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Abstract: Stomatal density, spacing, and patterning greatly influence the efficiency of gas exchange,
photosynthesis, and water economy. They are regulated by a complex of extracellular and intracel-
lular factors through the signaling pathways. After binding the extracellular epidermal patterning
factor 1 (EPF1) and 2 (EPF2) as ligands, the receptor-ligand complexes activate by phosphorylation
through the MAP-kinase cascades, regulating basic helix-loop-helix (bHLH) transcription factors
SPEECHLESS (SPCH), MUTE, and FAMA. In this review, we summarize the molecular mechanisms
and signal transduction pathways running within the transition of the protodermal cell into a pair
of guard cells with a space (aperture) between them, called a stoma, comprising asymmetric and
symmetric cell divisions and draw several functional models. The feedback mechanisms involving
the bHLH factors SPCH and MUTE are not fully recognized yet. We show the feedback mechanisms
driven by SPCH and MUTE in the regulation of EPF2 and the ERECTA family. Intersections of
the molecular mechanisms for fate determination of stomatal lineage cells with the role of core cell
cycle-related genes and stabilization of SPCH and MUTE are also reported.
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1. Introduction

Arabidopsis thaliana (Arabidopsis) protodermal leaf cells differentiate into three main
cell types: unicellular leaf hairs (trichomes), pavement cells, and pairs of stomatal GCs that
facilitate transpiration and exchange of gases between plant and atmosphere [1–3]. Stomata
development from leaf protodermal cells follows the single-cell spacing rule to ensure
the separation of stomata with at least a single pavement cell [4,5]. Stomata formation
comprises a series of steps called stomatal lineage [6]. Stomatal lineage cells may undergo
normal stomatal development by following single-cell space rules, exit the lineage, be
arrested at any developmental stage, or undergo apoptosis by activating programmed cell
death [3,7,8]. The cell cycle is checked and regulated by cell cycle checkpoints, which are
present between each phase of the cell cycle, and decide the possible developmental fate of
a cell [7].

Stomatal lineage starts with stochastically selected leaf protodermal cell transition
into the meristemoid mother cell (MMC). The MMC divides asymmetrically into a large
daughter cell called a stomatal lineage ground cell (SLGC) and a meristemoid small daugh-
ter cell [5]. The SLGC in the daughter cells pair can differentiate into a pavement cell or
reacquire MMC fate to undergo asymmetric spacing division to form satellite meriste-
moids [9]. Meristemoids can divide asymmetrically to amplify more SLGCs, transit into
guard mother cells (GMC), or, rarely, exit the lineage [3]. The GMC will divide symmetri-
cally into a pair of GCs with space between them to form a stoma, or its development can
be arrested (Figure 1).
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Figure 1. Stomatal lineage, starting from protodermal cell to pair of GCs enclosing stomata. Arrow lines indicate the pro-

gression of cells in the lineage. Hypothetically, the stomatal lineage ground cell (SLGC) will differentiate into a pavement 

cell if its neighboring cell is a meristemoid from another cell division. If the SLGC neighbor cell is an SLGC from another 

cell division, it will undergo a spacing division. Hypothetically, the meristemoid will progress into guard mother cells 

(GMC) if it is surrounded by SLGCs or pavement cells; otherwise, it will continue amplifying to attain enough SLGCs for 

a single-celled space rule. Cells may exit lineage in any stage due to unfavorable intrinsic or extrinsic conditions. 

2. Role of SPEECHLESS (SPCH), MUTE, and FAMA in Stomata Development 

Basic helix-loop-helix (bHLH) transcription factors (TFs) such as SPEECHLESS 

(SPCH), MUTE, and FAMA are critical for stomatal development. Mutations in any one 

of these TFs result in improperly developed stomata [6,10–12]. SPCH regulates the transi-

tion of protodermal cells into MMCs and asymmetric cell division subsequently. SPCH-

defective mutants were unable to initiate stomatal lineage, with an entirely pavement-

celled epidermis phenotype. The different fate decisions of the meristemoid cells (ampli-

fying division, spacing division, or progression down the lineage) depends on the activity 

and available level of SPCH (Figure 2) [12,13]. MUTE regulates meristemoids’ transition 

into GMCs, confirmed by arrested lineage at the meristemoid stage in a MUTE-defective 

mutant. Overexpression of MUTE in the spch background partially rescued spch-pheno-

type, and in the wild-type, it exhibited a phenotype, an epidermis densely populated with 

stomata (Figure 2) [10,14]. These results demonstrate that MUTE has no role in SPCH-

regulated asymmetric amplification and spacing cell division [14]. 

