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Abstract: Breast cancer continues to be the leading cause of death in women worldwide. Mammogra-
phy, which is the current gold standard technique used to diagnose it, presents strong limitations in
early ages where breast cancer is much more aggressive and fatal. MiRNAs present in numerous body
fluids might represent a new line of research in breast cancer biomarkers, especially oncomiRNAs,
known to play an important role in the suppression and development of neoplasms. The aim of this
systematic review and meta-analysis was to evaluate dysregulated miRNA biomarkers and their
diagnostic accuracy in breast cancer. Two independent researchers reviewed the included studies
according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA)
guidelines. A protocol for this review was registered in PROSPERO with the registration number
“CRD42021256338”. Observational case-control-based studies analyzing concentrations of microR-
NAs which have been published within the last 10 years were selected, and the concentrations
of miRNAs in women with breast cancer and healthy controls were analyzed. Random-effects
meta-analyses of miR-155 were performed on the studies which provided enough data to calculate
diagnostic odds ratios. We determined that 34 microRNAs were substantially dysregulated and could
be considered biomarkers of breast cancer. Individually, miR-155 provided better diagnostic results
than mammography on average. However, when several miRNAs are used to screen, forming a
panel, sensitivity and specificity rates improve, and they can be associated with classic biomarkers
such us CA-125 or CEA. Based on the results of our meta-analysis, miR-155 might be a promising
diagnostic biomarker for this patient population.

Keywords: micro-RNA; cancer; biomarkers; miRNA diagnostics; breast cancer

1. Introduction

The incidence of breast cancer follows a growing pattern, especially in recent decades.
Based on data from the GLOBOCAN 2020 study, this neoplasm exceeded the incidence
of lung cancer, establishing it as the most prevalent neoplasm worldwide [1]. Regarding
mortality, breast cancer constitutes the second oncological cause of death in women. Ac-
cordingly, it is estimated that one in four women will suffer from breast cancer throughout
her life and one in six will die from this ailment.

Early diagnosis notably improves the long-term survivability rates of breast cancer [2].
The most widely used diagnostic techniques for breast cancer screening consist of imaging
techniques. Among them, mammography is considered the gold standard technique in
breast cancer screening. Similarly, ultrasounds have shown great efficacy as a comple-
mentary technique to detect potential false-negative cases [3]. Other advanced imaging
techniques, such as magnetic resonance imaging (MRI) or positron emission tomography
(PET), have notable specificity and sensitivity values, enabling the identification of lesions
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that cannot be detected by other means, albeit their high costs hamper their routine use as
early-stage breast cancer detection screening tools [4,5].

Mammography has severe limitations in ages outside the range of 40–59 years. In
this sense, this screening method is especially inaccurate in patients below 40 years of age,
causing underdiagnosis [6]. Furthermore, the incidence of triple-negative tumors in this
age range is higher, which implies worst prognostics. Owing to the idiosyncrasy of this age
range, cancers such as pregnancy-associated breast cancer (PABC), for which the mortality
rate is around 50–60%, are particularly prevalent [7–9].

The overall cancer survival rate notably improves if a patient is diagnosed prior to
the occurrence of distant metastasis [10]. Analysis of biomarkers might overcome the
limitations of imaging techniques whilst enabling the early diagnosis of the disease. In
this regard, the human epidermal growth factor receptor 2 (HER2), the KI-67 protein, and
estrogen receptors (ERs) are typically used for prognosis and guidance regarding systemic
treatment. Among other potential biomarkers of breast cancer are miRNAs, which have
gained momentum in recent years. miRNAs are non-coding small RNA molecules of
21–25 nucleotides that mediate the downregulation of target proteins [11]. The human
genome is 3 × 109 base pairs long. On the human genome, we currently have around
2000 miRNAs annotated, but each (mature) miRNA is just 20–25 base pairs long, thus
representing a tiny fraction of the human genome in terms of sequence length [12]. MiRNAs
can be involved in the suppression or activation of tumors. Neoplasm-activating miRNAs
are called “onco-miRNAs”.

Circulating miRNAs are regulators of gene expression and mediators of intercellular
communication. They are also perfect candidates for a new class of non-invasive biomarkers
for the diagnosis, prognosis, and therapeutic evaluation of cancer. There are several
justifications this approach; miRNAs present in plasma and serum have high stability,
making blood collection reproducible and non-invasive. At the same time, the deregulation
of miRNA expression has been associated with cancer. Notable miRNA expression profiles
in blood appear to be tissue-specific: miR-122 is preferentially expressed in the liver and
miR-133 in muscle. Circulating levels of miRNAs are known to return to baseline levels
after tumour removal, which justifies the potential usefulness of circulating miRNAs as
biomarkers of cancer treatment efficacy [11].

The deregulation of onco-miRNAs has been widely studied in serum, relating its
dysregulation to the existence of an incipient or established neoplasm.

