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Abstract
Statins are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that alter the syn-

thesis of cholesterol. Some studies have shown a significant association of statins with

improved respiratory health outcomes of patients with asthma, chronic obstructive pulmo-

nary disease and lung cancer. Here we hypothesize that statins impact gene expression in

human lungs and may reveal the pleiotropic effects of statins that are taking place directly in

lung tissues. Human lung tissues were obtained from patients who underwent lung resec-

tion or transplantation. Gene expression was measured on a custom Affymetrix array in a

discovery cohort (n = 408) and two replication sets (n = 341 and 282). Gene expression was

evaluated by linear regression between statin users and non-users, adjusting for age, gen-

der, smoking status, and other covariables. The results of each cohort were combined in a

meta-analysis and biological pathways were studied using Gene Set Enrichment Analysis.

The discovery set included 141 statin users. The lung mRNA expression levels of eighteen

and three genes were up-regulated and down-regulated in statin users (FDR < 0.05),

respectively. Twelve of the up-regulated genes were replicated in the first replication set,

but none in the second (p-value < 0.05). Combining the discovery and replication sets into a

meta-analysis improved the significance of the 12 up-regulated genes, which includes

genes encoding enzymes and membrane proteins involved in cholesterol biosynthesis.

Canonical biological pathways altered by statins in the lung include cholesterol, steroid, and

terpenoid backbone biosynthesis. No genes encoding inflammatory, proteases, pro-fibrotic

or growth factors were altered by statins, suggesting that the direct effect of statin in the

lung do not go beyond its antilipidemic action. Although more studies are needed with spe-

cific lung cell types and different classes and doses of statins, the improved health out-

comes and survival observed in statin users with chronic lung diseases do not seem to be

mediated through direct regulation of gene expression in the lung.
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Introduction
Statins block HMG-CoA reductase (HMGCR), a rate-limiting enzyme responsible for the syn-
thesis of endogenous cholesterol and non-sterol isoprenoids. Statins are used predominantly to
manage hypercholesterolemia and for secondary prevention to reduce the risk of cardiac events
[1, 2]. Furthermore, statins inhibit cholesterol-independent pathways leading to secondary or
pleiotropic actions such as antioxidant [3] and anti-inflammatory [4–6] effects. In humans,
statin treatment has been associated with improved survival in patients with lung cancer [7–
10], fewer acute COPD and asthma exacerbations [11–17], reduced risk of pulmonary hyper-
tension [18, 19], reduced rate of lung function decline [20, 21] and decreased all-cause mortal-
ity in COPD patients, mostly in retrospective studies [22–27]. However, a recent study
demonstrated no effect of statin on exacerbation rates and the time to a first exacerbation in
patients with moderate-to-severe COPD [28]. In the later study, it was unclear whether the
lack of clinical benefit would apply to patients with less severe COPD.

Many hypotheses were put forward to explain the clinical benefits of statins on chronic lung
diseases [29]. Better outcomes in patients treated with statins may be simply mediated by the
indirect effects on cardiovascular comorbidities. However, statin-induced reduction of sys-
temic inflammation is believed as the most likely explanation underlying the benefits of statins
in lung diseases. Supporting this hypothesis was the greatest increase in exercise tolerance in
COPD patients with a better lowering effect of statins on systemic inflammation [30]. Statins
were also more beneficial in COPD patients with high baseline level of systemic inflammation
[31]. In cigarette smoking-induced emphysema rat models, simvastatins were shown to pre-
vent airway inflammatory infiltration [32, 33]. Accordingly, not only systemic inflammation,
but also pulmonary inflammation may be attenuated in statin users. Simvastatin was also
shown to prevent anatomical COPD lesions (e.g. enlargement of airspaces, small airway thick-
ening) in these rat models and to counteract the induction of MMP9 activity and mRNA
expression levels of TGFB1 and CTGF in lung tissue, suggesting a direct role of statins in the
lung. Similarly, in a chronic guinea pig smoking model, simvastatin was shown to prevent
smoke-induced pulmonary hypertension and vascular remodeling as well as to reverse smoke-
induced endothelial dysfunction and emphysema [34]. In human lung fibroblasts, statins were
shown to inhibit TGFβ1-induced fibronectin and CTGF expression as well as to inhibit cyto-
kine-induced release of matrix metalloproteinases [35–37]. Animal and cell models are thus
supporting the direct actions of statins in the lung. Whether these effects are observed in the
lung of patients treated with standard cardio-protective dose of statins is unknown. It is also
unclear whether the effects of statins are mediated, or at least measurable, through direct regu-
lation of gene expression in human lung. This calls for a genomic approach given the pleiotro-
pic nature of statins and expected regulation of genes encoding proteases, fibrogenic,
inflammatory, and growth factors.

In human primary hepatocytes, atorvastatin and rosuvastatin were shown to modulate 128
and 869 genes in common after 24 and 48 hours of treatment, respectively [38]. This genome-
wide gene expression study confirmed the role of statins in modulating genes involved in
hepatic cholesterol homeostasis, but also identified other genes implicated in a variety of path-
ways that may explain the pleiotropic and secondary adverse effects of statins. We hypothe-
sized that some of the clinical benefits of statins on chronic lung diseases are related to their
pleiotropic properties and can be detected by measuring gene expression in human lung tis-
sues. The aim of this study was to evaluate the impact of statin treatment on gene expression in
human lung in order to identify novel molecular pathways underpinning the potential benefits
of statins in chronic lung diseases.
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Materials and Methods