FAMA regulates symmetric cell division of each GMC into a pair of GCs with a space 

between them to form stomata and terminates lineage cell meristematic activity [11,15,16]. 

Defective FAMA exhibited uncontrolled symmetric cell division of GMCs with a FAMA-

tumor phenotype. FAMA-RETROBLASTOMA-RELATED (RBR) interaction facilitates 

POLYCOMB REPRESSOR COMPLEX-mediated chromatin methylation to switch off 

SPCH and MUTE expression. Incorrect FAMA expression resulted in a stoma-in-stoma 

phenotype, where GCs were pushed into lineage by active SPCH (Figure 2) [11,15–17]. 

Figure 1. Stomatal lineage, starting from protodermal cell to pair of GCs enclosing stomata. Arrow lines indicate the
progression of cells in the lineage. Hypothetically, the stomatal lineage ground cell (SLGC) will differentiate into a pavement
cell if its neighboring cell is a meristemoid from another cell division. If the SLGC neighbor cell is an SLGC from another
cell division, it will undergo a spacing division. Hypothetically, the meristemoid will progress into guard mother cells
(GMC) if it is surrounded by SLGCs or pavement cells; otherwise, it will continue amplifying to attain enough SLGCs for a
single-celled space rule. Cells may exit lineage in any stage due to unfavorable intrinsic or extrinsic conditions.

2. Role of SPEECHLESS (SPCH), MUTE, and FAMA in Stomata Development

Basic helix-loop-helix (bHLH) transcription factors (TFs) such as SPEECHLESS (SPCH),
MUTE, and FAMA are critical for stomatal development. Mutations in any one of these
TFs result in improperly developed stomata [6,10–12]. SPCH regulates the transition of
protodermal cells into MMCs and asymmetric cell division subsequently. SPCH-defective
mutants were unable to initiate stomatal lineage, with an entirely pavement-celled epider-
mis phenotype. The different fate decisions of the meristemoid cells (amplifying division,
spacing division, or progression down the lineage) depends on the activity and available
level of SPCH (Figure 2) [12,13]. MUTE regulates meristemoids’ transition into GMCs,
confirmed by arrested lineage at the meristemoid stage in a MUTE-defective mutant. Over-
expression of MUTE in the spch background partially rescued spch-phenotype, and in
the wild-type, it exhibited a phenotype, an epidermis densely populated with stomata
(Figure 2) [10,14]. These results demonstrate that MUTE has no role in SPCH-regulated
asymmetric amplification and spacing cell division [14].
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Figure 2. Role of basic helix-loop-helix (bHLH) transcription factors: SPCH, MUTE, and FAMA in stomatal development. 

SPCH regulates protodermal cells’ transition to meristemoid mother cell (MMC), rounds of amplifying cell division, and 

spacing division to form satellite meristemoids. The defective SPCH mutant exhibits pavement-celled epidermis entirely, 

whereas overexpression of MUTE in the SPCH background exhibits epidermis with the fewer-stomata phenotype. MUTE 

facilitates the meristemoid transition to GMC. The defective MUTE mutant arrests cell lineage at the meristemoid stage, 

whereas the overexpression of MUTE in the wild-type (WT) background shows a phenotype of too many stomata. FAMA 

plays a vital role in GMC’s symmetric division into a pair of GCs with a stomatal opening between them. The defective 

FAMA mutant presents a stomata-in-stomata or FAMA-tumor phenotype. 

3. Ligand, Receptor, MPK Cascade, and Associated Pathways in Stomatal Develop-
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Peptide signaling, a well-known stomatal development regulator, is underpinned by 

EPIDERMAL PATTERNING FACTORS 1 (EPF1), EPF2, and EPIDERMAL PATTERNING 

FACTOR LIKE 9 (EPFL9, denoted as STOMAGEN, STOM) [18–22]. EPF1/2, as negative 

stomatal development regulators, bind/activate leucine-rich repeat receptor kinases (LRR-

