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Loss-of-function or knockout mouse models have established a fundamental role for the 
RNAse III enzyme DICER1 in development and tissue morphogenesis and/or homeostasis.  
These functions are currently assumed to result mainly from the DICER1-dependent 
biogenesis of microRNAs which exhibit important gene expression regulatory properties. 
However, non-canonical DICER1 functions have recently emerged. These include inter-
action with the DNA damage response (DDR) pathway and the processing of cytotoxic 
non-coding RNAs, suggesting that DICER1 might also participate in the regulation of 
major cellular processes through miRNA-independent mechanisms. Recent findings 
indicated that reduced Dicer1 expression, which correlates with worsened symptoms in 
mouse models of joint inflammation, is also noted in fibroblast-like synoviocytes (FLS) har-
vested from rheumatoid arthritis (RA) patients, as opposed to FLS cultured from biopsies 
of osteoarthritic patients. In addition, low DICER1 levels are associated with the estab-
lishment of cellular stress and its associated responses, such as cellular senescence. 
Senescent and/or stressed cells are associated with an inflammatory secretome (cyto-
kines and chemokines), as well as with “find-me” and “eat-me” signals which will attract 
and activate the innate immune compartment (NK cells, macrophages, and neutrophils) 
to be eliminated. Failure of this immuno surveillance mechanism and improper restauration 
of homeostasis could lead to the establishment of a systemic and chronic inflammatory 
state. In this review, we suggest that reduced DICER1 expression contributes to a vicious 
cycle during which accumu lating inflammation and premature senescence, combined 
to inadequate innate immunity responses, creates the appropriate conditions for the 
initiation and/or progression of autoimmune-autoinflammatory diseases, such as RA.
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BiOLOGiCAL ROLeS OF DiCeR1

The Canonical Role of DiCeR1: MicroRnA (miRnA) Biogenesis
Since its discovery by Bernstein et al. (1), the RNAse III enzyme DICER (encoded by the DICER1 
gene in H. sapiens and Dicer1 in Mus musculus, the nomenclature that will be used throughout this 
review) has been extensively studied and its role in the miRNA biogenesis is today well described 
[reviewed in Ref. (2)]. miRNA synthesis usually begins with the RNA polymerase II-dependent 
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FiGuRe 1 | Canonical and non-canonical functions of DICER1 in the nucleus and the cytosol. The canonical function of DICER1 leads to microRNA maturation  
in the cytoplasm. Others functions are considered non-canonical.
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transcription of genes encoding primary-miRNAs (pri-miRNAs),  
which are several kilobase-long stem-loop transcripts. Alter-
natively, pri-miRNAs can also originate from introns of protein 
coding genes. Whatever their origin, pri-miRNAs are then 
processed by the nuclear microprocessor complex DROSHA/
DiGeorge syndrome Critical Region 8 (DGCR8) into precur-
sor microRNAs (pre-miRNAs). Those 60–80 nucleotide-long 
precursors are then exported to the cytoplasm where they are 
recognized and cleaved by DICER1 into a 20–22 nucleotide-
long RNA duplex (Figure 1). One miRNA strand is conserved 
and loaded into the RNA-induced silencing complex (RISC) 
composed of argonaute proteins. Guided by the miRNA, the 
RISC complex hybridizes with complementary mRNAs lead-
ing to either their degradation or translational inhibition. 
Therefore, DROSHA, DICER1, and miRNA are core factors of 
the Post-Transcriptional Gene Silencing process, a key regula-
tory mechanism of gene expression. In addition, several miR-
NAs are produced upon non-canonical pathway because their 
synthesis bypasses some of the aforementioned steps; those are 
Mirtons (whose synthesis is DROSHA-independent) (3) and 

miR-451, the only DICER1-independent miRNA described up 
to now (4, 5).

Interestingly, a study aiming at re-evaluating the contribu-
tion of the different key factors in miRNA biogenesis showed 
that while DROSHA is actually irreplaceable in the canonical 
miRNA synthesis, some miRNAs are still produced, albeit at 
reduced levels, without DICER1 (6). These observations, along 
with ours showing that reduced expression of DICER1 in fibro-
blast-like synoviocytes (FLS) from rheumatoid arthritis (RA) 
patients is associated with no more than a modest reduction of 
miRNA production (7), strongly suggest that other roles, besides 
miRNAs maturation, might be attributed to DICER1. Indeed, 
marked phenotypes have been observed in targeted (tissue-
specific) Dicer1 knockout mouse mutants, despite a noticeable 
preserved (and even sometimes increased) expression of many 
mature miRNAs.