We aimed to systematically evaluate miRNAs with diagnostic potential in breast
cancer. Subsequently, we conducted a diagnostic test accuracy meta-analysis to evaluate
the diagnostic potential of the most cited miRNA in the systematic review, miRNA-155.

2. Materials and Methods

To achieve the proposed objectives, we conducted a systematic review following the
Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement.
We conducted a qualitative analysis to screen microRNAs with diagnostic potential. Subse-
quently, a quantitative data synthesis was conducted to evaluate the diagnostic accuracy of
specific miRNAs. This review was registered in the International Prospective Register of
Systematic Reviews (PROSPERO) with the registration number “CRD42021256338”.

2.1. Search Strategy

A thorough search of relevant articles from the PubMed (Medline), Scopus, and
CINAHL databases was performed by one reviewer. Considering that miRNA concen-
trations in individuals with and without breast cancer have been extensively reported in
previous decades, the studies were limited only to those published between 2010 and 2021,
using different combinations of the following search terms: “microRNA”, “miRNA”, “miR”,
“breast cancer”, “breast neoplasm”, “early diagnosis”, and “screening”. The searches were
limited to articles published in English. Keywords were selected using the Medical Subject
Heading (MeSH) terms based on the patients, interventions, comparators, results, and
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study design defined for the present study (PICO). The results obtained through the dif-
ferent search queries were combined using the Mendeley software (v.1.19.8), eliminating
duplicated articles. Two reviewers screened the titles and abstracts of studies identified
in the initial search to determine the relevance of these publications. Then, full texts were
obtained and reviewed in detail. Finally, 38 articles were included in this systematic review
after the screening and selection processes.

2.2. Study Selection

Articles were considered eligible if they met all of the following inclusion and exclusion
criteria:

The inclusion criteria consisted of: (1) studies conducted on pregnant women, in-
cluding cases of breast cancer diagnosed by a validated method; (2) case-control studies;
(3) studies assessing the expression of breast cancer-related miRNAs; (4) sample sizes ≥ 20.

The exclusion criteria included: (1) studies conducted on animal models; (2) studies
with very high risk of bias, evaluated using the NOS scale (Newcastle-Ottawa Scale for
Observational Studies), which is detailed in Supplementary Table S1; (3) studies that use
an miRNA for normalization with poor scientific evidence of its variation in cases versus
controls; (4) studies including women with other diagnosed pathologies that might bias
results (i.e., another type of cancer).

The meta-analysis inclusion criteria were as follows: (1) miRNAs evaluated in least
three different studies.; (2) articles reporting sufficient raw data to construct a 2 × 2
contingency table of true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN), or providing sensitivity and specificity values.

The exclusion criteria included only one item: low quality assessed by the QUADAS-2 tool.

2.3. Quality Assessment

Two independent reviewers assessed the risk of bias in the selected studies using the
Newcastle-Ottawa scale for observational studies of case-control design. Studies with a
score of 0–3 stars were considered to present a very high risk of bias and were thus excluded
from this review. Studies with a score of 4–6 were considered to present a high risk of bias,
and studies that achieved a score of ≥7 were considered to be of a high quality/present a
low risk of bias.

To ensure the quality of the meta-analysis, the six studies included were evaluated
by following the second version of the Quality Assessment of Diagnostic Accuracy Test
(QUADAS-2), which evaluates four key domains: patient selection, index test, reference
standard, and flow and timing. Studies with a score of less than 7 were considered to
have a high risk of bias and low applicability and were thus excluded from this meta-
analysis. Disagreements regarding individual studies were discussed and resolved to reach
a consensus between the reviewers.

2.4. Data Extraction

A template was created with the following data: author, year, age, normalization
method, sample size of all groups, miRNA(s) profiled, and sample source. The extracted
data were managed using the software Microsoft Excel®. Data were extracted indepen-
dently by two reviewers. Whenever disagreements between the reviewers occurred, a third
reviewer was the arbiter.

2.5. Statistical Analysis

For diagnostic accuracy, the included studies’ sensitivity, specificity, diagnostic odds
ratio (DOR), positive and negative likelihood ratios (PLR and NLR), and corresponding
95% CI were pooled to assess the diagnostic value of miRNA-155 in breast cancer. The
summary receiver operating characteristic (SROC) curve was plotted based on the original
data, and the area under the SROC curve (AUC) was calculated to determine the diagnostic
accuracy of miR-155. The I2 and Chi tests were conducted to estimate the proportion of total
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variation among studies that occurred due to heterogeneity rather than chance. I2 values
of >50% were considered to be indicative of significant heterogeneity among the included
studies, and thus a random effects model was applied in the analyses [13]. Quantitative
analysis of publication bias was assessed using the Deek’s test and creating funnel plots.
Subsequently, meta-regression analyses were carried out to find the potential sources of
heterogeneity. Finally, the risk of publication bias of all the included studies was estimated
by Deeks’ funnel plots [14]. All statistical analyses were performed using RevMan and
Stata version 12 (Stata Corporation, College Station, TX, USA).