RKs). At the same time, STOM competes to bind the LRR-RKs with the EPF1/2 to posi-

tively regulate stomatal development [23–25]. EPF2 mainly regulates SPCH and the sub-

sequent behavior of meristemoids, whereas EPF1 regulates the one-cell-spacing rule and 

participates in GMC’s autocrine regulation and inhibition of SLGCs from re-entering the 
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the ER dominance during stomatal development [30]. Increased stomatal density and in-
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Figure 2. Role of basic helix-loop-helix (bHLH) transcription factors: SPCH, MUTE, and FAMA in stomatal development.
SPCH regulates protodermal cells’ transition to meristemoid mother cell (MMC), rounds of amplifying cell division, and
spacing division to form satellite meristemoids. The defective SPCH mutant exhibits pavement-celled epidermis entirely,
whereas overexpression of MUTE in the SPCH background exhibits epidermis with the fewer-stomata phenotype. MUTE
facilitates the meristemoid transition to GMC. The defective MUTE mutant arrests cell lineage at the meristemoid stage,
whereas the overexpression of MUTE in the wild-type (WT) background shows a phenotype of too many stomata. FAMA
plays a vital role in GMC’s symmetric division into a pair of GCs with a stomatal opening between them. The defective
FAMA mutant presents a stomata-in-stomata or FAMA-tumor phenotype.

FAMA regulates symmetric cell division of each GMC into a pair of GCs with a space
between them to form stomata and terminates lineage cell meristematic activity [11,15,16].
Defective FAMA exhibited uncontrolled symmetric cell division of GMCs with a FAMA-
tumor phenotype. FAMA-RETROBLASTOMA-RELATED (RBR) interaction facilitates
POLYCOMB REPRESSOR COMPLEX-mediated chromatin methylation to switch off SPCH
and MUTE expression. Incorrect FAMA expression resulted in a stoma-in-stoma phenotype,
where GCs were pushed into lineage by active SPCH (Figure 2) [11,15–17]. Furthermore,
FAMA-activated genes such as POTASSIUM CHANNEL IN ARABIDOPSIS THALIANA 1
are required for GCs functioning and control of stomatal aperture [17].

3. Ligand, Receptor, MPK Cascade, and Associated Pathways in
Stomatal Development

Peptide signaling, a well-known stomatal development regulator, is underpinned by
EPIDERMAL PATTERNING FACTORS 1 (EPF1), EPF2, and EPIDERMAL PATTERNING
FACTOR LIKE 9 (EPFL9, denoted as STOMAGEN, STOM) [18–22]. EPF1/2, as nega-
tive stomatal development regulators, bind/activate leucine-rich repeat receptor kinases
(LRR-RKs). At the same time, STOM competes to bind the LRR-RKs with the EPF1/2 to
positively regulate stomatal development [23–25]. EPF2 mainly regulates SPCH and the
subsequent behavior of meristemoids, whereas EPF1 regulates the one-cell-spacing rule
and participates in GMC’s autocrine regulation and inhibition of SLGCs from re-entering
the stomatal lineage [26,27]. The ERECTA (ER) family, comprising ER, ERECTA-LIKE 1
(ERL1), and ERL2, are extensively studied LRR-RKs [28]. ERLI and ER play a role in
the GMC development stage and facilitate the cell-specific MUTE activity, whereas ERL2
regulates SPCH, mainly as shown in Figure 3 [26,29]. The erl1 and erl2 single mutant and
erl1 erl2 double mutant showed reduced SLGC, a less severe phenotype as compared to the
er single mutant. The less severe phenotype in ERL mutants than ER mutants demonstrates
the ER dominance during stomatal development [30]. Increased stomatal density and
index in the er erl1 double mutant and elevated SLGCs in er mutant indicate that they are
collectively regulating MUTE in the GMC stage. While slightly increased phenotype in the
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er erl2 double mutants compared to er, the single mutant suggests that erl2 is one of the
main SPCH regulators during stomatal development [30].
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Figure 3. The ligand-receptor interactions are regulating SPCH, MUTE, and FAMA. Ligand (EPF1 and EPF2) binds to the
receptor complex (ERf/TMM/SERK). It activates the MPK cascade (YDA-MKK-MPK) that suppresses SPCH, probably
suppresses MUTE, and promotes FAMA for respective action during stomatal development. SPCH induces the expression of
EPF2 and TMM in a negative feedback mechanism. MUTE induces ERLI and suppresses EPF2. ERL1 regulates meristemoid
transition into GMC upon perceiving EPF1. MUTE upregulates CYC and CDK symmetric cell divisions of GMCs. MUTE
locks in the cells and upregulates FLP and FAMA in the differentiation program that suppresses the cell cycle’s regulators to
control single symmetric cell division. On the right, CLE9/10 is perceived by HSL1 and SERK complex, and signals from
this activated complex result in SPCH phosphorylation and destabilization.