DiCeR1 non-Canonical Roles
Accordingly, multiple reports have now described the exist-
ence of non-canonical, miRNA-independent, roles of DICER1 
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(Figure 1). Those functions are essentially implicated in nuclear 
RNAi and have been thoroughly reviewed elsewhere (8).  
In brief, DICER1, associated with TAR RNA Binding Protein 
and Protein activator of protein kinase R (PKR) (TRBP/
PACT), was shown to regulate the transcription of a subset of 
hormone-inducible genes by interacting with their promot-
ers in a dsRNA-dependent manner. Nuclear DICER1 is also 
implicated in the processing of endogenous dsRNA originating 
from overlapping transcription units, thereby protecting the 
cells from interferon (IFN)-mediated apoptosis. In addition, 
DICER1 plays an essential role in the maintenance of genome 
integrity (9), especially through interactions with the DNA 
damage response (DDR) pathway. It has been shown that in 
response to double-strand breaks in DNA, DICER1-dependent 
accumulation of break-specific dsRNAs facilitates the recruit-
ment of reparation factors. Interestingly, this mechanism is  
also needed for the maintenance of telomeres (10).

Furthermore, the cytoplasm is also a major site of DICER1 
non-canonical functions, which have been extensively studied 
over the last decade. A first hint for such roles was discovered 
in patients with age-related macular degeneration, which exhibit 
reduced DICER1 expression in retinal pigmented epithelium 
cells. In these cells, low Dicer1 (but, importantly, not any of the 
other genes involved in miRNA production) expression triggered 
by shRNA knockdown in mice leads to cytotoxic accumula-
tion of non-coding dsRNA formed upon the transcription Alu 
sequences (repetitive elements abundantly present in the human 
genome and classified as short interspersed nuclear elements 
(SINE)—retrotransposon family) (11). Accumulating Alu RNAs 
lead to a toll-like receptor (TLR)-independent, P2X7- and ROS-
dependent activation of the NLRP3 inflammasome. The resulting 
maturation and secretion of IL-18 induces an MYD88-dependent 
pathway and caspase-8-mediated cell death, leading to macular 
degeneration (12–14).

Altogether, these data point to potentially devastating effects 
of DICER1 mis-expression which can theoretically affect all steps 
of gene expression in both nuclear (replication/transcription/
splicing) and cytoplasmic (translation) compartments.

DiCeR1 in inFLAMMATiOn

miRnAs in inflammation: Prominent  
Roles for miR-155 and -146a
There are 1,917 human miRNA sequences in the most recent 
miR database. This relatively large number, together with the 
capacity of every miRNA to target hundreds of mRNAs (15), 
indicates that they are able to virtually impact every biological 
function. It is therefore very much expected for miRNAs to be 
involved in most pathophysiological settings, among which 
inflammation and associated diseases were particularly scruti-
nized. In this context, miR-155 and -146a have been extensively 
described because they clearly exhibit crucial regulatory func-
tions in innate and adaptive immunity. Indeed, miR-146a has 
been described as a mandatory regulator of the NF-κB pathway 
in T cells, targeting TRAF6 and IRAK1 (16). miR-146a was also 
correlated and functionally associated with the control of TNF-α 

production downstream of several TLRs and to the LPS toler-
ance phenomenon (17). In this report, it was notably observed 
that miR-146a is increased in human monocytic cells following 
LPS re-exposure. Until now, many groups found a pronounced 
inflammation-limiting role for miR-146a in various inflamma-
tory settings, from atopic dermatitis (18) to sepsis (19). Strong 
evidence also attests that miR-146a participates in inflamma-
tory disorders such as gout (20, 21) and RA [Ref. (22, 23) and  
see below].

miR-155, encoded by the bic locus, has been described as a 
major actor in inflammatory responses (24–26). miR-155 is 
considered a main driver of inflammatory responses through 
a large array of networks and its down-modulation is associ-
ated with termination of acute inflammation, as exemplified 
in the case of glucocorticoid treatments (27). Interestingly, 
the inflammatory effects of miR-155 are counteracted by miR-
146a, as evidenced by a murine model where the deletion of the 
former is able to abrogate the inflammation induced by the loss 
of the latter (28). In essence, miR-155 and -146a, which roles 
were comprehensively analyzed in mouse knockout models, 
are considered as major players in the regulation of inflam-
matory responses.

