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An energy metabolism-based eight-gene
signature correlates with the clinical
outcome of esophagus carcinoma
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Abstract

Background: The essence of energy metabolism has spread to the field of esophageal cancer (ESC) cells. Herein,
we tried to develop a prognostic prediction model for patients with ESC based on the expression profiles of energy
metabolism associated genes.

Materials and methods: The overall survival (OS) predictive gene signature was developed, internally and
externally validated based on ESC datasets including The Cancer Genome Atlas (TCGA), GSE54993 and GSE19417
datasets. Hub genes were identified in each energy metabolism related molecular subtypes by weighted gene
correlation network analysis, and then enrolled for determination of prognostic genes. Univariate, LASSO and
multivariate Cox regression analysis were applied to assess prognostic genes and build the prognostic gene
signature. Kaplan-Meier curve, time-dependent receiver operating characteristic (ROC) curve, nomogram, decision
curve analysis (DCA), and restricted mean survival time (EMST) were used to assess the performance of the gene
signature.

Results: A novel energy metabolism based eight-gene signature (including UBE2Z, AMTN, AK1, CDCA4, TLE1, FXN,
ZBTB6 and APLN) was established, which could dichotomize patients with significantly different OS in ESC. The
eight-gene signature demonstrated independent prognostication potential in patient with ESC. The prognostic
nomogram constructed based on the gene signature showed excellent predictive performance, whose robustness
and clinical usability were higher than three previous reported prognostic gene signatures.

Conclusions: Our study established a novel energy metabolism based eight-gene signature and nomogram to
predict the OS of ESC, which may help in precise clinical management.
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Background
Esophageal cancer (ESC) is the seventh most common
cancer globally [1]. The prognosis of advanced ESC is
still not satisfactory and treatment options are limited
[2, 3]. Most first-line chemotherapy for advanced
esophageal cancer adopt platinum combined or

fluorouracil-based regimens, with an effective rate of
40–60% [1]. However, the median overall survival (OS)
time of patients after failure of first-line treatment is
only 5–10months, and there is no standard effective
treatment regimen for second-line treatment [1]. Despite
comprehensive genomic characterization [4], available
target therapies for ESC are still lagging behind [1],
therefore, in order to prognosticate patient’s clinical out-
come, increasing interest was focused on the molecular
characterization of ESC.
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The interaction of tumor cells and energy metabol-
ism is supposed to play an important role in ESC
progression [5, 6]. Warburg effect and active gluta-
minolysis are oncogene-driven mechanism that alters
the metabolism of cancer cells, and they are pre-
sumed to be the hallmarks of tumorigenesis [7].
Cancer-associated metabolic remodeling is consid-
ered as the direct response to cell growth and sur-
vival signals [8]. Thus, the detection of cellular
metabolites can provide promising diagnostic and

prognostic biomarkers. For example, several metabo-
lites have been identified as prognosis predictive fea-
tures for patients with ESC [9]. Although cumulative
evidences confirm that multiple energy metabolism
related genes participate in the malignant behaviors
of ESC cells, such as proliferation, metastasis, angio-
genesis, drug sensitivity, etc., and some of them are
identified as prognostic predictor in ESC [10–13].
The potential molecular typing and prognostic value of
the expression characteristics of energy metabolism-

Table 2 Pathways associated with energy metabolism in the Reactome pathway database

Metabolic pathways from Reactome Pathway ID Gene Count

Biological oxidations R-HSA-211859 216

Metabolism of carbohydrates R-HSA-71387 290

Mitochondrial Fatty Acid Beta-Oxidation R-HSA-77289 37

Glycogen synthesis R-HSA-3322077 16

Glycogen metabolism R-HSA-8982491 27

Glucose metabolism R-HSA-70326 90

Glycogen breakdown (glycogenolysis) R-HSA-70221 15

Glycolysis R-HSA-70171 71

Pyruvate metabolism R-HSA-70268 31

Pyruvate metabolism and Citric Acid (TCA) cycle R-HSA-71406 55

Citric acid cycle (TCA cycle) R-HSA-71403 22

Sum 871(unique:587)

Table 1 Clinical and pathologic characteristics of patients in the pre-processed TCGA and GEO datasets

Characteristic TCGA training dataset
(n = 58)

TCGA entire dataset (n = 78) p value GSE54993 dataset
(n = 70)

