investigated the impact of various attention modules, cosine loss,
and SAM for improving kidney segmentation in ADPKD from T1-weighted MR images
to estimate TKV while mitigating the problem of limited data. Thereby, our goal was
to achieve high segmentation accuracy while only using a limited number of annotated
data. Compared to other approaches reported in the literature [10,11], we achieved similar
results but using only a fraction of the data employed by others. We further conducted
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experiments with ensembles of our networks yielding more improvements. In the following,
we first discuss the impact of individual networks and then our results combining these
into ensembles.

4.1. Individual Networks

We found that all attention networks with LCOS and LCE+DSC outperformed the
baseline networks across all metrics (Table 1). Combining the baseline U-Net with LCOS
and SAM yielded the best result among the individual networks with DSC scores of
0.918 ± 0.04 and 0.908 ± 0.05 for patch sizes 128 and 96, respectively. Additionally, the
MSSD was minimal for this combination. Generally, we observed that patch size can play
an important role. Here, most of the networks that have been trained with a patch size of
128 significantly outperformed the networks trained with a patch size of 96. For example,
the U-Net (LCOS + SAM) with a patch size of 128 significantly outperformed the same
U-Net with a patch size of 96 (p = 0.0008 for DSC, p = 0.039 for MSSD).

The impact of the Attention U-Net is more prominent for challenging cases (i.e., seg-
mentations with DSC < 0.80). The number of such cases for the baseline U-Net (LCE+DSC )
was 13; however, this number is reduced to 5 in the case of the proposed networks. These
five cases were common to both networks, indicating the failure of the U-Net architecture to
accurately segment such difficult samples. These samples contain cysts in various regions
of the abdomen and less-defined kidney boundaries and shapes.

Even though these cases were difficult to segment by all networks, we still see an
improvement of up to 6% in the DSC compared to the baseline U-Net from DSC = 0.638 to
the Attention U-Net (LCE+DSC ) with DSC = 0.704. A reason might be that the U-Net
(LCE+DSC ) is unable to focus on relevant image information, e.g., kidney boundaries with
low contrast for such difficult cases. However, the attention mechanism [21] uses higher-
level features as a guide to help lower-level features to emphasize such regions in the
image. The Attention, CBAM, and SE U-Nets were significantly better (p-value < 0.05)
than the baselines, suggesting that the three attention mechanisms can be integrated to
improve performance.

Besides the attention mechanisms, we found that simply training the U-Net with cosine
loss significantly improved the performance (p-value < 0.05) over every metric (see Table 1).
Every voxel segmented by the U-Net with LCOS lies on a unit hypersphere as they are
l2-normalized. This way, the wrongly segmented voxels are heavily penalized by the cosine
loss leading to the adaption of the weights during training. Results by Payer et al. support
our results, though their loss function [33] is different to the one described in [28], which is
implemented here. Nevertheless, our results show that the implemented loss function is
also suitable for the medical image segmentation task at hand. Similar results using the
cosine distance function in k-means clustering of DCE-MRI for kidney segmentation have
been reported [34], outperforming standard cluster similarity metrics. In another work [35],
the authors used cosine similarity and attained state-of-the-art semantic segmentation
results on the following datasets: ADE20K [36], Cityscapes [37], and COCO-Stuff [38]. In
conclusion, the cosine loss function can be valuable in renal MRI segmentation.

The combination of SAM with our network architectures further boosts the perfor-
mance. This indicates the usefulness of SAM in improving the generalizability of the
models. However, a drawback is that it takes about twice the amount of time to train such
a network compared to the same network without SAM. The reason is the need to calculate
gradients twice in each iteration as it first calculates gradients for the weights and then for
the neighborhood parameters. Nonetheless, this limitation renders minor with respect to
the steadily increasing computational power available.

Furthermore, we notice that, on average, cosine loss (without SAM) brings about 0.65%
improvement in DSC over the corresponding baseline as compared to 0.53% when only
using SAM. This shows that the cosine loss is more important for segmentation accuracy
than SAM. However, we also find that combining cosine loss with SAM yields an average
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DSC improvement of 1.35%. Hence, the combination of the two is vital for attaining best
segmentation accuracy.