Study participants
Lung parenchymal tissues were obtained from patients undergoing lung resection for periph-
eral lung nodules/cancer between 2004 and 2008 at the oncology clinic of the Institut universi-
taire de cardiologie et de pneumologie de Québec (IUCPQ) [39]. Tissues were obtained from
macroscopically normal appearing lung regions away from the tumor or tumor margins.
Henceforth, this dataset is referred to as the Laval or discovery cohort. Two replication cohorts
were collected at the University of British Columbia (UBC) and the University of Groningen.
At UBC, the majority of samples were from patients undergoing resection of small peripheral
lung lesions. Additional samples were explanted lungs from lung transplantation. At Gro-
ningen, the lung specimens were obtained at surgery from patients with various lung diseases,
including patients undergoing therapeutic resection for lung tumors and lung transplantation.
For the discovery and the two replication sets, selection of patients was based on tissue avail-
ability. Patients with missing information on statin use were excluded. All patients were of
white European descent confirmed by whole-genome genotyping on the Illumina Human1M-
Duo BeadChip. The primary indication for taking statin was to lower blood cholesterol levels
and reduce the risk of cardiac events. No patients were prescribed statin specifically for lung
diseases. Preoperatively, patients underwent pulmonary function testing in which lung vol-
umes, forced expiratory volume in 1 sec (FEV1) and forced vital capacity (FVC) were deter-
mined. COPD was defined based on spirometry as per the GOLD recommendations [40].
Primary diagnostic and lung cancer histology were obtained from the pathology report. Smok-
ing history included self-reported smoking status and number of pack-years. Statin use was
abstracted from the patients’medical records.

Ethics statements
At Laval, lung specimens were collected from patients undergoing lung cancer surgery and
stored at the IUCPQ site of the Respiratory Health Network Tissue Bank of the “Fonds de
recherche du Québec–Santé” (www.tissuebank.ca). Written informed consent was obtained
from all subjects and the study was approved by the IUCPQ ethics committee. At Groningen,
lung specimens were provided by the local tissue bank of the University Medical Center Gro-
ningen (Department of Pathology, www.umcg.nl/EN/corporate/pages/default.aspx) and the
study protocol was consistent with the Research Code of the University Medical Center Gro-
ningen (www.umcg.nl/en/research/researchers/general/researchcode/pages/default.aspx) and
Dutch national ethical and professional guidelines (“Code of conduct; Dutch federation of bio-
medical scientific societies”; http://www.federa.org). At Vancouver, the lung specimens were
provided by the Centre for Heart Lung Innovation Biobank at St Paul's Hospital and subjects
provided written informed consent. The study was approved by the ethics committees at the
University of British Columbia-Providence Health Care Research Institute Ethics Board.

Lung tissue processing
For the discovery set, lung specimens were surgically explanted and immediately examined by
a pulmonary pathologist. After processing for pathologic diagnosis and staging, a nonneoplas-
tic pulmonary parenchyma sample (2–5 cm3) was harvested from a site as far distant as possi-
ble from the tumor. The research specimens were immediately divided into smaller fragments
(~0.5 cm3) placed in 5-mL cryovials and snap-frozen in liquid nitrogen. The cryovials were
then transported in dry ice to the IUCPQ Tissue Bank where they were stored at -80°C until
further processing.
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For UBC replication set, immediately following resection, the lung or lobe was obtained
from the operating or autopsy room. After the clinical specimens of the lesion, lymph nodes
and the resection margin were obtained, the lobes and lungs were inflated using a 50% mixture
of CryomatrixR and saline and frozen in liquid nitrogen fumes. The frozen lungs and lobes
were then cut into 7–15 two cm thick slices using a band saw and multiple randomly stratified
blocks were acquired (1-3/slice) using a power driven hole saw fitted with a 1.5 cm diameter
bit. The frozen “cores” were stored at -80°C for later RNA extraction. For the Groningen repli-
cation set, immediately following resection, the lung or lobe was obtained from the operating
room and processed for pathological diagnosis and staging. After this procedure a non-neo-
plastic pulmonary parenchyma sample (2–5 cm3) was harvested from a site distant from the
tumor. The research specimens were then divided into smaller fragments (~1 cm3), snap-fro-
zen in liquid isopentane, and stored at -80°C.

Whole-genome gene expression
Total RNA from whole lung specimens was extracted using the SV96 Total RNA Isolation Sys-
tem (Promega). Lung mRNA samples from each patient were hybridized on a custom Affyme-
trix array (GEO platform GPL10379) and expression data are available through GEO23546.
All statistical analysis was performed with R statistical software version 3.1.1 and Bioconductor
packages [41]. Standard quality controls were applied to remove outliers as we described previ-
ously [39]. Gene expression was quantile-normalized [42] and summarized by Robust Multi-
array Average (RMA) [43, 44] using the rma function as implemented in the affy package.

Genes differentially expressed in the discovery set
Linear regressions on gene expression traits were performed in the discovery cohort (Laval).
Expression traits were adjusted for age, gender and smoking status. The functions lmFit, eBayes
and topTable implemented in the limma package were used to identify genes differentially
expressed between patients who were or were not treated with statins. A total of 52,378 probe
sets were tested for association with statin usage in the discovery cohort. The Benjamini-Hoch-
berg (BH) procedure and Bonferroni correction were applied to correct for multiple testing.

Applying these analyses in the discovery cohort yielded a test statistic that deviated from
expected distribution based on a quantile-quantile (QQ) plot, which provides a visual summary
of the distribution of the observed p values generated by the genome-wide gene expression
experiment. Therefore, surrogate variable analysis (SVA) [45] was performed to remove
unwanted and unknown sources of variation in the data. Surrogate variables were detected
using the sva function implemented in the sva package. Adjustment for covariates was per-
formed by the lmFit function and results were computed using the eBayes and
topTable functions as described above.