3. Results
3.1. Characteristics of the Included Studies

The screening process of the eligible studies is presented in Figure 1. To study the diag-
nostic value of miRNAs, a total of thirty-eight articles were finally included for qualitative
synthesis. Out of the total selected original studies, thirty examined miRNAs’ expression
levels between confirmed cases and healthy controls. The remaining eight studies com-
pared the expression of selected miRNAs between a cancerous tissue versus an adjacent
healthy tissue. The data extracted from the included papers are presented in Table 1. In
Table 2, data on specific miRNAs were drawn and pooled from the included studies accord-
ing to the combined sample of all those studies in which they were analyzed, including
total cases and controls, how they were found to be dysregulated, the biological sample in
which they were measured, and their relative value as reported by the authors.
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Table 1. Studies comparing the expression level of miRNAs in cases and controls.

miRNA/s References Normalization Sample n Cases Controls Conclusions

miR-21 [15] miR-16 Serum 122 102 20 miRNA-21 concentrations differed between cases and controls and enabled the
differentiation of localized disease from metastases.

miR-21 [16] miR-16 Serum 89 50 39

The mean serum levels of miR-21 were higher in different types of cancer
compared to control (including breast cancer). The expression of miR-21 did
not correlate to other aspects of breast cancer such as estrogen receptor,
progesterone receptor, menopause status, and KI-67. Similarly, miR-21
expression was not associated with metastasis status. There were nine males in
the control group.

miR-99a-5p [17] RNU38B Serum and
tissue 203 105 98

The data reflected a significant underexpression of miR-99a-5p in breast cancer
tissue versus healthy tissue. However, serum levels reflected overexpression in
cases versus controls. Only the testing cohort was considered.

miR-155 [18] miR-39 Serum 158 103 55

MiR-155 levels were significantly elevated in the case group compared to
control. The ROC curve = 0.801 with a specificity of 81.8%, suggesting that the
expression of miR-155 allows one to discriminate the cases from the controls,
and its expression decreases with a good response to treatment.

miR-155 [19] RNU38B Serum 30 20 10 miR-155 levels were significantly elevated in the cases group.

miR-155 [20] miR-16 Serum 117 102 15
The expression of miR-155 was significantly higher in the cases group. After
receiving treatment (surgery and chemotherapy), the expression decreased
significantly. miR-155 overexpression was also related to tumor size and stage.

miR-202 [21] miR-16 Serum 60 30 30

miR-202 was found to be significantly overexpressed in the cases. Sensitivity
and specificity were 90 and 93%, respectively. The positivity was 100% for
Stage I, 90% for Stage II, and 80% for Stage III, demonstrating great utility for
the diagnosis of BC in early stages, in addition to showing predictive value
(risk of 9.6 times higher, p < 0.001)

miR-1204 [22] GAPDH Serum and
tissue 182 144 38

The expression of miR-1204 was significantly higher both in the tissue and in
the serum of the cases compared to the controls, allowing the cases to be
discriminated from the controls with a ROC curve of 0.854.

miR-34a
miR-10b [23] miR-16 Serum 118 89 29

The microRNAs analyzed were significantly elevated in the cases. miR-10b
and miR-34a were significantly higher in patients with metastases compared to
patients with localized breast cancer.
Elevation of miR-34a correlated with advanced stages.
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Table 1. Cont.

miRNA/s References Normalization Sample n Cases Controls Conclusions

miR-10b
miR-21

miR-145
miR-155
miR-191
miR-382

[24] 18S RNA Serum 71 61 10

The concentrations of all miRNAs were significantly higher in cases. The ROC
curve showed that three of them (miR-145, miR-155, and miR-382) are potential
biomarkers. Possible differences in the expression of the cases were also
analyzed, although they were not significant (different stages)

miR-21
miR-106a
miR-126
miR-155
miR-199a
miR-335

[25] miR-16 Serum 108 68 40
The concentrations of the microRNAs were significantly different between the
cases and the controls. miR-21, miR-106a, and miR-155 were overexpressed
and miR-126, miR-199a, and miR-335 were underexpressed.

miR-16
miR-21

miR-145
miR-451

[26] RNU6B Serum 270 170 100

miR-21 and miR-451 were found to be significantly overexpressed in the cases,
while miR-145 was underexpressed with respect to the controls. The
combination of miR-145 and miR-451 presented a ROC curve of 96%, with an
optimal sensitivity of 90% and specificity of 96%. These markers are not
elevated for other types of cancer and are useful in different stages of breast
cancer, with higher diagnostic values in some types of breast neoplasms, such
as DCI (ductal carcinoma in situ), which obtained a ROC curve of 98%

miR-21
miR-146a [27] miR-16 Serum 22 14 8 The expression of miR-21 and miR-146a were found to be significantly higher

in the cases compared to the controls.