In comparison to other deep learning-based kidney segmentation approaches, our
methods perform similarly. The approaches by Kline et al. [10], van Gastel et al. [11], and
Mu et al. [13] report higher DSC (up to 0.97). Consequently, their mean TKV difference
is smaller than our proposed method. However, these studies use larger datasets (up to
2400). Nonetheless, in our work, the aim was to explore and combine techniques that could
deal with limited data. In this respect, using only a fraction of the data (100 cases), we
still achieved comparable results. Increasing the number of datasets for our method might
further improve the results. However, we explicitly aimed at investigating techniques
mitigating limited data. Therefore, such a test is beyond the aim of this study.

Daniel et al. [15] attained slightly better DSC (0.93) than our methods using a plain
U-Net on T2 images. They also used a small dataset for training and testing. However, the
major difference is that they applied their approach to healthy volunteers and patients with
chronic kidney disease. Neither of these data contained cysts that altered the appearance of
the kidneys in the MRI drastically (see Figure 5). Furthermore, they trained their network
on T2-weighted images while we conducted our study on T1-weighted images, which
could also be a reason for the different performance. Finally, we outperformed the approach
in [12] with a margin of 4%; however, they used data only from four patients.

4.2. Ensembles

Creating ensembles of our proposed networks further improved segmentation accu-
racy compared to the best performing individual network. The networks combined in
an ensemble are known to reduce the variance component of the prediction error and,
therefore, smooth out the predictions [39,40]. The ensemble with seven networks and ma-
jority voting achieved the highest DSC and MSSD of 0.922 ± 0.047 and 1.094 ± 1.376 mm,
respectively (Table 2). No significant differences in performances of ensembles with four
and seven networks could be observed (p-value > 0.05, Table 1).

Our ensembles cannot outperform the ones presented by Kline et al. [10]. However,
the key differences lie in the data size and the number of networks employed. Kline et al.
used a 24-fold larger dataset and an ensemble of 11 networks. Considering this, we believe
our ensembles performed similarly.

4.3. Limitations

Nonetheless, our system has some limitations. For instance, there are some patients
with heterogeneous distributions of cysts all over the abdomen. This makes it difficult to
distinguish kidneys from other organs. In such cases, our models over-segment the kidneys
by delineating parts of other abdominal organs that also contain cysts (e.g., liver). However,
even though under- and over segmentation occur, the differences in the obtained versus
manual segmented TKVs is 5% on average throughout all models (cf. Table 3). Furthermore,
we have not yet demonstrated generalization in terms of applications/transfer to other
domains. We are currently looking into exploiting publicly available data e.g., KiTS19 [41].
Initial results look promising, but in-depth evaluation is pending.

5. Conclusions

In this paper, we proposed approaches to overcome the problem of limited data for
training convolutional neural networks for segmenting the TKV in kidneys with ADPKD.
We demonstrated that combining the cosine loss function and SAM could achieve high
segmentation accuracy while only using 100 datasets. Furthermore, TKV was obtained at
high accuracy compared to manual segmentation (surpassing the inter-user agreement).
Our study shows that fast and automated segmentation and TKV estimation is possible,
allowing for clinical translation in the future.
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Subsequently, we plan to transfer our methods to the available T2-weighted MR
images and investigate a combination of both MR contrasts to fully exploit the benefit of
the complementary image information.
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Appendix A

Table A1. The DSC and MSSD (in mm) values for left and right kidneys for various networks and ensembles with loss functions as DSC (LDSC), cross-entropy+DSC
(LCE+DSC), and cosine loss (LCOS). The results are post-processed using the largest connected components.

Architecture Loss DSC (Left) ↑ DSC (Right) ↑ MSSD (mm) (Left) ↓ MSSD (mm) (Right) ↓ DSC (Left) ↑ DSC (Right) ↑ MSSD (mm) (Left) ↓ MSSD (mm) (Right) ↓
96× 96 96× 96 96× 96 96× 96 128× 128 128× 128 128× 128 128× 128

Baseline U-Net LCE+DSC 0.886 ± 0.061 0.877 ± 0.099 1.992 ± 1.828 2.578 ± 4.388 0.901 ± 0.058 0.907 ± 0.083 1.381 ± 1.121 1.447 ± 3.727

