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Abstract: Creatures in nature possess almost perfect structures and properties, and exhibit 

harmonization and unification between structure and function. Biomimetics, mimicking 

nature for engineering solutions, provides a model for the development of functional 

surfaces with special properties. Recently, honeycomb structure materials have attracted 

wide attention for both fundamental research and practical applications and have become 

an increasingly hot research topic. Though progress in the field of breath-figure formation 

has been reviewed, the advance in the fabrication materials of bio-inspired honeycomb 

structure films has not been discussed. Here we review the recent progress of honeycomb 

structure fabrication materials which were prepared by the breath-figure method. The 

application of breath figures for the generation of all kinds of honeycomb is discussed. 

Keywords: honeycomb structure; fabrication material; breath-figure method; pattern 

structure; hexagonal geometry structure; polymer film; hybrid film; small organic 

molecule; nanoparticle 
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the convectional flow or the capillary force generated at the solution front [27–29]. After complete 

evaporation of solvent and water, traces of water droplets remain in the polymer film to form 

honeycomb structures. In the film fabrication process by the BF method, high relative humidity and a 

volatile solvent are two key factors for the formation of a honeycomb pattern. Other influencing 

factors [30–32] such as molecular weight of polymer, air velocity, concentration, selective solvent, 

evaporation time, and substrates, have also been used to control the morphologies and properties of the 

honeycomb films.  

Since the introduction of the BF fabrication method by Francois et al. [33], honeycomb films 

constructed by the BF method have been paid a lot of attention. Several scientists, such as Shimomura 

and Stenzel, have performed systematic work. They extended the BF method to all kinds of building 

units, such as starlike polymers [34], block copolymers [35], amphiphilic polyion complexes [36],  

organic-inorganic hybrids [37], ligand-stabilized metal nanoparticles (NPs) [38,39], and  

surfactant-encapsulated polyoxometalates [40]. They not only studied the formation mechanisms of the 

films, but also applied these films to various applications, such as separation membranes [41], 

superhydrophobic materials [42], photonic or optoelectronic devices [43], cell-culturing substrates [44,45], 

and micropatterning templates [46–48]. 

As mentioned above, natural honeycomb has a hexagonal structure which can provide inspiration 

for preparing two-dimensional (2D) hexagonal patterns. Currently, the 2D hexagonal structure 

fabricated by the BF method is similar to the natural honeycomb structure. So we named these 2D 

hexagonal patterns as bio-inspired honeycomb structures. The aim of the present review is to summarize 

the advances in the fabrication materials of honeycomb structure films, prepared by the BF method. We 

have chosen to discuss the literature that focuses on the following aspects (See Figure 2): honeycomb 

structured polymer films obtained by the BF method; hybrid honeycomb polymer films prepared by either 

self-assembly of hybrid NPs or growth of inorganic materials from precursors of NPs or directly from the 

honeycomb film; formation of organometallic and ceramic bubble arrays; formation of metal/metal oxide 

NPs honeycomb structure films; formation of small organic molecular honeycomb patterned films; others 

including honeycomb patterned films from DNA, graphene and even living bacteria. 

Figure 2. The design and fabrication of several artificial honeycombs whose inspiration 

comes from the natural honeycomb.  
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2. Formation of Honeycomb Patterned Polymer Films 

In 1994, Francois et al. used star and rod-coil polymers to obtain the honeycomb film by the BF 

method. At the beginning, the work in this field mainly focused on changing polymers, solvents and 

substrates to achieve all kinds of honeycomb structure films. Here the used polymer materials will be 

classified in detail. 

2.1. Starlike and Graft Polymers 

Star polymers are constitutive of several polymer chains attached at one end to only one branching 

point serving as the core. A series of starlike and grafted polystyrenes (PS) were investigated by 

Stenzel et al. [34,49–53]. When the CS2 solution containing the polymer was cast on the substrate 

under moist air, all of these polymers formed honeycomb structures. They investigated the influence of 

polymer concentration, molecular weight, and the number of arms on the pore size of the honeycomb 

structure. The results demonstrate that the more arms attached to a specific core, then the smaller the 

pores will be. Pore size decreases with increase in concentration. The glucose- and carboxy-terminated 

PS can easily form honeycomb structures of excellent quality, while ester-group-terminated PS cannot, 

when cast from CS2. When the blue-fluorescent star-poly(5-phenyl-8-(4-vinylphenyl) quinoline is 

utilized to fabricate honeycomb structures [53,54], breath-figure arrays (BFAs) of superior quality can 

be obtained. The pore sizes ranged from 150 nm to 1 μm when cast from CS2 under humid (85% H2O) 

conditions. The pore size also can be manipulated by the velocity of the air flow. Larger pores can be 

obtained from very low air velocities and confocal fluorescence pictures of their arrays have been 

observed. The fluorescence image of BFAs was patterned, with the maximum fluorescence intensity at 

550 nm coming from the rims of the pores. This effect was interpreted as orientation of the polymer 

chains such that their fluorescent parts are closer to the surface of the pores. In addition, crosslinked star 

polymers are obtained by co-grafting styrene and divinylbenzene into a microgel by an arm-first 

approach [52]. Honeycomb structures can be formed by using these microgels successfully. Properties, 

such as order and monodispersity, are mainly dependent on the crosslinking time and the  

molecular weight. 