GSE19417 dataset
(n = 70)

Age (years) ≤55 26 35 1 28 NA

> 55 32 43 42 NA

Survival Status Living 42 54 0.831 34 13

Dead 16 24 36 57

Gender female 7 12 0.762 13 24

male 51 66 57 46

Smoking history NO 18 27 0.841 26 NA

YES 37 48 44 NA

pT stage T1 4 7 0.874 4 NA

T2 20 28 2 NA

T3/T4 34 43 64 NA

pN stage N0 34 41 0.597 32 NA

N1/NX 24 37 38 NA

pM stage M0 49 67 0.866 70 NA

M1/MX 9 10 0 NA

pTNM stage Stage I 5 6 0.946 5 NA

Stage II 35 46 29 NA

Stage III 14 23 36 NA

Stage IV 3 4 0 NA

NA not available
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Fig. 1 (See legend on next page.)
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related genes (EMRGs) in ESC has not be comprehen-
sively analyzed yet.
The present study aimed at the detection of new

molecular subtype and prognostic signature in patients
with ESC. The Cancer Genome Atlas (TCGA) ESC data-
set was used to analyzed the expression profile of energy
metabolism related genes. A total of 472 mRNAs related
to energy metabolism were analyzed in this study and an
eight-gene signature was established that can effectively
predict clinical outcome of patient with ESC, which were
independent validated in the GSE54993 and GSE19417
dataset.

Materials and methods
Datasets and gene sets
A total of 78 ESC samples with clinical information
and RNA-seq data from TCGA database was col-
lected. TCGA database (http://portal.gdc.cancer.gov/)
was collected with the accession number TCGA-
ESCA, the TCGA ESC dataset was pre-processed with
the criteria as follows: 1) excluded samples absent of
clinical data and overall survival (OS) < 30 days; 2) ex-
cluded data of normal esophagus tissue sample; 3) ex-
cluded genes with Fragments Per Kilobase of exon
model per Million mapped fragments (FPKM) = 0 in
50% of cases; and 4) included the expression profile
of genes associated with energy metabolism. Besides,
we found two datasets from the NCBI Gene Expres-
sion Omnibus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo/), the accession number were GSE54993
and GSE19417. GSE54993 dataset, which contains
CGH data of ESC [4], and GSE19417 dataset, which
contains gene expression profiles of ESC [14].
GSE54993 and GSE19417 datasets were pre-processed
with the criteria as follows: 1) excluded normal tissue
sample data; 2) transformed gene probes to the
human gene SYMBOL, removed those probes
matched to multiple genes, if several probes matched
to one gene, the median was selected as the expres-
sion profile of this gene; 3) normalized microarray
data by using Robust Multi-Array Average method
[15]. The clinicopathological features of patients from
these three datasets after preprocessing are showed in
Table 1. For TCGA ESC dataset, 75% of them was
randomly divided into training cohort (n = 58), and

the entire dataset was selected as internal validation
cohort. The GSE54993 (n = 70) and GSE19417 (n =
70) datasets were applied as external validation
cohorts. This study was approved by the Institutional
Review Boards (IRB) of the Fourth Hospital affiliated
to Zhejiang University.

Identification of molecular subtypes based on EMRGs
Coherently expressed signatures of 11 human
metabolism-related pathways (Table 2), all download
from the Reactome pathway database (https://reactome.
org/) [16], were derived by aggregating MSigDB version
7.0 gene sets. A total of 587 genes implicated in energy
metabolism were obtained after eliminating duplicate
genes. Among them, 3 genes were excluded because of
no related record in TCGA database, and 12 genes with
FPKM = 0 in 50% of samples were also excluded.
Finally, 572 genes were enrolled as candidate genes
for subsequent analysis. The molecular subtypes were
constructed based on these prognostic genes using
cumulative distribution function (CDF) method, and
the optimal number of subtypes were determined ac-
cording to the CDF Delta area.

Evaluation of immune characteristics between molecular
subtypes
The distribution of tumor-infiltration immune cells,
ImmuneScore, StromalScore and ESTIMATEScore
between the two subtypes were evaluated as previously
described [17]. The ImmuneScore, StromalScore and
ESTIMATEScore are represent the relative proportion
of immune cells, stromal cells and the purity of tumor
tissues, respectively.