TOO MANY MOUTHS (TMM) binds to the ER family (ER and ERL1) to form active
extracellular complexes to perceive EPF1 and EPF2 for regulating correct stomatal devel-
opment [31,32]. TMM, which is mainly expressed in young GCs and stomatal precursor
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cells, is part of the autoregulatory mechanism and a direct target of SPCH transcription
regulators [12,33]. SOMATIC EMBRYOGENESIS RECEPTOR KINASES (SERKs), an ir-
relative LRR-RK family, have been found required for coupling extracellular TMM/ER
complexes to perceive peptide signaling for downstream intracellular signaling, as shown
in Figure 3 [34]. There are five homologs (SERK1-5) in Arabidopsis, and single mutants of
these genes did not alter stomatal development. However, serk1-1/serk2-1/SERK3-4 triple
and serk1-1/serk2-1/SERK3-4/SERK3-5 quadruple mutants displayed clustered stomata
phenotypes, and the phenotype for the latter was similar to er erl1 erl2 triple mutants [35].

Upon completion of the ER/SERK/TMM/EPF complex, the ER/SERK cytosolic ki-
nase domain is phosphorylated to target mitogen-activated protein kinase kinase kinase
(MPKKK), which is also known as YODA (YDA), a class MPK cascade [2,36–38]. YDA,
in turn, phosphorylates mitogen-activated protein kinase kinases (MPKKs) that phos-
phorylate mitogen-activated protein kinase (MPKs) that directly phosphorylate the MPK
cascade’s final target [3,37,38]. Only four (MPKK4/5/7/9) and three (MPK3/4/6), out
of 20 in Arabidopsis, are involved in stomatal development [37–39]. MPK3/6 interacted
with SPCH and MPK4 with MUTE, but no in vivo or phenotypic evidence for the latter
has been reported previously [36,37,40]. The MPK3/6 was unable to interact with trun-
cated SPCH without MAPK target domain (MPKTD) and exhibited clustered stomata, as
shown in Figure 3 [41]. Furthermore, signaling peptides CLAVATA3/ESR-RELATED (CLE)
family genes CLE9/10 regulate stomatal lineage development perceived by receptor kinase
HAESA-LIKE 1 (HSL1) in a different pathway [42]. HSL1 recruits SERKs as co-receptors in
the presence of CLE9/10 for different signaling modes during stomatal development, as
shown in Figure 3 [42].

4. Feedback Regulation of SPCH, MUTE, and FAMA

SPCH, MUTE, and FAMA form a heterodimer with SCREAM 1 (SCRM1), SCRM2, and
bHLH proteins [36,43,44]. INDUCER OF CBP EXPRESSION 1(ICE1)/SCRM2, as a scaffolding
partner, facilitates MPK3/6-mediated phosphorylation of SPCH for its activity inhibition
and consequent degradation [36,43,45]. MPK3/6-regulates phosphorylation and subsequent
degradation of ICE1/SCRM2 during a process that plays a crucial role in stomatal cell fate
specification [43]. Furthermore, FOUR LIPS (FLP) and AtMyb88 constrain GMC division,
and an outnumbered GCs phenotype was observed in flp myb88-defective mutants [46].
SPCH/SCRM, which is suppressed by ER/SERK/TMM/EPF-induced phosphorylation of
MPK cascade, induces expression of EPF2 and TMM in a negative feedback mechanism [12,33].
MUTE induces ERLI and suppresses EPF2, whereas ERL1, upon perceiving EPF1, regulates
meristemoid transition into the GMC stage [20,26,32].