Replication of genes differentially expressed
Genes significantly differentially expressed with a false discovery rate (FDR) lower than 0.05 in
the discovery cohort were tested for validation in the two replication cohorts (UBC and Gro-
ningen). Linear regressions were performed as described above in Groningen and UBC sets
individually. To increase sample size, replication analyses were also performed by combining
the two cohorts. The two cohorts were combined using the ComBat adjustment method [46] in
order to take into account the differences that exist in the clinical characteristics of patients as
well as lung tissues collection and processing methods between the two sets. Finally, a meta-
analysis combining the discovery and replication sets was also performed using the Fischer’s
method combining p-values derived from the three individual cohorts [47]. The function
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fischer.method from theMADAM package was applied [48]. Genes were considered signifi-
cantly replicated if they had a p-value < 0.05 in at least one of the replication set, in the com-
bined Groningen-UBC set, or the meta-analysis. S1 Fig illustrates an overview of the analytical
steps.

Pathway analysis
Biological pathways were studied with the Gene Set Enrichment Analysis (GSEA) program
[49]. Analysis was performed using the molecular signatures database MSigDB version 4.0.
Annotated genes were pre-ranked based on t statistics testing differential expression between
patients taking or not taking statins. Gene sets with a False Discovery Rate (FDR) q-value
lower than 0.05 were considered statistically significant. Canonical pathways from REACTOM
[50] and KEGG [51] were further studied.

Sub-analysis without patients with severe-to-very-severe COPD
The role of statin treatment in COPD is controversial [11, 20, 21, 28]. Therefore, a sub-group
analysis was performed by analyzing patients without severe COPD by excluding COPD
patients with a post-bronchodilator FEV1 of< 50% of predicted (GOLD stages 3 and 4). Pre-
bronchodilator values were taken if post-bronchodilator were not available. All steps used in
the main analysis were also applied to this sub-analysis.

Quantitative real-time PCR (qPCR)
qPCR was used to validate the expression of 12 genes differentially expressed between patients
taking or not taking statins. Lung parenchymal tissues were obtained from the IUCPQ bio-
bank. Twenty statin users were selected and matched with non-statin users for gender, age,
smoking status (years since smoking cessation for former smokers) and lung cancer histology.
These samples were not included in the Laval discovery set. The clinical characteristics of
patients used in the qPCR experiment are shown in S1 Table. RNA was extracted from 30 mg
of frozen lung tissue using the RNeasy Universal Plus Mini kit (Qiagen). RNA concentration
and purity was assessed by UV 260/280 nm ratio with the NanoVue spectrophotometer (GE
Healthcare). Two micrograms of RNA were converted to cDNA using Quantitect Reverse
Transcription kit (Qiagen). qPCR was performed using the SsoAdvanced Universal SYBR
Green Supermix (Bio Rad) on the Bio Rad CFX384 Real-time PCR system. Cycling steps were
1 cycle of 30 sec at 95°C then 40 cycles of 15 sec at 95°C and 30 sec at annealing/elongation
temperature. Two genes (EBP and TM7SF2) were amplified using 5% formamide and a touch-
down cycling program consisting of 1 cycle of 30 sec at 95°C then 18 cycles of 15 sec at 95°C
and 15 sec at 69°C minus 0.5°C/cycle and 15 sec at 60°C then 30 cycles of 15 sec at 95°C and
30 sec at 60°C. Three reference genes were considered including GAPDH, ACTB and B2M. The
primers were designed using the software Primer3 v.0.4.0 (http://frodo.wi.mit.edu/primer3)
and synthesized by Integrated DNA Technologies (Toronto, Ontario). PCR primers were
tested in silico using BLAT in UCSC (http://genome.ucsc.edu/index.html) to confirm their
binding to a unique region of the human genome (hg38) and the absence of underlying poly-
morphism. Primers for target and reference genes, amplicon sizes, and annealing temperatures
are shown in S2 Table. For each gene, the experimental samples were tested in triplicate. The
cDNA copy numbers of each sample were calculated according to the standard curve method
and normalized to the average copy number of the three reference genes. The fold changes
were obtained by dividing mean copy numbers of cDNA between the two groups (i.e. statin
users compared to non-statin users). One-sided paired t-tests were used to assess significant
differences in gene expression between statin and non-statin users.
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Results

Discovery set
Whole-genome gene expression data were obtained from 479 patients. A total of 408 patients
had information on statin use, were of white European ancestry, and passed all quality controls.
The demographic and clinical features are summarized in Table 1. Patients underwent lung
cancer surgery predominantly for adenocarcinoma (n = 235) and squamous cell carcinoma
(n = 103). One hundred and forty-one patients (34.6%) were using statins. Most statin users

Table 1. Clinical characteristics of the discovery cohort according to statin treatment.