Identification of co-expression genes by weighted gene
correlation network analysis
Co-expressed genes and modules were detecting by
using the weighted gene correlation network analysis
(WGCNA) co-expression algorithm as previously
described [17] with the soft-threshold power β set to 8.

Screening of robust prognostic feature genes and
construction of gene signature
To narrow the gene range and maximize the accuracy,
LASSO Cox regression analysis [18], a method

(See figure on previous page.)
Fig. 1 Energy metabolism related molecular subtypes in ESC. a. cumulative distribution function (CDF) curve; b. CDF Delta area curve, Delta area
curve of consensus clustering, indicating the relative change in area under the cumulative distribution function (CDF) curve for each category
number k compared with k - 1. The horizontal axis represents the category number k and the vertical axis represents the relative change in area
under CDF curve. c. Heat map of samples (consensus K = 2); d: PCA analysis of the expression profile of EMRGs and scatter plots of the first two
principal components; e. Heat map of EMRGs expressions in the two molecular subtypes. f. Kaplan-Meier curve on the differences of prognosis
between the two subtypes; g. Pathway outcomes of differences on KEGG pathway scores between the two subtypes. Functional enrichment
analysis was conducted using R package GSVA
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Fig. 2 Hub genes identified by WGCNA co-expression analysis. a. Gene dendrogram and module colors; b. Relationship between the 25 modules
and the clinical phenotypes and molecular subtypes. c. The correlation of lightcyan module with Cluster 2 in the TCGA ESC dataset; d. GO BP
enrichment functional integration network developed by genes in the lightcyan module; b: KEGG enrichment functional integration network
developed by genes in the lightcyan module. The open source R WGCNA version 1.68 was used for WGCNA analysis and visualization, and the
open source R GOplot version 1.3 was used for the visualization of enrichment functional integration network
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screening signatures with generally effective prognosti-
cation performance by performing automatic feature
selection, was performed by using the R package
glmnet, and optimal genes were evaluated by 3-fold
cross validation. Multivariate Cox regression survival
analysis was performed to construct the prognostic risk
model. Risk score for each patient in the training set
was calculated with the linear combinational of the sig-
nature gene expression weighting by their regression
coefficients. Risk score = (exprgene1 x coefficientgene1) +
(exprgene2 x coefficientgene2) +… + (exprgenen x coeffi-
cientgenen). Receiver operating characteristics (ROC)
curves, carried out by using the R package timeROC,
was used to analyze the sensitivity and specificity of the
gene signature for prognostication of OS. Then the
risk-score was Z-scored, and zero was selected as the
threshold. The optimal cut-off value of the expression
level of these eight genes were determined by R
package maxstat.

Bioinformatic analysis
Functional enrichment analysis was applied for identify-
ing relationship between the molecular subtypes and
biological functions using the R package GSVA. The
classical gene sets of Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (c2.cp.kegg.v11.0.symbols)
were measured to decipher the phenotype. P value <
0.05 was considered as the FDR cutoff value. The open
source R WGCNA version 1.68 was used for WGCNA
analysis and visualization, and the open source R GOplot
version 1.3 was used for the visualization of enrichment
functional integration network.

Statistical analysis
Kaplan-Meier curves were applied to evaluate the differ-
ence on OS between different groups. Univariate and
multivariate Cox regression analyses were used to assess
the independent prognosis predictive factors. To predict
the survival rate of patients, nomogram, a statistical
method that can present the influence of each variable
on the outcome using the length of a straight line, and

the effect of different values of each variable on the out-
come [19], was established using the R package RMS.
The decision curve analysis (DCA) [20] was performed
to assess the clinical usefulness of the nomogram in
comparison with the gene signature and clinicopatholog-
ical parameters. The regression model was established
using the CPH function of R package RMS, and the
Nomogram function of R package RMS was used to con-
struct the nomogram. The DCA analysis was performed
and visualized using the DECISIon_curve function of R
package RMDA. All statistical analyses were performed
using R 3.6.0 (https://mirrors.tuna.tsinghua.edu.cn/
CRAN/) with default software parameters. P value < 0.05
was considered significant statistically.