miR-21
miR-92a [28] RNU6 Serum 120 100 20

Significant overexpression of miR-21 and significant underexpression of
miR-92a. Subsequent analysis showed that low miR-92a and high miR-21
levels were associated with tumor size and lymph node staging.

miR-21
miR-1246 [29] miR-54 Serum and

tissue 32 16 16

Several microRNAs were encapsulated or highly enriched and selectively
secreted by tumor exosomes.
Both miR-21 and miR-1246 showed significantly high expression in the cases.
miR-122 and let-7a are also considered to be potential biomarkers as they are
selectively secreted.
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Table 1. Cont.

miRNA/s References Normalization Sample n Cases Controls Conclusions

let-7a
miR-10b
miR-16
miR-21

miR-145
miR-155
miR-195

[30] miR-16 Serum 146 83 63

Only miR-195 was found to be significantly overexpressed in patients with
breast cancer specifically, compared to cases of other neoplasms and healthy
controls. Furthermore, a positive correlation between miR-195 levels and
tumour size was demonstrated.
On the other hand, let-7a was significantly elevated in the cases (with the
exception of malignant melanoma). In patients with breast neoplasms, the
simultaneous use of three miRNAs (let-7a, miR-195, and miR-155) led to a
sensitivity of 94%.

miR-99a
miR-145

miR-151-3p
miR-205
miR-210

miR-361-5p

[31] miR-16 Serum 28 21 7

miR-145 was found to be underexpressed in the cases compared to the
controls. miR-210 was found to be overexpressed in the cases.
Underexpression of miR-99 and overexpression of miR-155-3p.
In invasive breast cancer, the underexpression of miR-145 and overexpression
of miR-210 were observed. In metastatic breast cancer, the underexpression
of miR-205 and overexpression of miR-361-5p were observed.

miR-1246
miR-1307-3p

miR-4634
miR-6861-5p
miR-6875-5p

[32] miR-149-3p Serum 4116 1280 2836

A combination of five miRNAs was able to discriminate cases from controls
with 97.3% sensitivity, 82.9% specificity, and 89.7% precision for the breast
cancer cohort. In addition, for early-stage breast cancer, the sensitivity was
98%.

miR-133a
miR-155

p53
CEA

CA-15.3

[33] SNORD68 Serum 80 60 20

While miR-155 was significantly overexpressed in the cases, miR-133a was
significantly underexpressed. Both CEA and CA-15.3 were found to be
significantly elevated in the serum of the cases.
A possible relationship was found between miR-133a and tumour stage
(underexpression—higher stage) and between miR-155 and lymph node
metastasis (overexpression—lymph nodes involved).

miR-21
MMP-1 [34] miR-16 Urine 48 22 26

miR-21 was found to be significantly underexpressed in the cases, in contrast
to the matrix metalloproteiase-1 (MMP-1), which was found to be
significantly overexpressed. Combined, sensitivity reached 95% and
specificity was 79%.
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Table 1. Cont.

miRNA/s References Normalization Sample n Cases Controls Conclusions

Let-7b-5p
miR-122-5p

miR-146b-5p
miR-210-3p,

215-5p

[35] miR-39 Serum 514 257 257

Eleven miRNAs were significantly deregulated. These were analyzed in
seventy-two samples and only five were found to be consistently
overexpressed in the cases. The diagnostic capacity of five miRNAs yielded a
ROC curve of 0.978, 94% sensitivity, and 88.9% specificity.

miR-21
miR-155

let-7c
PTEN

[36] RNU44 Serum 93 45 48

The expression of miR-21 was significantly higher in the cases compared to
the controls.
On the contrary, miR-155, let-7c, and PTEN were found to be significantly
underexpressed in the cases.

miR-29b-2
miR-155
miR-197
miR-205

[37] miR-16 Serum 130 100 30 The expression of miR-155 was significantly higher in the cases versus the
controls, while miR-205 was significantly underexpressed.

miR-16
miR-21
miR-29c
miR-145
miR-191
miR-210
miR-222

[38] miR-222-3p Serum 68 35 33

Only three miRNAs were significantly overexpressed in the cases (miR-145,
-191, and -21). Individually, the ROC curves of miR-145 and -191 were 0.931
and 0.904, respectively, and in combination, this rose to 0.984, allowing for
the accurate differentiation of cases versus controls.