Statins

Non-users (n = 267) Users (n = 141) Total (n = 408) p-values

Statin types (1)

Atorvastatin 83 108 (lipophilic)

Simvastatin 22

Lovastatin 2

Fluvastatin 1

Pravastatin 14 32 (hydrophilic)

Rosuvastatin 18

Gender

Men 134 46 180 9.92E-04(2)

Women 133 95 228

Smoking status

Never 27 9 36 NS(2)

Former 179 103 282

Current 61 29 90

Chronic Obstructive Pulmonary Disease

NAs 25 9 34 NS(2)

no 105 59 164

yes 137 73 210

Age (mean ± SD) 61.74 ± 10.33 66.44 ± 8.24 63.37 ± 9.93 1.05E-06(3)

BMI (mean ± SD) 26.21 ± 5.21 27.62 ± 5.37 26.27 ± 5.30 0.01(3)

Pack-years (mean ± SD:NAs) 41.83 ± 29.27:23 48.30 ± 30.17:14 44.04 ± 30.17:37 0.049(3)

Primary diagnosis

Lung cancer 266 141 407

Adenocarcinoma 152 83 235

Squamous cell carcinoma 62 41 103

Others 52 17 69

COPD 1 0 1

Lung function

FEV1% predicted, post-BD 82.4 ± 17.8 [7] 81.9 ± 16.8 [3] 82.2 ± 17.4 [10] 0.808(3)

FVC % predicted, post-BD 92.8 ± 15.5 [18] 89.8 ± 14.4 [7] 91.7 ± 15.2 [25] 0.060(3)

FEV1/FVC ratio 88.7 ± 12.5 [19] 91.4 ± 12.3 [7] 89.6 ± 12.4 [26] 0.045(3)

(1)The type of statin was not available for one patient.
(2)Chi square test.
(3)T test.

NA: Not Available. NS: Not Significant. FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; post-BD: post-bronchodilator. Square

brackets indicate the number of missing values.

doi:10.1371/journal.pone.0142037.t001
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(76.6%) were prescribed lipophilic statins. A larger proportion of women than men were on
statin therapy. COPD was present in 56.1% of patients. There was no significant difference in
statin usage between patients with or without COPD. Age, body mass index and pack-years
were significantly higher in patients taking statins. Lung function measured by FEV1% pre-
dicted post-bronchodilator was similar between patients taking or not taking statins
(p = 0.808), but the FEV1/FVC ratio tended to be higher in the statin group (p = 0.045)
(Table 1).

Gene expression processing
The QQ-plot showing the distribution of p-values testing all probe sets for association with the
statin status is illustrated in Fig 1A. The distribution of observed p-values was inflated. Apply-
ing SVA yielded a well-distributed test statistic with no inflation. Fig 1B shows the results after
adjustment for 34 surrogate variables detected by the SVA algorithm.

Genes differentially expressed
In the analysis adjusted for surrogate variables, log 2 fold changes ranged from -0.41 to 0.34
(Fig 2). Twenty-one genes (34 probe sets) had a BH p-value below 0.05 and 12 genes (19 probe
sets) had a p-value below the Bonferroni threshold of 9.55E-07 (α = 0.05) (Fig 2, Table 2). Eigh-
teen genes were up-regulated and three were down-regulated with statin therapy.

Replications sets
Whole-genome gene expression data were obtained from 445 patients in the Groningen set
and 405 patients in the UBC set. After quality control filters, 341 and 282 patients had informa-
tion on statin use and were of white European ancestry in Groningen and UBC, respectively.
Table 3 shows the demographic and clinical phenotypes for the two replication cohorts. Pri-
mary diagnosis in Groningen samples were lung cancer (n = 122), COPD (n = 69), cystic

Fig 1. QQ-plots comparing adjustment methods. The QQ-plot is expected to follow the red line except for the extreme right (low P-values) end that may
contain differentially expressed genes. A) QQ-plot of p-values obtained after linear regression of gene expression to test for genes differentially expressed
between patients with and without statin therapy adjusted for age, gender and smoking status. B) QQ-plot of p-values obtained after adjusting gene
expression for surrogate variables derived from SVA.

doi:10.1371/journal.pone.0142037.g001
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fibrosis (n = 44), and alpha-1 antitrypsin deficiency (n = 37). At UBC, the primary diagnosis
was mainly lung cancer (n = 264). Twenty-six and twenty-four patients were taking statins in
the Groningen and UBC cohorts, respectively. Of the 34 transcripts that were differentially
expressed in the discovery cohort, 23 replicated in the Groningen cohort. Transcripts for
SC4MOL (2 probe sets), AACS, CDK5RAP2, FGFBP1, ANAPC7, ELOVL6, EML1, GINS3 and
MVD as well as one out of three transcripts for HMGCS1 did not replicate. Overall, 12 unique
genes up-regulated by statin treatment were replicated in the Groningen cohort, including
HMGCS1, TMEM97, TM7SF2, FDFT1, ACAT2, EBP, FDPS,HMGCR, SQLE, DHCR7, C14orf1,
and INSIG1. No transcript replicated in the UBC dataset.

Considering the relatively small sample sizes of patients taking statins in the replication sets,
we have also performed the analyses by combining the two cohorts. In this case, 20 out of 34
transcripts that were differentially expressed in the discovery cohort were replicated in the
merged Groningen-UBC set. Results are shown in S3 Table. Genes validated by combining the
two replication sets are the same 12 genes described above.

Finally, we performed a joint meta-analysis including the discovery and the two replication
sets. This meta-analysis improved the significance of 12 of the up-regulated genes (Table 2).
Twenty-nine transcripts corresponding to 16 genes were differentially expressed. In addition to
the 12 genes replicated in at least one replication set and in the combined Groningen-UBC set,
MVD, SC4MOL, AACS, and CDK5RAP2 were also differently expressed. However, five genes
differentially expressed in the discovery set were not significant in the meta-analysis including
FGFBP1, ANAPC7, ELOVL6, EML1 and GINS3.

qPCR
Twelve genes up-regulated by statin treatment and that were validated in at least one replica-
tion set were further validated by qPCR in 40 independent patients. Fig 3 shows gene expres-
sion between patients taking (n = 20) and not taking (n = 20) statin. Eight out of 12 genes were
significantly up-regulated in statin users.