Results
Identification of molecular subtypes in ESC
By univariate Cox regression survival analysis, 43
EMRGs were correlated and identified with the OS of
patients with ESC in the TCGA dataset (Supplementary
Table S1). Then, by consensus unsupervised clustering
of 78 samples from patients with ESC using the 572
EMRGs, two clusters were found had lower values of
ambiguously clustered pairs (PAC), which reflected the
near-perfect stability of the samples under the correct
K value distribution (Fig. 1a-b). The relative change of
the area under the CDF curve reveals a nearly perfect
stable distribution of the samples starting from 2
clusters (Fig. 1c). Principal component analysis (PCA,
Fig. 1d) and consensus heatmaps (Fig. 1e) also showed
a fairly stable distribution samples in the 2 clusters.
After evaluating the relative changes in the area under
the CDF curve, PAC value, PCA and consensus
heatmaps, we chose a two-cluster solution. Thus, two
molecular subtypes were constructed based on these 43
prognostic EMRGs.
In the Kaplan–Meier curve with log-rank tests,

patients in Cluster 1 showed worse overall survival
(OS) time than that in Cluster 2 (Fig. 1f). By analyz-
ing the KEGG pathways, 12 pathways, such as O gly-
cosylation of TSR domain containing proteins, PDGF

Table 3 Univariate Cox regression analysis result of 8 genes in TCGA training set

Gene P value Harzard ratio Low 95%CI High 95%CI Coefficient

UBE2Z 0.024 0.448 0.223 0.898 −0.223

AMTN 0.007 1.931 1.198 3.112 0.323

AK1 0.038 1.822 1.033 3.215 0.220

CDCA4 0.016 0.381 0.173 0.836 −0.572

TLE1 0.039 0.458 0.218 0.963 −0.350

FXN 0.040 0.408 0.173 0.961 −0.291

ZBTB6 0.040 0.519 0.278 0.972 −0.223

APLN 0.039 1.661 1.026 2.690 0.366
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Fig. 3 (See legend on next page.)
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signaling and extra nuclear estrogen signaling, were
found significantly different between the two subtypes
(Fig. 1g). However, no significantly difference on clini-
copathological feature was found between the two
molecular subtypes in patients with ESC (Supplemen-
tary Figure 1). In addition, the differences on immune
characteristics between the two subtypes were ana-
lyzed. Although there was no significant difference on
the immune infiltration between the two subtypes,
Cluster 2 showed the higher relative proportion of
stromal cells than Cluster 1 (Supplementary Figure 2).

Determination of hub genes by WGCNA analysis
By module fusion based on the expression profile of
EMRGs in the TCGA ESC dataset, 25 co-expression
modules were obtained (Fig. 2a), among them grey mod-
ules represent gene sets couldn’t be fused. By analyzed
the relationship between the identified modules and
clinical characteristics as well as molecular classifica-
tions, we found that Cluster 2 was significantly corre-
lated with the lightcyan module, which including 326
genes (r > 0.4, P < 0.05), whereas there was no module
significantly correlated with Cluster 1 (Fig. 2b). In
addition, genes in the lightcyan module were largely as-
sociated with the Cluster 2 subtype (Fig. 2c). Therefore,
the lightcyan module which is closely related to energy
metabolism-based subtype of ESC was considered as the
hub module, and genes involved in this module were
regarded as hub genes. Besides, functional enrichment
analysis demonstrated that these 326 hub genes were
significantly (FDR < 0.01) involved in 290 GO biological
process categories (e.g., ERAD pathway and ncRNA
transcription, Fig. 2d, Supplementary Table S2) and 7
KEGG pathways (e.g., N-Glycan biosynthesis and protein
export, Fig. 2e, Supplementary Table S3).

Identification of EMRG signature associated with overall
survival in patients with ESC
Patients diagnosed with ESC from TCGA database
(n = 78) was enrolled in the establishment of gene
signature, and 75% of them were randomly assigned
to the training set (Table 1). To identify novel genes
associated with the clinical outcome of patients with
ESC, univariate Cox proportional hazard regression
was applied to analyze those 326 hub genes. And
then genes significantly associated with OS (P < 0.05)
were entered into dimensional-reduction analysis by