Interestingly, miRNA biogenesis and the cellular stress res-
ponse are tightly interconnected (29). This can be illustrated by 
the reciprocal interactions between type I IFNs-I, cytokines of 
paramount importance in the resolution of a virus-induced stress, 
which can modulate DICER1 gene expression (30). In return, 
mice carrying a mutation in the DICER1 gene exhibit an altered 
transcriptional profile of miRNA-regulated, IFN-stimulates 
genes (31). It is also noteworthy to observe that miR-124, a major 
player in the regulation of stress-induced genes in the brain (32), 
has recently been shown to modulate inflammation in a rat 
model of arthritis (33).

non-Canonical Roles of DiCeR1 in 
inflammation
Evidence directly implicating non-canonical roles of DICER1 in 
inflammatory responses is scarce. To date, only two examples 
can be mentioned: (1) the DICER1-dependent processing of 
Alu RNAs which precludes the harmful activation of NLRP3 
Inflammasome and the maturation/secretion of pro-inflam-
matory cytokines IL-1β and IL-18 (11) (see above) and (2) the 
involvement of nuclear DICER1 in the processing of dsRNA 
transcripts from overlapping loci, thus preventing an uncon-
trolled IFN response (34).

Regulation of IFN secretion and IFN-mediated responses 
are of high interest because excessive production of these cyto-
kines is associated with several autoimmune diseases. Of note, 
dysregulation of DICER1 expression has been linked to the 
modulation IFN responses, a feature which is considered to 
result from global miRNA deregulation. DICER1 ablation in 
endometrial cancer cells was also linked to an increased IFN-β 
secretion and subsequent upregulation of IFN-stimulated genes 
(35). However, this response was interpreted as the consequence 
of cytoplasmic accumulation of pre-miRNAs which are able to 
trigger the activation of dsRNA sensors, hence leading to an IFN 
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response. More recently, DICER1’s ablation in tumor-associated 
macrophages was shown to polarize the cells toward an M1-like 
phenotype associated with hyperactive IFNγ/STAT1 signaling. 
This observation, described as the result of decreased expression 
of the let-7 miRNA, can only be partially rescued by trans duction 
with a lentivirus expressing let-7 (36). It is then conceivable that 
non-canonical roles of DICER1 might also play a role in the M1/
M2 macrophage polarization. Nevertheless, this model, whereby 
unprocessed dsRNAs accumulate in the cytosol upon DICER1 
deficiency and drive inflammatory responses, has been poorly 
explored so far.

Of note, an increase in cytoplasmic Alu RNA following stress 
promotes disassembly of stress granules (SGs) (37). Since SGs 
decrease the interactions between DICER1 and its co-factors, 
thereby reducing its activity (38), a cross-talk between stress-
induced pathways and miRNA-independent functions of DICER1 
appears also plausible. Furthermore, SGs negatively regulate the 
production of inflammatory cytokine such as IL-1β by control-
ling mRNAs stability and decay (39). Hence, impairment of this 
activity upon Alu RNA accumulation would also contribute to 
promote inflammation.

DiCeR1 in Aging
Aging is an important risk factor for the development of inflam-
matory disorders/diseases (40). In rodents, aging has been associ-
ated with a decreased expression of DICER1 in the adipose tissue 
(41). In human, octogenarians, compared with centenarians, 
exhibit global decrease in miRNA expression as well as reduced 
expression of miRNA biogenesis factors including DICER1 in 
blood cells (42, 43). However, these observations do not provide 
mechanistic insights for the contribution of DICER1 in the aging 
process. Of course, many miRNAs (such as miR-34) targeting 
emblematic pathways involved in senescence (e.g., P53/P21) 
have been described (44) and are likely to play a role in aging. 
Nevertheless, aging is a complex process characterized by nine 
hallmarks: genomic instability, telomere attrition, epigenetic 
alterations, loss of proteostasis, deregulated nutrient-sensing, 
mitochondrial dysfunction, cellular senescence, stem cell exhaus-
tion, and altered intercellular communication (45), all of which  
are possibly impacted by DICER1 misexpression, not only through 
impaired miRNAs maturation but also because non-canonical 
DICER1 functions may be affected as well.