Fig 2. Volcano plot of SVA analysis p-values and fold changes. Presenting the impact of statin on gene
expression in the lung obtained from the discovery set. Red dots correspond to genes claimed differentially
expressed (FDR < 0.05).

doi:10.1371/journal.pone.0142037.g002
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Table 2. Genes (probe sets) differentially expressed between statin groups in the discovery and replication cohorts.

Laval Groningen UBC Meta-analysis

Gene
symbol

Gene name log2FC CI(±) p value BH p value p value p value BH

HMGCS1 3-hydroxy-3-methylglutaryl-CoA synthase 1 3.01E-01 7.81E-
02

3.07E-
13

1.61E-
08

1.70E-02 3.00E-
01

9.62E-
13

4.95E-
08

HMGCS1 3-hydroxy-3-methylglutaryl-CoA synthase 1 2.59E-01 7.53E-
02

5.23E-
11

1.37E-
06

9.60E-02 5.06E-
01

9.75E-
10

8.37E-
06

TMEM97 transmembrane protein 97 2.15E-01 6.48E-
02

2.10E-
10

2.80E-
06

1.38E-04 7.18E-
01

1.11E-
11

2.85E-
07

HMGCS1 3-hydroxy-3-methylglutaryl-CoA synthase 1 2.09E-01 6.33E-
02

2.67E-
10

2.80E-
06

3.48E-03 2.10E-
01

8.96E-
11

1.15E-
06

TM7SF2 transmembrane 7 superfamily member 2 1.33E-01 4.04E-
02

2.68E-
10

2.80E-
06

1.68E-03 7.72E-
02

1.77E-
11

3.05E-
07

FDFT1 farnesyl-diphosphate farnesyltransferase 1 8.77E-02 2.85E-
02

3.49E-
09

3.05E-
05

2.04E-03 8.81E-
01

2.26E-
09

1.45E-
05

TMEM97 transmembrane protein 97 1.45E-01 4.76E-
02

5.22E-
09

3.91E-
05

1.26E-03 7.21E-
01

1.75E-
09

1.29E-
05

TMEM97 transmembrane protein 97 1.45E-01 4.90E-
02

1.30E-
08

8.51E-
05

9.11E-04 8.38E-
01

3.45E-
09

1.97E-
05

ACAT2 acetyl-CoA acetyltransferase 2 1.47E-01 5.03E-
02

2.04E-
08

1.19E-
04

1.20E-03 9.85E-
01

7.78E-
09

3.64E-
05

EBP emopamil binding protein 1.08E-01 3.79E-
02

3.83E-
08

2.01E-
04

3.78E-03 1.58E-
01

7.44E-
09

3.64E-
05

ACAT2 acetyl-CoA acetyltransferase 2 1.44E-01 5.10E-
02

4.92E-
08

2.28E-
04

1.15E-03 7.68E-
01

1.34E-
08

5.76E-
05

MVD mevalonate (diphospho) decarboxylase 1.16E-01 4.12E-
02

5.23E-
08

2.28E-
04

1.39E-01 3.28E-
01

5.21E-
07

1.58E-
03

SC4MOL methylsterol monooxygenase 1 1.20E-01 4.25E-
02

5.87E-
08

2.36E-
04

6.44E-02 8.10E-
01

6.51E-
07

1.77E-
03

FDPS farnesyl diphosphate synthase 9.21E-02 3.32E-
02

8.60E-
08

3.22E-
04

6.39E-05 4.41E-
01

9.35E-
10

8.37E-
06

HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A
reductase

1.18E-01 4.32E-
02

1.27E-
07

4.43E-
04

2.93E-02 7.05E-
01

5.65E-
07

1.62E-
03

FDFT1 farnesyl-diphosphate farnesyltransferase 1 8.23E-02 3.05E-
02

1.96E-
07

6.42E-
04

1.17E-03 8.46E-
01

5.29E-
08

2.10E-
04

SQLE squalene epoxidase 1.41E-01 5.26E-
02

2.51E-
07

7.72E-
04

1.13E-02 3.19E-
01

2.16E-
07

6.95E-
04

SQLE squalene epoxidase 1.42E-01 5.45E-
02

5.28E-
07

1.54E-
03

5.98E-03 1.36E-
01

1.10E-
07

4.04E-
04

AACS acetoacetyl-CoA synthetase 7.69E-02 3.02E-
02

8.81E-
07

2.43E-
03

1.41E-01 2.94E-
01

6.03E-
06

1.24E-
02

FDFT1 farnesyl-diphosphate farnesyltransferase 1 6.61E-02 2.64E-
02

1.22E-
06

3.09E-
03

1.10E-02 8.51E-
01

2.13E-
06

4.99E-
03

CDK5RAP2 CDK5 Regulatory Subunit Associated
Protein 2

-1.06E-
01

4.22E-
02

1.24E-
06

3.09E-
03

1.30E-01 9.85E-
01

2.22E-
05

3.94E-
02

SC4MOL methylsterol monooxygenase 1 1.84E-01 7.39E-
02

1.46E-
06

3.48E-
03

1.21E-01 4.08E-
01

1.10E-
05

2.03E-
02

DHCR7 7-dehydrocholesterol reductase 1.30E-01 5.44E-
02

3.92E-
06

8.93E-
03

2.42E-03 8.08E-
01

1.49E-
06

3.83E-
03

C14orf1 Chromosome 14 Open Reading Frame 1 6.20E-02 2.61E-
02

4.30E-
06

9.39E-
03

4.51E-04 3.76E-
01

1.78E-
07

6.10E-
04

HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A
reductase

9.87E-02 4.22E-
02

5.87E-
06

1.23E-
02

3.49E-03 8.57E-
01

3.13E-
06

6.71E-
03

(Continued)
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Biological pathways
Out of the initial 52,378 probes sets, 36,650 were annotated with a gene name including 18,402
unique genes. GSEA was used on the 18,402 genes pre-ranked based on differential expression
between patients with or without statins. Twenty-seven gene sets had a FDR q-value< 0.05
(Table 4). Three were from canonical pathway databases (i.e. REACTOME and KEGG). The