performing LASSO regression analysis. Finally, eight
independent prognostic genes (including UBE2Z,
AMTN, AK1, CDCA4, TLE1, FXN, ZBTB6 and
APLN) were confirmed (P < 0.05, Table 3) with 3-fold
cross-validation and minimized error rate λ = 0.043
(Fig. 3a-b). By applied Kaplan-Meier analysis on these
eight genes using the optimal cut-off value of the ex-
pression level of each gene, all eight genes were con-
formed significant associated with OS (Supplementary
Figure 3). Among them, AMTN, AK1 and APLN
were significant negative correlation with OS, while
UBE2Z, CDCA4, TLE1, FXN and ZBTB6 were signifi-
cant positive correlated with OS in the training set.
The final 8-gene signature was calculated using multi-
variate Cox survival analysis, and a EMRG-based
prognostic gene signature was established to calculate
the survival risk of each patient as follows: Risk-
Score = − 0.223*expUBE2Z + 0.323*expAMTN +
0.220*expAK1 - 0.572*expCDCA4 - 0.350*expTLE1 -
0.291*expFXN - 0.223*expZBTB6 + 0.366*expAPLN.
According on the risk score formula, patients were

classified into high-risk or low-risk group (Fig. 3c). The
heatmap which shown the expression profile of the eight
genes illustrated that as the risk score of patients in-
creased, the expression of prognosis-risky genes (AMTN,
AK1 and APLN) were distinctly upregulated; in contrast,
the expression of prognosis-protective genes (UBE2Z,
CDCA4, TLE1, FXN and ZBTB6) were downregulated
(Fig. 3c). The accuracy of the prognostic 8-gene signa-
ture for 1-year, 3-year and 5-year survival, as reflected
by the ROC curve, was 0.85, 0.97 and 0.85, respectively
(Fig. 3d). Finally, we classified samples with Zscore-
based Riskscore > 0 into the high-risk group, and the
others into the low-risk group. Kaplan-Meier curve ana-
lysis revealed that the OS time of patients in the low-
risk group was significantly longer than that in the high-
risk group (P < 0.0001; Fig. 3e). Considering that the
heatmap may be affected by outliers and show insignifi-
cant results, we evaluated the expression differences of
these 8 genes between the high-risk and low-risk groups.
As expected, these genes showed significant different ex-
pression levels between the two groups (Supplementary
Figure 4A).
To further analyze the significantly KEGG pathway the

8-gene signature may involve in, the enrichment score of
KEGG pathway in each sample was calculated. It was
found that the 8-gene signature was significantly related

(See figure on previous page.)
Fig. 3 Evaluation of the performance of the 8-gene signature in the training dataset. a. Trajectory change of each independent variable. The X
axis represents the log value of the independent variable lambda; the Y axis represents the coefficient of the independent variable. b. Confidence
intervals of lambda. c. Risk score, survival time, survival status and expression of the 8-gene signature in the training set. d. ROC curve of the 8-
gene signature for 1-year, 3-year and 5-year survival in the training set. e. Kaplan-Meier survival curve based on the 8-gene signature in the
training set. ROC, receiver operating characteristic; AUC, area under the curve; HR, hazard ratio; CI, confidence interval
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to three pathways: VEGF signaling pathway, NOTCH
signaling pathway, and neurotrophin signaling pathway
(FDR < 0.05; r > 0.35; Supplementary Figure 4b).

Validation of the 8-gene signature in the entire TCGA
dataset and two GEO datasets
The entire TCGA ESC dataset was used for internal
validation, and the risk score of each sample was com-
puted, which showed that the association between the
gene expression and risk score was consistent with the
training set (Fig. 4a). The ROC curve displayed that the
accuracy of the prognostic 8-gene signature for 1-year,
3-year and 5-year survival was 0.85, 0.90 and 0.80,

respectively (Fig. 4b). Patients in the internal validation
dataset were divided into high-risk and low-risk groups
with the same cutoff value as used in the training set. As
expected, patients in the validation set with low risk-
scores had longer OS than those with high risk scores
(P < 0.0001; Fig. 4c).
The prognostication efficiency of our 8-gene signa-

ture was also calculated in the external validation
datasets (GSE54993 and GSE19417), both contains 70
patients with definite diagnosis of ESC and prognostic
information (Fig. 5a and Fig. 6a). In the GSE54993
dataset, the ROC curve displayed that the accuracy of
the prognostic 8-gene signature for 1-year, 3-year and