Let-7c
miR-21

miR-34a
miR-92a
miR-155
miR-222

CEA
CA 15-3
CA 125

[39] miR-16 Serum 83 55 28

The cases were shown to have a higher expression of miRNAs. The
expression of miR-34a was significantly lower in the cases, unlike CEA and
CA 15-3.
The combination of CEA or CA 15-3 together with miR-34a yielded ROC
curves of 0.844 and 0.800, respectively.
The specificity of the combination of miR-34a and CA 15-3 was 95%.
When the cohort of patients with breast cancer was compared with benign
diseases, both sensitivity and specificity and the ROC curve showed better
results.
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Table 1. Cont.

miRNA/s References Normalization Sample n Cases Controls Conclusions

miR-23a
miR-29b
miR-130
miR-144
miR-148a
miR-152
miR-182

[40] U6 Serum and
tissue biopsy 202 106 96

The expressions of miR-23a-3p, -130a-5p, -144-3p, -148a-3p, and 152-3p were
lower in the plasma of the cases compared to the controls. miR-130a-5p,
-144-3p, and 152-3p were also found to be underexpressed in the tissue of the
cases.
The expression of miR-23a-3p, -144-3p, and 152-3p was related to ER and PR +
status, in addition to showing significant differences in stage, especially in the
early stages.

miR-16
miR-25

miR-222
miR-324-3p

[41] miR-39 Serum 152 76 76

Four miRNAs were found to be significantly overexpressed in cases versus
controls. The AUC was 0.928 for the miRNA profile, with a sensitivity and
specificity of 0.921 and 0.934, respectively. Validation of the cohort was
considered.

miR-21
miR-24

miR-202
miR-206

miR-219B
miR-223
miR-373
miR-1246
miR-6875

[42] miR-16 Serum 136 80 56

The combination of two or more miRNAs of the proposed profile reported
more precise results than the use of a single miRNA individually.
The combination with the highest precision was that of miR-1246, -206, -24, and
-373, obtaining a 98% sensitivity, 96% specificity and 97% precision.
Combinations such as that made up of miR-1246, -206 and -24 achieved 100%
sensitivity, 93% specificity, and 97% precision.
Validation of the cohort was considered.

miR-15a
miR-18a
miR-107

miR-133a
miR-139-5p

miR-143
miR-145
miR-365
miR-425

[43] miR-10b
miR-30a Serum 72 48 24

Nine miRNAs were found to be deregulated in the cases versus the controls.
Subsequently, a panel composed of nine miRNAs validated in 111 serum
samples was developed, yielding an AUC of 0.665.
The authors also reflected the possibility of analyzing the risk of suffering from
breast cancer ER + with this miRNA profile.

miR-155 [44] RNU6B Serum 50 30 20
miR-155 was found to be significantly overexpressed in the cases versus the
controls (p < 0.001). In the cases, the expression of this miRNA varied
significantly depending on the tumor stage.
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Table 2. Summary of dysregulated miRNAs.

miRNA References Dysregulation Sample Size (Total) Cases (Total) Control (Total) Relative Use

Let-7a [30,45] Upregulated 338 231 107 Diagnosis and prognosis

miR-10b [23,24,30,46,47] No significative 359 270 89 Diagnosis and prognosis

miR-16 [26,30,38,41,46] No significative 536 253 183 Normalization

miR-19a [48] Upregulated 84 63 21 Diagnosis and prognosis

miR-21 [15,16,24–30,34,36,38,39,42,49–51] Upregulated
Downregulated (Urine [49]) 1791 1083 708 Diagnosis and prognosis

miR-24 [42,48] Upregulated 84 63 21 Diagnosis and prognosis

miR-34a [23,39,46,47] Upregulated
Downregulated [39,46] 563 406 157 Diagnosis and prognosis

miR-92a [28,39] Downregulated 251 203 48 Diagnosis

miR-93 [47] Upregulated 192 152 40 Diagnosis (BM TN)

miR-99a-5p [17]
Upregulated (Serum)

Downregulated (Tissue
biopsy)

174 89 75 Diagnosis

miR-106a [25] Upregulated 108 68 40 Diagnosis

miR-125b [24,49] Upregulated
Downregulated (urine [49]) 119 85 34 Diagnosis

miR-126 [25] Downregulated 108 68 40 Diagnosis

miR-133a [33,43] Downregulated 191 120 71 Diagnosis and prognosis

miR-141 [23] Upregulated 118 89 29 Diagnosis

miR-145 [24,26,30,31,38,43] Downregulated 644 380 264 Diagnosis

miR-146a [27] Upregulated 22 14 8 Diagnosis

miR-155 [18–20,23–25,30,33,36,37,39,44,46–49] Upregulated 1637 1154 483 Diagnosis and prognosis

miR-199a [25] Downregulated 108 68 40 Diagnosis

miR-181b [46,48] Upregulated 254 183 71 Diagnosis and prognosis

miR-191 [24,38] Upregulated 139 96 43 Diagnosis
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Table 2. Cont.