REACTOME cholesterol biosynthesis pathway includes eight of the 12 genes up-regulated and
validated in the lung of statin users namely HMGCS1, TM7SF2, FDFT1, EBP, FDPS, HMGCR,
SQLE, and DHCR7. These are enzymes or membrane proteins of the endoplasmic reticulum
implicated in the synthesis of cholesterol (S2 Fig). The KEGG steroid biosynthesis includes five
genes up-regulated by statins namely TM7SF2, FDFT1, EBP, SQLE, and DHCR7. Finally the
KEGG terpenoid backbone biosynthesis pathway includes four genes up-regulated by statins
namely HMGCS1, FDPS, HMGCR, and ACAT2. All genes up-regulated by statins in these two
KEGG pathways, except ACAT2, were also found in the REACTOME cholesterol biosynthesis
pathway. Fig 4A summarizes genes up-regulated by statins in the lung and implicated in the
synthesis of cholesterol.

Sub-group analysis excluding patients with severe-to-very-severe
COPD
A total of 385 patients without severe COPD (GOLD stages 3 and 4) were selected in the dis-
covery cohort including 134 statin users. The Groningen and UBC replication cohorts com-
prised 244 and 120 COPD patients without severe or very severe disease including 18 and 19
statin users, respectively. Applying linear regression adjusted for age, gender and smoking sta-
tus as well as surrogate variables from SVA in the discovery cohort yielded 33 transcripts

Table 2. (Continued)

Laval Groningen UBC Meta-analysis

Gene
symbol

Gene name log2FC CI(±) p value BH p value p value p value BH

HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A
reductase

9.67E-02 4.16E-
02

6.70E-
06

1.35E-
02

6.72E-03 9.59E-
01

6.98E-
06

1.38E-
02

FGFBP1 Fibroblast Growth Factor Binding Protein 1 3.10E-01 1.37E-
01

1.23E-
05

2.30E-
02

1.20E-01 2.93E-
01

5.34E-
05

8.59E-
02

INSIG1 insulin induced gene 1 1.25E-01 5.58E-
02

1.32E-
05

2.39E-
02

6.06E-03 1.14E-
01

1.75E-
06

4.28E-
03

ANAPC7 Anaphase Promoting Complex Subunit 7 -7.94E-
02

3.57E-
02

1.60E-
05

2.71E-
02

9.08E-01 8.93E-
01

9.81E-
04

4.76E-
01

DHCR7 7-dehydrocholesterol reductase 1.19E-01 5.40E-
02

1.77E-
05

2.89E-
02

1.85E-03 4.42E-
01

2.64E-
06

5.90E-
03

ELOVL6 ELOVL Fatty Acid Elongase 6 1.73E-01 7.83E-
02

1.87E-
05

2.97E-
02

8.68E-01 2.97E-
01

4.25E-
04

3.36E-
01

INSIG1 insulin induced gene 1 1.20E-01 5.47E-
02

2.05E-
05

3.16E-
02

1.51E-02 1.79E-
01

8.71E-
06

1.66E-
02

EML1 Echinoderm Microtubule Associated Protein
Like 1

-1.09E-
01

4.99E-
02

2.11E-
05

3.16E-
02

1.17E-01 9.88E-
01

2.38E-
04

2.79E-
01

GINS3 GINS Complex Subunit 3 (Psf3 homolog) -8.46E-
02

3.93E-
02

2.92E-
05

4.25E-
02

9.31E-01 9.30E-
01

1.71E-
03

5.85E-
01

CI is the confidence interval: the value to add and subtract to the log 2 fold change (Log2FC). BH is the Benjamini-Hochberg adjusted p-values. Genes in

bold are replicated in at least one cohort (Groningen). Some genes are represented by more than one transcript.

doi:10.1371/journal.pone.0142037.t002
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differentially expressed (BH p-value < 0.05) in patients taking or not statins, which corre-
sponded to 21 genes (S4 Table). Three genes were down-regulated and 18 were up-regulated in
statin users and all overlapped with genes found in the main analysis. Seventeen transcripts
corresponding to 9 genes were replicated in Groningen (p-value< 0.05), but none in UBC.
Replicated genes in Groningen include HMGCS1, TMEM97, ACAT2, HMGCR, SC4MOL,
FDPS, SQLE, CDK5RAP2, and INSIG1. In the joint meta-analysis, 27 transcripts corresponding
to 15 genes were differentially expressed, which include the nine genes plus TM7SF2, FDFT1,
MVD, EBP, C14orf1, and FGFBP1. Biological pathways were similar to those found in the main
analysis.

Discussion
The goal of this study was to identify genes and biological pathways that are modulated by
statin treatment in human lung that may explain the improved respiratory health and survival
observed in patients with lung diseases taking this class of lipid-lowering drug. Statins are

Table 3. Clinical characteristics of the replication cohorts according to statin treatment.