Additionally, cell cycle-related genes such as cyclins A and D (CYCA and CYCD, respec-
tively) in association with CYCLIN-DEPENDENT KINASE A 1;1 and D1;1 (CDKA1;1 and
CDKB1;1) play a key role in stomatal development [47,48]. CYCD4 participates in hypocotyl
stomatal lineage divisions and CDKB1;1- and CDKA1;1-dominant negative forms, and CYCA
higher-order mutants inhibit the division of GMCs [49–52]. MUTE upregulates cell cycle-
related genets (CYCs and CDKs) by binding to their promoters to regulate the symmetric
cell division of GMCs. FAMA binds to CDKB1;1 promoter regions, and FLP suppresses the
expression of CDKB1;1 and CDKA1;1. As well, FAMA and FLP negatively regulate GMC
symmetric division by repressing CDKs and CYCs [51,53,54]. Taken together, MUTE locks
in the cells in the differentiation program, promotes regulators of the symmetric division of
GMCs, and upregulates FLP and FAMA, which suppress regulators of the cell cycle, to control
single symmetric cell division, as shown in Figure 3 [55].

5. Cell Cycle Regulators Join bHLH Transcription Factors to Control
Stomatal Development

The SPCH, MUTE, and FAMA bHLH transcription factors interact with ICE1/SCRM
and SCRM2, and other bHLH transcription factors through helix-loop-helix domains to
form heterodimers [44]. Stomatal lineage progression and cell division are regulated via
global transcriptional changes by SPCH, MUTE, FAMA, SCRM/ICE1, SCRM2, and closely
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related FLP and MYB88 [56]. These transcription factors join cell-cycle core regulators
(cyclin-dependent kinases, CDKs) to control stomatal cell multiplication and differentiation
throughout the lineage and specific developmental stage [52,56,57]. Cyclin-CDK couple
regulates G1/S and G2/M transition phases during stomatal development [50,51]. In
Arabidopsis thaliana, CDKA;1 and CDKB1s are known to regulate asymmetric and symmetric
cell division during stomatal development, respectively [50,53,58]. CDKA;1 binds with D-
type cyclins to facilitate cell entry from G1 into S phase by phosphorylating Retinoblastoma
Related 1 (RBR1), a G1-S phase transition inhibitor [58]. CDKA;1-CYCD complex-mediated
inhibition of RBR1 results in the release of E2F/DF, cell cycle-related transcription factors,
to facilitate the expression of genes required for S phase entry [59].

In contrast, CDKB1;1-CYCA2;3 complex synergistically mediates GMC division by
promoting G2-M phase transition [47,52]. Consequently, cdkb1;1 cdkb1;2 double- and
cyca2;234 triple-defective mutants exhibit the single undivided GCs phenotype, which
was further increased in cyca2;234 cdkb1;1 quadruple mutants [52,53]. Furthermore, cdka;1
and MUTE promoter driving dominant-negative mutants displayed few single undivided
GCs, which indicates that CDKA;1-CYCD3 complex activity is partially required in GMC
symmetric division [51,60]. Consistently, overexpression of TMM promoter-driven CDKA;1
partially rescued the cdkb1;1 cdkb1;2 single undivided GCs phenotype [60].

SPCH-initiated asymmetric MMC division results in unequal SPCH degradation by
protein kinase signaling cascade and scaffold polarity proteins peripheral localization,
BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) and POLAR LO-
CALIZATION DURING ASYMMETRIC DIVISION AND REDISTRIBUTION (POLAR),
result in a small meristemoid and large SLGC daughter cells that become a stoma and a
pavement cell, respectively [61–63].

In Arabidopsis, CDKA;1 is critical in G1-S phase entry and maintenance of stem cells; its
loss of function mutant displays few GCs with enormously enlarged epidermal cells [58,60].
The depletion of RBR1 rescued the cdka1 phenotype, and the RBR1 knockout displayed
improperly divided meristemoids and stomatal lineage cells. These indicate that CDKA;1
and RBR1 act antagonistically during stomatal development [59,60]. Furthermore, CDKA;1
also phosphorylates SPCH on serine 186 residue, and its substitution with phosphomimetic
residue resulted in overactive SPCH-mediated clustered stomata [64]. Hence, CDKA;1 acts
in an antagonistic manner to a MAPK cascade, which inhibits stomatal development upon
receiving extrinsic peptide signals [32,36,65]. Intriguingly, MAPKs also phosphorylates
serine 186 of SPCH [36], indicating that cell cycle inhibitors (cell-cell signals and cell cycle
machinery) regulate stomatal development at a SPCH posttranslational modification level.
CDKA;1-phosphorylates RBR1, which suppresses SPCH and other stomatal lineage-related
genes [17,58,60,64].