miRNA References Dysregulation Sample Size (Total) Cases (Total) Control (Total) Relative Use

miR-195 [30,45] Upregulated 338 231 107 Diagnosis and prognosis

miR-199a [25] Downregulated 108 68 40 Diagnosis

miR-202 [21] Upregulated 60 30 30 Diagnosis and predictor

miR-205 [31,37] Upregulated 218 151 67 Diagnosis and prognosis

miR-210 [31,35] Upregulated 542 278 264 Diagnosis

miR-222 [39,41] Upregulated 235 131 104 Diagnosis

miR-335 [25] Downregulated 108 68 40 Diagnosis

miR-373 [42,47] Upregulated 328 232 96 Diagnosis (HER2+)

miR-451 [26,49] Upregulated
Downregulated (Urine [49]) 268 144 124 Diagnosis

miR-1204 [32] Upregulated 182 144 38 Diagnosis

miR-1307 [32] Upregulated 4116 1280 2836 Diagnosis

miR-1246 [29,32,42] Upregulated 4284 1376 1308 Diagnosis

miR-4634 [32] Upregulated 4116 1280 2836 Diagnosis

miR-6861-5p [32] Upregulated 4116 1280 2836 Diagnosis

miR-6875-5p [32,42] Upregulated 4252 1360 2892 Diagnosis
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3.2. RNA Quantification

All candidate-driven studies used RT-qPCR (real-time quantitative polymerase chain
reaction) to detect and quantify miRNA levels. Several studies used in screening-phase
microarrays or low-density PCR arrays. Subsequent validation of candidate miRNA
biomarkers was performed with RT-qPCR [15,20,21,23,27,34,37,39,42,45].

3.3. Data Normalization

In most studies, some form of normalization of circulating miRNA levels was reported
to help compensate for potential variations between biological species. miR-16 was used
as endogenous control in most of the studies (40%) [15,16,20,21,23,25,27,30,31,34,37,39,42],
following by miR-39 and RNU38B. Articles that used an endogenous control that had been
reported to be poorly detectable and highly variable were excluded.

3.4. Quality of Included Studies

The evaluation of the methodological quality of the studies analyzed in this review
is shown in the Supplementary Information. Thirty-four studies had results that ranged
from seven to nine stars (high quality studies), and four articles had between five and six
stars. All of the studies selected cases according to valid diagnostic tests (i.e., biopsy) or
independent validation, excluding cases for whom breast cancer was not primary. The
controls belonged to the same community (generally the same hospital from which the
cases were recruited) and had no history of disease.

All of the studies included scored more than seven out of ten. As a result, significant
bias was not presented in the meta-analyses, as suggested in Figure 2, which represents
detailed information regarding QUADAS-2 assessment. One article was excluded for high
risk of bias, and four were excluded for missing information (see Figure 2 for detailed
QUADAS-2 score).
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3.5. Differentially Expressed miRNAs

In the studies comparing breast cancer cases and healthy controls, 34 miRNA were
dysregulated. the most cited miRNA was miR-21 [15,24–30,34,36,38,39,42,49–51], followed
by miR-155 [18–20,23–25,33,36,37,39,44,46–49].

Two miRNAs (miR-10b and miR-16) showed no significative dysregulation, indicating
their value as endogenous controls.

3.6. Diagnosis Test Accuracy Meta-Analysis

Six articles fit the inclusion and exclusion criteria to be part of this meta-analysis.
Figure 3 indicates the individual characteristic of the articles included.
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3.6.1. Pooled Diagnostic Value of miR-155 in Breast Cancer

The forest plots of sensitivity and specificity are presented in Figure 4 as follows: the
pooled sensitivity and specificity were 86% (95% CI: 70–94%) and 93% (95% CI: 79–98%),
respectively. The PLR and NLR were 11.53 (95% CI: 3.62–36.77) and 0.15 (95% CI: 0.06–0.36),
respectively (Figure 5). A Fagan nomogram was used to illustrate the relation between PLR
and NLR in Figure 6. The area under SROC (AUC) was 0.96 (95% CI: 0.94–97) (Figure 7).
All data above showed a relatively high diagnostic value for miR-155 in breast cancer.
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3.6.2. Subgroup Analysis

A subgroup analysis of the sample (serum) analyzed was performed to investigate
the potential origin of heterogeneity between studies. The pooled results of this subgroup
analysis are shown in Figure 8. It can be observed that studies that analyzed microRNA-155
in serum showed a slight improvement in diagnosis accuracy: the pooled sensitivity and
specificity were 88% (95% CI: 69–96%) and 94% (95% CI: 78–99%), respectively. The PLR
and NLR were 15.90 (95% CI: 3.35–75.46) and 0.13 (95% CI: 0.04–0.37), respectively. The
area under SROC (AUC) was 0.97 (95% CI: 0.95–98).
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3.6.3. Publication Bias

To distinguish the potential publication bias across the enrolled diagnostic studies, the
Deeks´ funnel-plot test was performed. The Deeks’ funnel plot (Figure 9) was symmetrical
and reached a p value of 0.31 above 0.05, indicating there is no obvious publication bias in
the included studies.
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4. Discussion