Groningen UBC

Statins Statins

Non-users Users Total Non-users Users Total

315 26 341 258 24 282

Gender

Men 164 17 181 140 13 153

Women 151 9 160 118 11 129

Smoking status (17 NAs) (6 NAs) (23 NAs)

Never 99 1 100 17 1 18

Former 165 19 184 138 12 150

Current 51 6 57 86 5 91

COPD (102 NAs) (2 NAs) (104 NAs) (48 NAs) (5 NAs) (53 NAs)

no 68 14 82 117 7 124

yes 145 10 155 93 12 105

Diabetes (226 NAs) (21 NAs) (247 NAs)

no 295 19 314 21 1 22

yes 20 7 27 11 2 13

Age (mean ± SD) 50.34 ±50.4 65.19 ±8.87 51.47 ±15.65 62.84 ±11.44 68.88 ±6.53 63.35 ±11.22

BMI (mean ± SD, [NAs]) 22.95 ±4.19, [27] 25.94 ±4.05, [3] 23.17 ±4.25, [30] 25.82 ±5.33, [26] 25.36 ±4.6, [5] 25.27 ±5.27, [31]

Pack year (mean ± SD, [NAs]) 20.05 ±20.16, [26] 34.32 ±17.05, [4] 21.06 ±20.26, [30] 42.24 ±30.49, [26] 43.59 ±26.57, [3] 42.35 ±30.14, [29]

Primary diagnosis

Lung cancer 100 22 122 241 23 264

Adenocarcinoma 24 12 36 74 10 84

Squamous cell carcinoma 46 5 51 75 8 83

Others 30 5 35 92 5 97

COPD 67 2 69 2 0 2

Cystic fibrosis 44 0 44 2 0 2

Alpha-1 antitrypsin deficiency 37 0 37 0 0 0

Others 67 2 69 13 1 14

NA: not available.

doi:10.1371/journal.pone.0142037.t003
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known to alter cholesterol synthesis. Twenty-one genes were differentially expressed by statin
treatment in the lung. Twelve up-regulated genes replicated in one independent set including
genes encoding enzymes and membrane proteins involved in cholesterol biosynthesis. Eight of
these genes were further validated by qPCR in an independent set of lung specimens. Canonical
biological pathways altered by statins in the lung include cholesterol, steroid, and terpenoid
backbone biosynthesis. No genes encoding proteases, growth factors, pro-fibrotic or pro-
inflammatory mediators were identified that may have explained the pleiotropic effects of stat-
ins in the lung. The sub-analysis of patients with no severe COPD supports these results.

All 12 genes up-regulated and replicated by statins in the lung were also found to be up-reg-
ulated in primary human hepatocytes treated with either atorvastatin or rosuvastatin [38],
which provides an external validation of our results. Eight out of the 12 genes were part of the
REACTOME cholesterol biosynthesis pathway including HMGCS1, TM7SF2, FDFT1, EBP,
FDPS, HMGCR, SQLE, and DHCR7.MVD, belonging to this pathway, was up-regulated by
statins in the discovery set, but was not replicated (S2 Fig). ACAT2 was also up-regulated by
statins in the lung. This enzyme is responsible to convert acetyl-CoA to acetoacetyl-CoA,
which is the precursor feeding the cholesterol biosynthesis pathway (Fig 4A). The current
study thus confirmed that cardio-protective doses of statin reached the lung and mediated an
anti-lipidemic action.

Three other genes were found up-regulated in the lung of statin users namely INSIG,
TMEM97, and C14orf1. INSIG1 is an endoplasmic reticulum membrane protein that binds
SCAP (SREBP cleavage-activating protein) and HMG CoA reductase. INSIG1 mediated sterol-
induced ubiquitination and ER-associated degradation of reductase, and thus plays a critical
role in regulating cholesterol concentration in cells [52]. TMEM97 was identified as a func-
tional regulator of cellular cholesterol homeostatis [53]. Finally, C14orf1 (also known as
ERG28) was also shown to be involved in sterol biosynthesis [54]. TMEM97, INSIG1, and
C14orf1 are thus in line with the cholesterogenic action of statins in the lung.

A recent prospective randomized controlled trial of patients with moderate to severe COPD
showed that simvastatin had no beneficial effect on the number of exacerbations or the time to

Fig 3. Validation of genes up-regulated by statin in lung tissues by qPCR. Patients taking (n = 20) and
not taking (n = 20) statin were matched for gender, age and smoking status. Error bars are SE on a fold-
change scale. *p < 0.05, **p < 0.01.

doi:10.1371/journal.pone.0142037.g003
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a first exacerbation [28]. As stated by the authors, the beneficial effect of statins may be
restricted to patients with less severe COPD. Moreover, patients with cardiovascular disease
were excluded in that prospective trial. Following this publication, a retrospective study found
that statin use was associated with reduced odds of exacerbations in individuals with COPD,
but not in patients with severe COPD without cardiovascular comorbidity [55]. In the current
study, keeping or removing patients with severe COPD had a minimal effect on the impact of
statins on gene expression in the lung.

This study has limitations. The lung is composed of different cell types that vary in propor-
tion in different conditions and individuals. Gene expression levels are sensitive to the abun-
dance of different cell types including lung specific cells (e.g. pneumocytes) and immune
specific cells (e.g. alveolar macrophages). In addition, the types of statin were not considered.
Statin classes differ in their biological effects due to specific characteristics such as lipophilicity
responsible for their absorption, metabolism and excretion. In this study, most patients were
taking lipophilic statins which are active in the liver and extrahepatic organs whereas hydro-
philic statins are more selective for the liver [56]. In addition, no information is available on
statin dosage. Differences in statin types and dosage may explain the lack of replication in the

Table 4. Summary of top GSEA gene sets with a FDR q-value < 0.05.