With regards to genomic instability, the role of DICER1 in 
the processing of RNAs transcribed from retrotransposons 
belonging to long- or short-interspersed nuclear elements (line 
or SINE) families participates in the prevention of retrotrans-
position deleterious events (46). In addition, accumulation of 
Alu RNAs was found to restrain “stemcellness” and is associated 
with persistent DNA damage preventing tissue renewal (47). 
Their DICER1-dependent elimination is therefore required to 
maintain tissue homeostasis. Next, DICER1 is implicated in 
the DDR pathway by processing dsRNA essential for the DNA 
double-strand break repair. This process seems also to be neces-
sary to prevent a second hallmark of aging, telomere shortening 
(10). Moreover, DICER1 deletion has been associated with epi-
genetic alterations, such as chromatin remodeling, DNA meth-
ylation, and histone modification in mammalian cells (48, 49). 

Evidence in favor of a role of DICER1 in altered nutrient sensing 
and mitochondrial dysfunction is less documented. However, 
it was demonstrated that DICER1-depletion in adipocytes (i) 
overactivates the sensing signaling molecule mTORC1 and 
(ii) reduces mitochondria numbers, which are also irregularly 
shaped and associated with reduced oxidative metabolism in 
response to caloric restriction (50). As mentioned above, senes-
cence has been amply described in relation to modified miRNA 
expression [e.g., Ref. (51)] but was also linked to Alu RNAs 
accumulation (47). Finally, downregulation of Il-8 expression 
in endothelial cells upon DICER1 knockdown (52) illustrates 
the potential impact of this multifunctional enzyme in the last 
hallmark of aging: cellular communication.

With regards to RA, normal aging of the immune system 
(immunosenescence) is associated with a higher risk to develop 
autoimmune disorders, including RA (53, 54). Alternatively, 
systemic joint inflammation may enhance the progression of 
immunosenescence and favor the development of comorbidities 
in RA patients (55).

DiCeR1 AnD MiRnAS ARe MAJOR 
PLAYeRS in RA

Rheumatoid arthritis is a systemic autoimmune disease affec ting 
around 1% of the global population. This rheumatic disease is 
characterized by multiple joint swelling, stiffness, and inflam-
matory pain, mainly in the small joints of hands and feet (56). 
Although the auto-immune feature of RA is clearly demonstrated, 
several decades of research have established a major role for the 
innate immune system and stromal cells in this disease (57).  
It is now commonly admitted that RA is a multifactorial disease, 
where its initiation and development requires concomitant 
participation of genetic, epigenetic, and environmental factors. 
Among epigenetic players involved in RA, miRNAs have been the 
focus of intense attention over the past decade (58).

There are presently more than 20 miRNAs, expression of 
which is deregulated in various cells (T cells, monocytes, and 
FLS)/compartments (blood and synovial fluid) harvested 
from RA patients (59, 60), and our lab has contributed to the 
identification of several of them within the miR-17~92 cluster 
(61–63). However, likely because RA etiology relies on innate 
and adaptive immune systems, miR-146a and -155, both of 
which have been involved in the regulation of adaptive (such 
as T  cells-mediated) and inflammatory (e.g., in monocytes) 
responses, have been extensively studied in this disease. miR-
146a is increased in RA patients (64–66) and is supposed to 
be integrated in a feedback loop, triggered by the unrestrained 
inflammation (67). Furthermore, murine models of RA have 
clearly shown that miR-146a restrains osteoclastogenesis (23). 
miR-155 is also upregulated in FLS and peripheral blood 
CD14-positive cells of RA patients (68, 69). In addition, its 
expression was correlated to the Disease Activity Score on 28 
joints (DAS28) (70). Interestingly, miR-155 is also required for 
the development of the disease in the collagen-induced arthritis 
model, a commonly used mouse model of autoimmune arthritis 
(71). In FLS, upregulation of both miR-146a and miR-155 was 
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correlated to negative regulation of osteoclastogenesis/MMP 
production. Therefore, this increased expression was interpreted 
as a way to limit the RA-associated osteoarticular destruction 
processes (64).