Breast cancer is the worldwide leading cancer in terms of diagnoses, with a total of
2.3 million new cases (11.7%) of breast cancer occurring yearly [1] Its mortality constitutes
6.9% of all deaths due to cancer. According to the SEER database, an authoritative source for
cancer statistics in the United States, mortality from this neoplasm triples after the age of 55,
from 8.3% in the 35–44 age group to 25.6% in the 55–74 age range. If breast cancer is detected
when it is confined to the primary site or has disseminated to regional lymph nodes, the
five-year relative survival is 93% [52]. Imaging technology has improved the diagnosis
of breast cancer patients and the development of surgical techniques, while concurrent
radiotherapy and chemotherapy have significantly reduced mortality compared to previous
decades [53]. An ideal biomarker should have the ability to detect with high accuracy the
onset of the disease even before any clinical signs appear. In addition, it should accurately
discriminate between a neoplastic sample and a healthy sample, reporting variations when
the neoplasm is treated or during relapses. Moreover, ideal biomarkers should have a
long half-life in clinical samples and should be accessible through innocuous methods,
stable, and serially reproducible with low cost [54]. MicroRNAs may provide a solution to
the existing problems with current screening techniques in the early diagnosis of breast
cancer. They are truly stable biomolecules, present in body fluids such as serum, plasma, or
saliva. Their expression is specific and sensitive in both tissues and organs affected by a
neoplasm [17,22,29,55], and their quantification method, by qRT-PCR or microarray [56],
is simple and relatively inexpensive due to the worldwide adaptation that has been made to
enable the extensive use of this technique for the detection of the SARS-CoV-2 viral genome.
MiRNAs control the expression of target genes by either inhibiting protein translation or
directly targeting the mRNA transcripts of target genes for degradation [12], with well-
described roles in several cancers, including breast cancer [56]. Since miRNAs potentially
have a broad influence on diverse genetic pathways, dysregulation of these small RNAs is
probable to contribute to the occurrence of diseases, including cancer.
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4.1. Size and Angiogenesis

MicroRNAs have been significantly linked to tumor development and angiogenesis.
There is a balance between proangiogenic and antiangiogenic factors that work together
with different expressions, releasing or reactivating factors with the ability to form new
blood vessels [57]. The process of angiogenesis in normal cells is different from the angio-
genic process that develops in tumor cells. Tumor blood vessels are highly disorganized,
irregular in shape, and hyperpermeable, among other characteristics [58]. Tightly linked
to this event is tumor size; as the tumor increases in size, aerobic conditions begin to be
compromised and tissue hypoxia occurs. This hypoxia promotes the release of angiogenic
factors and angiovascular mimicry, also known as EMT (endothelial-mesothelial transi-
tion). This change allows the tumor cell to restructure its phenotypic expression and show
itself as an endothelial cell, and this will have very important repercussions related to its
invasiveness [59].

AngiomiRNAs might be the key to this process, activating or inhibiting, both directly
or indirectly, factors such as VEGF (vascular endothelial growth factor) or H1F-1 (hypoxia-
inducible factor-1) [58]. Examples of anti-angiogenic miRNAs described in this systematic
review include the following (alongside the targets with which they interact) miR-126
(VEGF-A) [60], miR-126-p (VEGF-A and PIK3R) [61], and miR-145 (IRS1) [62]; while among
the microRNA with antagonistic roles are miR-21 (PTEN) [63], miR-93 (LATS2) [64], miR-
155 (LYVE-1 and VHL) [65], and miR-373 (VEGF and cyclin) [66].

The underexpression of miRNAs related to angiogenesis inhibition and the overex-
pression of those related to angiogenesis promotion described in the studies included in
our work support their diagnostic utility, as they are related to tumor growth, invasion,
and metastasis.

4.2. Angiogenesis and Tumor Spreading

Neovascularization, described hereinbefore, provides a direct gateway to other organs
and tissues that are colonized by tumor cells, causing tumor dissemination. When a tumor
cell acquires the ability to migrate to other tissues distant from the primary cancer, usually
through lymphatic or blood vessels, it can begin to reproduce and invade new organs,
spreading to various areas of the body [67,68].

MicroRNAs can control invasion and metastasis processes in many ways [69], such as
the cell secretion of factors such as TGF-β, involved in cell growth and the proliferation of
tumor cells in early stages and contributing to EMT [70]; or through interaction with the
Wnt/β-cateninn pathway, which inhibits the expression of a protein attached to the cell
membrane (E-cadherin), whose loss is associated with EMT [71]. Among the microRNAs
that promote these processes are miR-21 (through TGF-β and epidermal growth factor) [72],
miR-10b (TGF-β1, its expression enhances E-cadherin expression) [73], miR-155 (RhoA) [74],
and miR-191 (TGF-β1) [75]. Among the microRNAs that prevent metastasis are miRNA-141
and miRNA-200c [76]. In our revision, miRNAs that promote metastasis were found to be
significantly overexpressed, while those that suppress it were found to be downregulated.
The detection of the overexpression of miRNAs involved in angiogenesis or those that are
suppressed or underexpressed for the same reason in combination with tumor markers (e.g.,
TGF-β, VEGF, CEA or CA15-3) could anticipate a diagnosis before tumor dissemination is
produced, helping the treatment response and a reduction in sequels.