SE U-net LCE+DSC 0.899 ± 0.064 0.894 ± 0.076 1.594 ± 2.330 1.614 ± 2.123 0.900 ± 0.060 0.897 ± 0.071 1.630 ± 2.286 1.494 ± 2.232
LCOS 0.887 ± 0.111 0.882 ± 0.111 2.140 ± 4.858 1.694 ± 2.248 0.899 ± 0.059 0.901 ± 0.068 1.592 ± 2.116 1.377 ± 2.000
LCE+DSC + SAM 0.888 ± 0.080 0.900 ± 0.087 1.512 ± 1.416 1.559 ± 3.308 0.912 ± 0.044 0.893 ± 0.095 1.129 ± 0.847 1.344 ± 1.941
LCOS + SAM 0.912 ± 0.045 0.891 ± 0.099 1.222 ± 0.957 1.547 ± 2.447 0.895 ± 0.112 0.905 ± 0.077 1.813 ± 4.790 1.367 ± 2.210

CBAM U-Net LCE+DSC 0.894 ± 0.070 0.890 ± 0.098 1.682 ± 2.310 1.845 ± 3.532 0.905 ± 0.064 0.907 ± 0.064 1.285 ± 1.164 1.363 ± 2.223
LCOS 0.905 ± 0.053 0.900 ± 0.082 1.316 ± 0.984 1.293 ± 1.678 0.905 ± 0.061 0.904 ± 0.077 1.404 ± 1.727 1.429 ± 2.537
LCE+DSC + SAM 0.891 ± 0.068 0.896 ± 0.080 1.893 ± 2.575 1.709 ± 2.596 0.917 ± 0.046 0.904 ± 0.081 1.072 ± 0.889 1.346 ± 2.486
LCOS + SAM 0.897 ± 0.067 0.899 ± 0.085 1.832 ± 2.626 1.701 ± 3.604 0.910 ± 0.054 0.908 ± 0.072 1.265 ± 1.406 1.270 ± 2.429

Attn. U-Net LCE+DSC 0.894 ± 0.074 0.890 ± 0.093 1.662 ± 1.637 1.771 ± 2.655 0.914 ± 0.043 0.907 ± 0.061 1.224 ± 0.914 1.403 ± 2.080
LCOS 0.901 ± 0.057 0.907 ± 0.072 1.741 ± 2.455 1.366 ± 2.212 0.910 ± 0.049 0.909 ± 0.073 1.286 ± 1.573 1.304 ± 2.253
LCE+DSC + SAM 0.894 ± 0.058 0.897 ± 0.093 1.910 ± 2.745 1.776 ± 3.212 0.913 ± 0.051 0.909 ± 0.069 1.353 ± 1.697 1.399 ± 2.374
LCOS + SAM 0.905 ± 0.059 0.907 ± 0.075 1.442 ± 1.940 1.321 ± 2.018 0.914 ± 0.048 0.915 ± 0.072 1.184 ± 1.190 1.257 ± 2.536

U-Net LCOS 0.898 ± 0.074 0.897 ± 0.093 1.725 ± 2.479 1.794 ± 3.727 0.908 ± 0.059 0.909 ± 0.076 1.208 ± 1.104 1.342 ± 2.909
LCOS + SAM 0.909 ± 0.051 0.910 ± 0.075 1.454 ± 2.109 1.313 ± 2.326 0.921 ± 0.043 0.914 ± 0.062 1.009 ± 0.843 1.274 ± 2.331

Ensemble-4-STAPLE LCOS + SAM 0.911 ± 0.054 0.909 ± 0.077 1.556 ± 2.498 1.351 ± 2.413 0.920 ± 0.046 0.919 ± 0.068 1.112 ± 1.144 1.158 ± 2.240
Ensemble-7-STAPLE LCE+DSC + SAM + LCOS + SAM 0.911 ± 0.053 0.909 ± 0.077 1.484 ± 2.145 1.399 ± 2.343 0.923 ± 0.045 0.919 ± 0.069 1.079 ± 1.162 1.134 ± 2.224
Ensemble-4-VOTING LCOS + SAM 0.918 ± 0.048 0.910 ± 0.074 1.086 ± 1.037 1.219 ± 2.029 0.919 ± 0.050 0.916 ± 0.066 1.035 ± 0.979 1.102 ± 1.989
Ensemble-7-VOTING LCE+DSC + SAM + LCOS + SAM 0.916 ± 0.049 0.914 ± 0.073 1.238 ± 1.779 1.213 ± 2.035 0.925 ± 0.044 0.919 ± 0.067 0.993 ± 0.998 1.085 ± 2.072
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