SPCH induction increases CYCD3;1 and CYCD3;2, which are abundantly expressed
in meristemoids and play an important role in the initial stage of stomatal lineage [12,66].
CYCD3 triple loss of function decreased meristemoids, amplifying SLGCs asymmetric
spacing divisions, significantly reducing the number of leaf epidermal cells [67,68]. On
the other hand, overexpression of CYCD3 resulted in an abnormal increase in cell number
and ectopic cell division, demonstrating CYCD3’s role in regulating cell number and
division in developing leaves [67]. Molecular intersections, role, and mechanism of cell
cycle regulators during stomatal formation have been modeled in Figure 4.
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form stomata. SPCH, MUTE, FAMA, and FLP/MYB88 regulate all these steps. CDKA;1 can phosphorylate both RBR1 and 

SPCH; CYCD3 cyclins are the direct targets of SPCH; SPCH expresses SOL1/2, which participates in meristemoid-to-GMC 

and subsequent symmetric cell division. GIG1 and MYB3R4 synergistically specify cell fate during stomatal lineage de-

velopment. MUTE controls cell cycle-related core genes and their transcriptional suppressors. TSO1 expression is inde-

pendent of SPCH or MUTE, physically interacts with MYB3R1, and promotes GMC’s symmetric division. Fate reversion 

of GCs to MMC requires FAMA/FLP-RBR1 interaction. Black arrows and solid lines mean the place where the factors 

execute. Dashed lines represent a potential role. T-ended lines indicate suppression. 

6. Fate Transition and Cell Divisions in Stomatal Lineage 

GIGAS CELL1 (GIG1), which negatively regulates anaphase-promoting complex/cy-

closome (APC/C), is necessary for cell fate transition and subsequent mitotic cell division. 

GIG1 loss of function mutants displayed giant GIGAS cells with a mixed-cell fate [69]. 

GIGAS cells are jigsaw-puzzle-piece-shaped pavement cells but express SPCH, EPF2, 

TMM, E1728, and KAT1, markers of stomatal lineage and GCs. Interestingly, spch-defec-
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Originally, gig1-1 and gig1-2 allelic recessive mutants were obtained from a myb3r4 mutant 

Figure 4. Molecular intersections, role, and mechanism of cell cycle regulators during stomatal formation. Sarcastically
selected protodermal cells divide asymmetrically into large SLGC and small meristemoid compartments. Meristemoids,
after several amplifying divisions, become a GMC, which divides into a pair of GCs with an opening in between them to
form stomata. SPCH, MUTE, FAMA, and FLP/MYB88 regulate all these steps. CDKA;1 can phosphorylate both RBR1
and SPCH; CYCD3 cyclins are the direct targets of SPCH; SPCH expresses SOL1/2, which participates in meristemoid-
to-GMC and subsequent symmetric cell division. GIG1 and MYB3R4 synergistically specify cell fate during stomatal
lineage development. MUTE controls cell cycle-related core genes and their transcriptional suppressors. TSO1 expression
is independent of SPCH or MUTE, physically interacts with MYB3R1, and promotes GMC’s symmetric division. Fate
reversion of GCs to MMC requires FAMA/FLP-RBR1 interaction. Black arrows and solid lines mean the place where the
factors execute. Dashed lines represent a potential role. T-ended lines indicate suppression.

6. Fate Transition and Cell Divisions in Stomatal Lineage

GIGAS CELL1 (GIG1), which negatively regulates anaphase-promoting complex/
cyclosome (APC/C), is necessary for cell fate transition and subsequent mitotic cell divi-
sion. GIG1 loss of function mutants displayed giant GIGAS cells with a mixed-cell fate [69].
GIGAS cells are jigsaw-puzzle-piece-shaped pavement cells but express SPCH, EPF2, TMM,
E1728, and KAT1, markers of stomatal lineage and GCs. Interestingly, spch-defective mu-
tants did not form GIGAS or GCs, which confirms their stomatal lineage origin. Originally,
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gig1-1 and gig1-2 allelic recessive mutants were obtained from a myb3r4 mutant enhancer
screen in a forward genetic screen [56,69]. MYB3R4 transcription factor positive regulators
are required for G2-M phase transition and mitotic cell division [69]. SPCH regulates
the meristemoid phase of stomatal lineage by controlling the expression of thousands
of genes, including its own negative regulators such as BASL, EPF2, TMM, SOL1, and
SOL2 [12,33,70].