Several reports have shown that miR-155 acts as an oncomiR in human cancers by
targeting tumor suppressors [77,78]. It has been revealed that miR-155 promotes cancer cell
proliferation (EMT), CSC phenotype [79], chemoresistance [80,81], the evasion of apoptosis,
colony formation, and tumor growth. In our meta-analysis, the AUC and corresponding
95% CI were 0.96 (0.94–97). In addition, PLR and NLR were 15.90 (95% CI: 3.35–75.46)
and 0.13 (95% CI: 0.04–0.37), respectively, in serum, indicating that microRNA-155 could
discriminate breast cancer patients from healthy patients with relative reliability. Traditional
markers such as CEA or CA 15-3 can also benefit from microRNAs. The main disadvantage
of these traditional markers is their low sensitivity, which is improved when used in
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combination with microRNAs, as reported by Zaleski [39] A further highlight of our work
is the diagnostic value of this microRNA in different fluids. In Erbes’s research [49], miR-
155 was measured in urine, and despite being underexpressed in this fluid as opposed
to serum, where it is overexpressed, its sensitivity and specificity were very similar, as
disclosed in our subgroup analysis, which may guide future research on other fluids with
closer contact with the tumor environment, such as breast milk.

Last but not least, ethnic and racial representation is limited in the area of early
detection of breast cancer using microRNAs. Studies have included only Caucasian and
Asian patients. The fact that race and ethnicity correlate with breast cancer morbidity and
mortality has been documented by some authors [82–85]. Generally, these characteristics are
associated with socioeconomic disparities, as, in the case of black patients, several studies
suggest a higher mortality and a significantly lower overall five-year survival [86–88].
Another fact that explains the higher mortality in ethnic minorities is the higher incidence
and outcome disparities of very aggressive breast cancers, such as triple-negative breast
cancer [89,90].

4.3. Heterogeneity: A Major Challenge to Overcome

Finally, when evaluating the results presented, some limitations must be taken into
account: (1) a common feature of all of the studies reviewed both in our systematic review
and in the subsequent quantitative analysis was the high biological and technical variability,
which was a major source of bias. The sample preparation (the use of small, enriched
RNA fraction versus total miRNA), methods used to isolate RNA (phenol/guanidinium
(TRIzol, Invitrogen), miRNeasy (QIAGEN), and mirVana (ABI) . . . ), and the differences
in the selection of endogenous controls (miR-16, -39, 222-3p, among others) encourage
inconsistency in the results obtained. Regarding endogenous controls, miR-16 is recognized
by several authors as the most stably expressed microRNA in breast cancer patients and
healthy controls [91–93]. (2) Racial factors were not represented in their scope. The included
articles presented a monotonous Caucasian and Asian population. The African race should
be studied more widely, especially because of the greater incidence of breast cancer in
this community. Therefore, more researchers should pay attention to the impact of racial
factors in subsequent studies. (3) Our work only included articles published in English, but
did not cover articles in other languages. (4) The sample size was too small, which may
undermine the reliability of our results. Therefore, more well-designed studies based on
larger samples and sufficient data are required to verify the diagnostic value of miR-155.
(5) Subgroup analysis could not be performed in our meta-analysis because of the limited
data for adjustment for covariates such as TNM stage, histologic type, assay, and so on [94].

5. Conclusions

In summary, the results reported in the present study may be useful for future confir-
matory analyses more focused on the expression of preselected miRNAs in breast cancer
patients. The miRNAs constitute a new avenue to explore to complement the use of classical
breast cancer biomarkers, thereby improving sensitivity and specificity, and to be used as
an isolated approach, particularly when these are pooled to form panels. Based on the
results of our meta-analysis, miR-155 might be a promising diagnostic biomarker for this
patient population. It is a blood-based biomarker that is easy to obtain and non-invasive.
At the same time, this biomarker is highly stable. In the same way that certain miRNA ex-
pression profiles in blood appear to be specific—such as miR-122, expressed preferentially
in liver and miR-133, expressed in muscle—miR-155 could be breast-specific. Moreover, it is
noteworthy that different laboratories studying the same disease find the same circulating
miRNAs as potential biomarkers, which strengthens the idea that miRNAs may be valid
for diagnosing cancer and other diseases. Nevertheless, large-scale, well-designed, multi-
center studies should be conducted to clarify the mechanism of miR-155 overexpression in
breast cancer.
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