Fig. 4 Internal validation of the 8-gene signature’s robustness in the TCGA cohort. a. Risk score, survival time, survival status and expression of the
8-gene signature in the internal validation cohort. b. ROC curve of the 8-gene signature for 1-year, 3-year and 5-year survival in the internal
validation. c. Kaplan-Meier survival curve based on the 8-gene signature in the internal validation set. ROC, receiver operating characteristic; AUC,
area under the curve; HR, hazard ratio; CI, confidence interval
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5-year survival was 0.72, 0.53 and 0.61, respectively
(Fig. 5b). In addition, patients in the GSE54993 valid-
ation sets with high risk-scores had shorter OS than
those with low risk scores (P = 0.0045; Fig. 5c). In the
GSE19417 dataset, the ROC curve displayed that the
accuracy of the prognostic 8-gene signature for 1-
year, 3-year and 5-year survival was 0.62, 0.62 and
0.70, respectively (Fig. 6b); Patients in low risk-score
group had longer OS than those in the high-risk
group (P = 0.046; Fig. 6c), of which 34 samples were
classified as high-risk and 36 samples were classified
as low-risk. Therefore, the 8-gene signature exhibited
steady effective prognostication performance in the
internal and external validation sets.

Given that the TCGA ESC dataset also include the dis-
ease specific survival (DFS) information of patient, the
correlation of our 8-gene signature was further analyzed
using the TCGA cohort. The ROC curve displayed that
the accuracy of the prognostic 8-gene signature for 1-
year, 2-year and 3-year survival were all > 0.80 (Supple-
mentary Figure 5A). Patients in the high risk-score
group (n = 29) had significant shorter DFS than those in
the low risk-score group (n = 29, P = 0.0011, Supplemen-
tary Figure 5B).

Cox regression analyses of the 8-gene signature
To identify the independence of the 8-gene signature in
clinical application, its prognostic value in the TCGA

Fig. 5 External validation of the 8-gene signature’s robustness in the GSE54993 cohort. a. Risk score, survival time, survival status and expression
of the 8-gene signature. b. ROC curve of the 8-gene signature for 1-year, 3-year and 5-year survival. c. Kaplan-Meier survival curve based on the 8-
gene signature. ROC, receiver operating characteristic; AUC, area under the curve; HR, hazard ratio; CI, confidence interval
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cohort was analyzed by using univariate and multivariate
Cox regression analysis. Clinicopathological parameters
including the 8-gene signature, age, gender, pathological
T stage, N stage, M stage and TNM stage were included
in the analysis. The univariate analysis showed that
gender, N stage, tumor stage, and the 8-gene signature
were significantly related to the OS in ESC (all P < 0.05;
Fig. 7a). The multivariate analysis showed that only N
stage (HR = 7.43, 95%CI = 2.36–23.47, P = 0.001) and the
8-gene signature (HR = 6.42,95%CI = 1.99–20.79, P =
0.002) were independent prognostic factors in ESC
(Fig. 7b). In GSE54993 dataset, univariate analysis
results showed that N stage and the 8-gene signature
were significantly related to the OS in ESC (all P <
0.05; Fig. 7c). However, the multivariate analysis
showed that only the 8-gene signature (HR = 2.25,
95%CI = 1.08–4.68 P = 0.029) was an independent
prognostic factor in ESC (Fig. 7d).

Development of nomograms to predict the outcome of
patients with ESC
A nomogram was conducted using the TCGA dataset based
on the 8-gene signature and all clinicopathological parame-
ters (Fig. 8a). By scoring the predictors, the higher the total
score, the shorter the survival time. The calibration curves
for the probabilities of 1-, 3-, and 5-year OS indicated an
excellent agreement between the nomogram prediction and
observed outcomes in the TCGA dataset (Fig. 8b). A
decision curve analysis (DCA) was also applied to evaluate
the 8-gene signature with these clinicopathological parame-
ters, in which the curve of TNM stage and N stage are very
close to the two extreme curves, which means that them
has less clinical application value (Fig. 8c). However, the
risk-score and the established nomogram presented a
higher net benefit together with broader range of threshold
probability than TNM stage and N stage. And the nomo-
gram is better than the 8-gene signature (Fig. 8c). In

Fig. 6 External validation of the 8-gene signature’s robustness in the GSE19417 cohort. a. Risk score, survival time, survival status and expression
of the 8-gene signature. b. ROC curve of the 8-gene signature for 1-year, 3-year and 5-year survival. c. Kaplan-Meier survival curve based on the 8-
gene signature. ROC, receiver operating characteristic; AUC, area under the curve; HR, hazard ratio; CI, confidence interval
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addition, the nomogram and calibration curves for the
probabilities of 1-, 3-, and 5-year OS in the GSE54993
dataset also indicated an excellent agreement between the
nomogram prediction and observed outcomes (Fig. 7d-e).