Name Nominal p-val FDR q-val FWER p-val

HORTON_SREBF_TARGETS <2.16E-03 <3.47E-04 <3.00E-03

SCHMIDT_POR_TARGETS_IN_LIMB_BUD_UP <2.16E-03 <3.47E-04 <3.00E-03

REACTOME_CHOLESTEROL_BIOSYNTHESIS <2.16E-03 <3.47E-04 <3.00E-03

MODULE_432 <2.16E-03 <3.47E-04 <3.00E-03

KEGG_STEROID_BIOSYNTHESIS <2.16E-03 <3.47E-04 <3.00E-03

KEGG_TERPENOID_BACKBONE_BIOSYNTHESIS <2.16E-03 <3.47E-04 <3.00E-03

CSR_LATE_UP.V1_DN <2.16E-03 <3.47E-04 <3.00E-03

WENG_POR_TARGETS_GLOBAL_UP <2.16E-03 <3.47E-04 <3.00E-03

WILCOX_PRESPONSE_TO_ROGESTERONE_UP <2.16E-03 <3.47E-04 <3.00E-03

PODAR_RESPONSE_TO_ADAPHOSTIN_DN <2.16E-03 3.47E-04 3.00E-03

JI_RESPONSE_TO_FSH_UP <2.16E-03 5.27E-04 5.00E-03

WENG_POR_TARGETS_LIVER_UP <2.16E-03 1.45E-03 1.50E-02

ZWANG_EGF_PERSISTENTLY_UP <2.16E-03 1.34E-03 1.50E-02

GUO_TARGETS_OF_IRS1_AND_IRS2 <2.16E-03 6.69E-03 7.60E-02

MTOR_UP.V1_UP <2.16E-03 8.10E-03 9.90E-02

STEROID_BIOSYNTHETIC_PROCESS <2.16E-03 7.67E-03 1.00E-01

MITOCHONDRION_ORGANIZATION_AND_BIOGENESIS <2.16E-03 9.00E-03 1.23E-01

GSE24634_IL4_VS_CTRL_TREATED_NAIVE_CD4_TCELL_DAY5_UP <2.16E-03 1.27E-02 1.76E-01

GNF2_IL2RB <2.16E-03 2.34E-02 3.05E-01

CHR1Q31 <2.16E-03 2.46E-02 3.34E-01

MITOCHONDRIAL_TRANSPORT <2.16E-03 2.60E-02 3.65E-01

CAFFAREL_RESPONSE_TO_THC_DN <2.16E-03 2.62E-02 3.82E-01

LE_EGR2_TARGETS_DN <2.16E-03 2.90E-02 4.30E-01

GNF2_PTPN4 2.16E-03 4.30E-02 5.73E-01

ZHANG_GATA6_TARGETS_DN <2.16E-03 4.73E-02 6.25E-01

GNF2_CD7 <2.16E-03 4.59E-02 6.28E-01

BURTON_ADIPOGENESIS_10 <2.16E-03 4.95E-02 6.68E-01

FDR: False Discovery Rate; FWER: FamilyWise Error Rate.

Gene sets from canonical pathway databases are shown in bold.

doi:10.1371/journal.pone.0142037.t004
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UBC replication set. However, the lack of power (only 24 statin users) may also contribute to
this observation. Furthermore, gene expression is only one aspect of the molecular alterations
induced by statins in the lung. These results will need to be confirmed by other studies looking
for other biological dimensions such as proteomic and epigenetic changes.

Fig 4. Biological pathways of genes detected as up-regulated by statins in lung tissue.Molecules and proteins are represented by orange circles and
green rectangles, respectively. Squares on lines symbolize an enzymatic reaction. Lines ending with a circle designate the activity of an enzyme. Double
slashes on line indicate missing step or information. A question mark indicates a hypothetical relation. Log 2 fold changes of differentially expressed genes
are indicated on the top of rectangles. (A) Genes encoding enzymes and membrane proteins involved in cholesterol synthesis that are up-regulated by
statins in lung tissues. (B) (C) and (D) illustrated the possible effects of C14orf1, INSIG1 and TMEM97 on cholesterol metabolism.

doi:10.1371/journal.pone.0142037.g004
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Conclusion
Beyond their antilipidemic action, statins are known to have many pharmacological effects
such as antioxidant, antithrombotic, antiarrhythmic, antifibrotic, anticancer, antiapoptotic,
antiproliferative and antiinflammatory. In this study, we analyzed the impact of statins on gene
expression in the lung in order to elucidate in humans the molecular mechanisms underpin-
ning the clinical benefits of statins in chronic lung diseases. Results indicate that statins up-reg-
ulate genes encoding enzymes and membrane proteins involved in cholesterol synthesis. Our
study design was promising to pinpoint genes and/or molecular pathways altered in the lung of
statin users and reveal the specific pleiotropic effect(s) of statins that is taking place in the lung.
However, no genes were altered beyond those implicated in the anti-lipidemic action of statins.
This genome-wide gene expression study is thus not supporting direct pleiotropic effects of
statin in lung tissues. Based on these results and bearing in mind the aforementioned limita-
tions, the improved health outcomes and survival observed in statin users with chronic lung
diseases may be more likely mediated by the reduction of systemic inflammation and/or the
indirect effects of statins on cardiovascular comorbidities. The next steps will require gene
expression in specific lung cell types, in silico deconvolution approaches [57], and further stud-
ies using different classes of statins with known dosages.
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