On the other hand, reduced miR-146a and -155 expression 
in regulatory T cells (Treg) has also been incriminated in RA 
(22), which illustrates that a global perturbation (driving either 
an overexpression or a down-modulation) of miRNA produc-
tion is unlikely to represent a major trigger of RA pathogenesis. 
Indeed, increased (or decreased) miRs in activated T  cells 
might be compensated by similar alterations in Tregs, and 
vice  versa. In this regard, our observations indicating that  
(i) Dicer1-deficient mice exhibit worsened symptoms following 
experimental (upon K/BxN serum transfer) arthritis induction 
and (ii) that FLS cultivated from biopsies harvested in RA 
patients exhibit reduced DICER1 expression (7) pinpoint to a 
potential involvement of non-canonical, miRNA-independent 
activities of DICER1 in joint inflammation. Several possibilities 
might be considered in line with the abovementioned roles of 
DICER1 in the processing of Alu sequences. For instance, abo-
lishing DICER1 activity may lead to reduced production of Alu 
repeat-induced small RNAs (riRNAs) in the nucleus, thereby 
limiting the proliferative capacities of stem cells (72) and 

impairing tissue renewal in the joint. Combined with increased 
DNA damage (73) which is accompanied with the initiation 
of senescence, reduced DICER1 non-canonical activities might 
drive the accumulation of aged FLS resistant to apoptotic stim-
uli (7) and exhibiting pro-inflammatory capabilities [through 
IL-6, an essential component of the senescence-associated 
secretory phenotype (SASP) (74)], a dangerous cocktail likely 
driving their aggressive phenotype observed in RA patients.  
As mentioned above, Dicer1 expression is negatively regulated 
by inflammatory cytokines such as type I IFNs, further aggra-
vating the inflammatory response.

DiCeR1 AT THe CROSSROADS BeTween 
SeneSCenCe AnD inFLAMMATiOn  
in RA

These multiple interactions are integrated in the model illustrated 
in Figure 2. We considered three main triggers (or hallmarks) of 
RA, aging (75), inflammation [through specific cytokines (76)], 
and stress (77) and their reciprocal interconnections mediated 
by canonical and non-canonical functions of DICER1. For sake 
of simplicity, we emphasized only specific miRNAs and other 

FiGuRe 2 | DICER1 functions at the crossroads of inflammation, senescence and aging. Examples of microRNAs involved in both rheumatoid arthritis (RA) and 
inflammation (miR-155 and -146a), RA and senescence (miR-34a) or RA and stress (miR-124a) are shown. The model illustrates how an initial trigger (e.g., a viral 
infection) might initiate a vicious circle (see text).
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Further more, factors that influence DICER1 gene expression 
in specific cells and at defined developmental stages are still 
poorly described. In addition, DICER1 transcripts and protein 
levels are not always correlated (79), adding another layer of 
complexity. Moreover, DICER1 activity appears regulated by 
post-translational modification such as phosphorylation and 
SUMOylation (80), and the protein can shuttle between the 

cytosol and the nucleus and exert different activities in these 
two compartments, depending on associations with various 
co-factors. For instance, DICER1-efficient processing activity 
of Alu RNAs depends on poly(C)-binding protein 2 binding, 
which is inhibited by iron overload (81).

Here, we provided several examples of reciprocal interac-
tions between DICER1 and mechanisms (stress, inflammation, 
and aging) that can be either considered as triggers (or induc-
ers of DICER1 expression) or effectors (i.e., that are able to 
respond to DICER1-dependent products such as miRNAs or 
metabolites of Alu or other long non-coding RNAs). We sug-
gest that within this complex network of interactions, DICER1 
occupies a central position. In this model, perturbations of 
these interactions modify homeostasis and drive pathogenesis. 
The focus of this review has been RA, but this network can 
be extended to other age-dependent pathological conditions, 
beyond autoimmune or inflammatory diseases, such as cancer 
or neurodegeneration.
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