The performance of the 8-gene signature in comparison
to previous signatures in TCGA ESC dataset
To assess the predictive power of the 8-gene signa-
ture, the performance of three previous reported ro-
bust prognostic risk models were enrolled for
comparison, including a 5-gene signature developed
by He et al. [21], a 8-gene signature developed by Cai
et al. [22] and a 9-gene signature developed by Li and
colleagues [23]. The risk-score of each ESC sample in
TCGA cohort was calculated according to the corre-
sponding genes in all three models by applying the
same method being reported [21–23]. The ROC of
each gene signature was evaluated, and the area under

the curve of all three models were larger than 0.6
(Fig. 9a-c upper). Kaplan-Meier curve analysis
revealed that only He’s 5-gene signature showed
significant prognostic value in predicting OS (P =
0.0053; Fig. 9a down). Restricted mean survival time
(RMST) was applied to calculated and compared the
C-index of all four signatures. Although the C-index
of our 8-gene signature was only significantly higher than
that of Li’s 3-gene signature (P = 0.0041), our 8-gene sig-
nature showed the highest C-index (0.76; Fig. 9d). We also
applied a DCA to evaluate the 8-gene signature with these
three signatures, in which the curve of Li’s 3-gene signa-
ture is very close to the two extreme curves, while the net
benefit and broader range of threshold probability of the
8-gene signature ranked as the highest one (Fig. 9e), indi-
cating that the 8-gene signature in the present study
exhibited a best prognostication performance. Taken to-
gether, these results imply that this signature is more

Fig. 7 Univariate and multivariate Cox regression analyses of the 8-gene signature. a. Forest plot of the univariate Cox regression analyses in
TCGA ESC dataset. b. Forest plot of the multivariate Cox regression analyses in TCGA ESC dataset. c. Forest plot of the univariate Cox regression
analyses in GSE54993 dataset. d. Forest plot of the multivariate Cox regression analyses in GSE54993 dataset
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suitable for predicting the prognosis of patients with ESC
in clinical practice.

Discussion
Metabolic remolding is a hallmark of cancer [7]. Now,
the essence of energy metabolism has spread to the field
of ESC cells [5, 6]. However, in ESC, the relationship of
energy metabolism-based gene with the prognosis and
their potential impact on biological behaviors have not
been elucidated yet. In this study, we established and
validated a novel prognostic gene signature based on en-
ergy metabolism related eight-gene to improve the pre-
diction of overall survival (OS) after surgery for patients
with ESC. Our results showed that this energy metabol-
ism gene signature can effectively categories patients
into high-risk groups and low-risk groups with obviously
differences on 1-, 3- and 5-year OS. Furthermore, the
performance of this proposed gene signature on prog-
nostication of ESC is significantly better than the other
clinicopathological risk parameters.
ESC is associated with high morbidity and mortality

rates [24]. Postoperative chemotherapy regimens for pa-
tients at advance stage including platinum combined or
fluorouracil-based regimens and sometimes anthracy-
clines, all of which exhibit considerable cytotoxic effects.
However, currently there is still lack of recurrence risk
prediction solution for postoperative management of
ESC. To mitigate the currently limited therapeutic op-
tions, it is necessary to detect the optimized biomarker
for the prognostication of patients, which will shed new
light on the target therapy of ESC. Traditional clinico-
pathological risk parameters can’t clearly distinguish the
high-risk and low-risk patients with ESC. Despite recent
advances in recognizing genomic drivers of ESC [4], sel-
dom prognostic markers are clinically available in ESC.
Multiple genes have been implicated in the regulation of
cell energy metabolism process in ESC [5, 6, 12, 25, 26].
In particular, several EMRGs, such as RAC1 [5], TKTL1
[27], and PFKFB3 [28] were shown to be associated with
prognosis in patients with ESC. However, previous stud-
ies were limited by just single gene detected, small sam-
ple sizes, and lack of independent validation. The use of
the LASSO Cox regression model [18] and nomogram
[19] allowed us to combine multiple gene into one sig-
nature, which has significantly better prognostic accur-
acy than that of single gene alone.