Key stomatal lineage regulator, SPCH, induced SOL1/2 mediate cell fate transition
factors and post-SPCH identities [70]. SOL1/2 vanish just before asymmetric and sym-
metric cell division. Ectopic expression of SOL2-suppressed GMC division resulted in
single undivided GCs. Consistently, sol1 sol2 double defective mutants exhibit an increased
number of small cells and paired stomata in the lineage’s early and late phase, respectively.
Furthermore, inappropriately persistent MUTE expression after cell division in the sol1 sol2
mutant demonstrates that sole MUTE expression in the absence of SOL1/2 is not enough
for GMC fate determination [70]. Interestingly, TSO1, a homology of SOL1/2, expresses in
the stomatal lineage with the opposite to SOLs activity; simultaneously, it is not a target
of either SPCH or MUTE [12,55]. Knockout mutants of TSO1 in the sol1 sol2 background
rescues the sol1 sol2 phenotype and decreases the number of small cells and paired GCs [70].
In conclusion, GIG1 and MYB3R4 synergistically specify cell fate during stomatal lineage
development, SPCH induced SOL1/2 mediates fate transition, and TSO1 interacts with
MYB3R1 and promotes GMC’s symmetric division (Figure 4).

7. Highly Conserved SnRK1 Positively Regulates SPCH-Mediated
Stomatal Development

Energy hemostasis during stomatal development is controlled by sucrose non-
fermenting-1 (SNF1)-related kinase 1 (SnRK1), which is a central energy sensor kinase
in plants [71]. In Arabidopsis, SnRK1 functions as heterotrimeric complexes composed
of one α-catalytic subunit (KIN10, KIN11, and KIN12) and two regulatory subunits,
β and γ [72,73]. Sucrose-induced KIN10 expresses in all epidermal cells but exhibits
cell-specific subcellular localization, accumulation in liquid culture conditions [73]. Fur-
thermore, Han et al. (2020) report that stomatal lineage cells are highly enriched with
nuclear-localized KIN10 that phosphorylates SPCH to increase stability and subsequent
stomatal development under stress conditions. Overexpression of KIN10 increased,
whereas KIN10 and KIN11 loss of function reduced stomatal index under short-day light
or in liquid medium with 1% sucrose. However, kin10 mutants displayed increased stom-
atal index on the solid medium (without sucrose) and low light conditions. Moreover,
SPCH stability was greatly reduced by a mutation in KIN10 phosphorylation sites [73].
To sum up, SnRK1 α-catalytic subunit (KIN10) stabilizes SPCH, positively regulating
stomatal development (Figure 5).
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8. Protein Phosphatase 2A-Mediates SPCH Stability by Dephosphorylating It

Protein Phosphatase 2A (PP2A) heterotrimeric complexes comprise scaffolding sub-
unit A, regulatory subunit B, and catalytic subunit C, with multiple isoforms for each
subunit and differentially assembled complexes in Arabidopsis [74,75]. These complexes,
differentially assembled from various isoforms of these A, B, and C subunits, regulate
development, growth, metabolism, and stress responses in plants [75,76]. PP2A con-
trols blue light-mediated stomatal movement, and in association with SnRK2, it regulates
ABA-triggered stomatal closure [77,78]. PP2A function is required for the prophase band
formation in Arabidopsis and the orientation of cell division in maize during stomatal devel-
opment [79,80]. Recently, the role of PP2A-mediated positive regulation SPCH stability by
direct interaction between SPCH and A subunit of PP2A to promote stomatal development
has been reported [81].

Brassinosteroid (BR) promotes SPCH function by suppressing glycogen synthase ki-
nase 3 (GSK3)/BRASSINOSTEROID insensitive 2 (BIN2), which are phosphorylating SPCH
for subsequent degradation [36,82]. On the other hand, CYCLIN-DEPENDENT KINASE
A;1 (CDKA;1)-mediated SPCH phosphorylation positively regulates SPCH function [64].
Bian et al. (2020) reported that PP2A increases SPCH accumulation and stabilization by
direct interaction between A subunit and SPCH. PP2A dephosphorylates SPCH at a specific
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site. However, overexpression of PP2A-A did not exhibit a visible phenotype, which indi-
cates that the other two subunits are also required for SPCH stabilization and subsequent
consequences, as shown in Figure 6 [81].
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9. IDD16 Represses SPCH-Induced Stomatal Initiation