Numerous previous studies also identified gene signa-
ture for the prognostication of ESC. For example, He
et al. [21] identified a 5-gene model which contained
RFC2, DDIT3, CXCL8, ELL2 and RAB27A. Cai et al.
[22] proposed a signature consisting of 8 lymph node
metastasis related genes (CDK5R2, CSH2, CA7,
SPANXN5, NR5A1, CRP, NOTUM, and KRTAP71),
which shared no same gene with He’s gene-signature. Li
et al. [23] discovered another gene signature by enrolled
the gene expression level of nine immune related gene
including CD38, HMGB1, ICOSLG, ABL1, ATF2,
ATG5, C6, IL12RB2 and PLAU, that was totally different
from the previous two modules. Given the difference on
target gene subsets used for screening prognostic genes,
there was no overlapping genes among our gene list and
these three gene sets. We further compared the predict-
ive performance of the present signature with that of the
three previous signatures. It was confirmed that among
these signatures, the eight-gene model had the highest
AUC and C-index values. Our results revealed that the
EMRG to some extents outperforms molecules involved
in other cancer relevant pathways in the prognostication
of patients with ESC. In addition, when focus on the
eight genes in our gene signature, CDCA4 gene with the
largest absolute value of coefficient maybe the one that
contributed most to the signature.
Some limitations of this study should be taken into

consideration. Although TCGA and GSE54993 dataset
enrolled both Caucasian and Chinese population, major-
ity of ESC was occurred among Eastern Asian and East-
ern & Southern African population, the distribution of
clinicopathological characteristics might be different in
other areas we didn’t included, making it susceptible to
the inherent biases of such a study design. Undoubtedly,
our results should be further validated in cohort from
some worldwide multicenter. In addition, genes play ver-
satile biological and pathological roles in cancer cells are
always associated with the intrinsic characteristics of
tumor, and thus can be specific predictor of cancer pro-
gression and prognosis [10–13]. However, the biofunc-
tion of our eight genes have not yet been investigated in
previous studies, and the role of these genes should be
further systematically explored according to the actual
diseased tissues or even cell lines and animal models.
When focus on these eight genes, CDCA4 gene with the
largest absolute value of coefficient maybe the one

(See figure on previous page.)
Fig. 8 Nomograms for prediction of the outcome of patients with ESC. a: Nomogram developed by integrating the signature risk-score with the
clinicopathologic features in the TCGA ESC dataset. b. Calibration curves of nomogram for predicting OS at 1-year, 3-year and 5-year in the TCGA
ESC dataset. c. DCA plots developed by integrating the signature risk-score with the clinicopathologic features in the TCGA ESC dataset. d.
Nomogram developed by integrating the signature risk-score with the clinicopathologic features in the GSE54993 dataset. f. Calibration curves of
nomogram for predicting OS at 1-year, 3-year and 5-year in the GSE54993 dataset. The Nomogram function of R package RMS was used to
construct the nomogram. The DCA analysis was performed and visualized using the DECISIon_curve function of R package RMDA
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contributed most to the signature, therefore, CDCA4
should be primary concerned in future research.

Conclusions
In summary, our findings show that the novel eight-gene
signature provides prognostication value that complements

clinicopathological risk parameters, and more accurately
predicts overall survival for patients with ESC than clinico-
pathological risk factors alone, as well as three previous re-
ported prognostic model. This gene signature might,
therefore, help with patient risk stratification and precise
management of patients with ESC.

Fig. 9 The performance of the 8-gene signature in comparison to previous signature in TCGA ESC dataset. a: ROC curve and Kaplan-Meier survival analysis of
the 5-gene signature of He et al.; b: ROC curve and Kaplan-Meier survival analysis of the 3-gene signature of Cai et al.; c: ROC curve and Kaplan-Meier survival
analysis of the 3-gene signature of Li et al.; d: Restricted mean survival time (RMST) curve developed by integrating the indicated 4 signatures; e: DCA plots
developed by integrating the indicated 4 signatures. The regression model was established using the CPH function of R package RMS
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