The function of a C2H2 zinc finger transcription factor of the INDETERMINATE DO-
MAIN (IDD) family, encoded by AT1G25250, plays an essential role in organ-morphogenesis
and gravitropic responses [83,84]. In Arabidopsis, C2H2 transcription factor IDD16 plays
a critical regulatory role in stomatal development. IDD16 by trans-repression of SPCH
negatively regulates stomatal initiation. In a dose-dependent manner, the overexpres-
sion of IDD16 reduced abaxial stomatal density in Arabidopsis. The initiation of stomatal
lineage was significantly inhibited in IDD16 overexpression plants (IDD16-OE). Consis-
tently, IDD16-OE seedlings displayed a severe reduction in SPCH levels. Conversely, the
IDD16-RNAi transgenic line exhibited increased stomatal density, demonstrating that
IDD16 is an intrinsic stomatal development regulator. Furthermore, ChIP analysis results
showed that IDD16 could bind the promoter of SPCH [85]. With respect to the other eight
down-regulated genes (MUTE, FAMA, TMM, SDD1, EPF1, EPF2, BASAL, and POLAR),
which are expressed explicitly in MMC, meristemoid cells, GMCs, and GCs are attributed
to reduced stomatal precursor cells development in IDD16-OE plants [85].

In some of the IDD16 overexpression transgenic lines, stomata could not form on the
abaxial epidermis, whereas the adaxial side displayed a considerable number of stomata
for survival and life cycle completion. Mutations in many of the stomatal development
regulators such as SPCH, TMM, and SDD1 display similar changes in abaxial and adaxial
epidermises [6,85]. The tmm and sdd1 mutants displayed stomata in clusters and increased
stomatal density and different adaxial-abaxial ratios [86]. A complex network of regulatory
genes regulates the maintenance and acquisition of adaxial-abaxial leaf polarity, resulting
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in the asymmetric distribution of different cell types in mature leaves [87,88]. In Arabidopsis,
pavement cell shape and pattern and stomatal density and pattern are different between
both epidermises, which may be regulated by IDD16 [85].

10. Conclusions

We can conclude that SPCH promotes EPF2, the negative stomatal regulator, and
TMM component stomatal complexes inhibit stomatal development in a negative feedback
mechanism. In contrast, MUTE inhibits EPF2 and induces ER-family to promote SPCH-
mediated stomatal lineage and development. Moreover, the PP2A A subunit, in association
with its B and C subunits, increases SPCH accumulation, stability, and subsequent SPCH-
induced stomatal lineage regulations. Similarly, SNRKs also positively regulate stomatal
development by positively regulating SPCH, while IDD16 negatively regulates stomatal
lineage initiation by suppressing SPCH.
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82. Gudesblat, G.E.; Schneider-Pizoń, J.; Betti, C.; Mayerhofer, J.; Vanhoutte, I.; Van Dongen, W.; Boeren, S.; Zhiponova, M.; De
Vries, S.; Jonak, C. SPEECHLESS integrates brassinosteroid and stomata signalling pathways. Nat. Cell Biol. 2012, 14, 548–554.
[CrossRef] [PubMed]

83. Colasanti, J.; Tremblay, R.; Wong, A.Y.; Coneva, V.; Kozaki, A.; Mable, B.K. The maize INDETERMINATE1 flowering time
regulator defines a highly conserved zinc finger protein family in higher plants. Bmc Genom. 2006, 7, 158. [CrossRef]

84. Cui, D.; Zhao, J.; Jing, Y.; Fan, M.; Liu, J.; Wang, Z.; Xin, W.; Hu, Y. The Arabidopsis IDD14, IDD15, and IDD16 cooperatively
regulate lateral organ morphogenesis and gravitropism by promoting auxin biosynthesis and transport. PLoS Genet. 2013, 9, e1003759.
[CrossRef] [PubMed]

85. Qi, S.L.; Lin, Q.F.; Feng, X.J.; Han, H.L.; Liu, J.; Zhang, L.; Wu, S.; Le, J.; Blumwald, E.; Hua, X.J. IDD 16 negatively regulates
stomatal initiation via trans-repression of SPCH in Arabidopsis. Plant Biotechnol. J. 2019, 17, 1446–1457. [CrossRef]
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