2.2. Block Copolymers 

A block copolymer consists of two or more chemically different polymer segments or blocks 

connected by a covalent linkage. In recent years, several research teams [26,35,46,55–59] have 

reported such a regular hexagonal microporous structure film from rod-coil block copolymers, in 

which the rod blocks were mainly aromatic, conjugated rigid chains with small rod dimensions. It was 

indicated that polystyrene-co-poly(2,3,4,5,6-pentafluoro styrene) (PS-co-PPFS) copolymer porous 

films can be fabricated using CS2, CHCl3 and CH2Cl2 as solvent, respectively. However, compared to 

PS porous film, PS-co-PPFS copolymer porous films showed less ordered pore structures with two 

different average pore sizes. In addition, dendronized polymers are rodlike in shape, and the polymer 

backbone may form supramolecular helical structures containing a mixture of left- and right-handed 

helices in a condensed state due to the steric hindrance imposed by the bulky dendritic side groups 

attached to each repeating unit (Figure 3). Furthermore, dendronized polymers have larger rod 
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dimensions and are semi-rigid. As far as we know, the honeycomb-like films are fabricated from such 

a rod-coil block copolymer containing a dendronized block. Several influencing factors on the 

formation of the different honeycomb structures, such as the concentration of the copolymer solution, 

the relative humidity in the atmosphere and the substrates, were investigated schematically (Figure 3). 

This work raised the possibility that such structure could be formed in block copolymers and extended 

the family of source materials. Recently, novel triblock copolymers with self-complementary 

hydrogen-bonding units were synthesized by using reversible addition fragmentation transfer 

polymerization. These polymers formed noncovalently crosslinked polymer particles and showed an 

aggregation behavior by intermolecular and intramolecular interactions. Well-ordered hexagonal 

microstructures were prepared by the BF technique with these triblock copolymers [60]. 

Figure 3. SEM images of the honeycomb structure of films prepared at different relative 

humidities (RHs): (a) 95%; (b) 90%; (c) 85%; (d) 80%. Other conditions: block  

copolymer 1 concentration, 0.75 mg/mL; spreading volume, 40 μL; temperature, 18 °C. 

The bar is 10 μm [60]. 

 

2.3. Amphiphilic Polymer 

Amphiphilic polymers are composed of hydrophilic and hydrophobic parts. Formation of BFAs requires 

that the solutes can prevent water droplets from coalescing. Numerous studies have shown that this 

requirement can be met by using amphiphilic polymers [61,62]. Both amphiphilic polymers [32,63–65] 

and polymers with polar groups at the chain ends [25,26,66–68] tend to stabilize the condensing water 

droplets against coalescence (Figure 4). Shimomura et al. [47,69–73] demonstrated that amphiphilic 

polymers can be used as a second component or as additives to induce the formation of honeycomb 

structures with hydrophobic polymers. Fukuhira et al. [74,75] reported that phospholipids can be 

employed as biocompatible surfactants to fabricate biodegradable honeycomb patterned films, and 

they also proposed that interfacial tension between a water droplet and the polymer solution governs 

the formation of this patterned stucture. In addition, Nomura et al. [76] reported the fabrication of 

honeycomb-patterned thin films of PS and amphiphilic calixarene derivatives. 
  

a) b)

c) d)

a) b)

c) d)
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Figure 4. SEM images of the PS-b-PAA films prepared under different relative humidities. 

Solid substrate: glass slide; volume of PS-b-PAA/THF solution: 10 mL; solution 

concentration: 10 mg mL−1; relative humidity: (a) 60%; (b) 74%; (c) 80%; (d) 84%;  

(e) 94%. The structures of PS-b-PAA amphiphilic copolymer. x and y are the numbers of 

PS blocks and PAA blocks, respectively [32]. 

 

3. Formation of Hybrid Honeycomb Polymer Films 

In nature, the most significant hybrid system examples can be found [77–79]. For instance,  

bio-mineralization is the natural hybrid process in which living organisms assemble to form solid 

nanostructures from existing inorganic and organic compounds. The resulting organism is described as 

‘biohybrid’ in which biomolecules and inorganic components are intimately associated. The improved 

properties of the hybrid materials are not only a result of the simple combination of all the kinds of 

material intrinsic properties, but also the new dimensional arrangements of the different species. 

Inspired by the natural hybrid system, the concept of hybrid, which is using different chemical 

materials and assembling them to obtain a new one with enhanced properties, can be applied to many 

different fields. A simple mixture of organic and inorganic materials is not enough to obtain excellent 

properties, so they must be organized in a specific way. In the following sections, the fabrication of 

hybrid honeycomb structure polymer films through a simultaneous self-assembly of polymer and NPs, 

and the in situ formation of hybrid particles from precursor will be discussed [80]. 
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3.1. Self-Assembly of Polymer/Nanoparticle System 

The formation of honeycomb structure films by the BF method can be combined with the  

self-assembly of polymer/NPs mixtures at the polymer solution-water droplet interface. The complete 

evaporation of the solvent and water induces the polymer/NPs blends to assemble into the walls of an 

array of micron-sized spherical pores. Hult et al. [81] reported a honeycomb structural formation of the 

poly(9,9’-dihexyl-fluorene) (PDHF)/polystyrene-grafted silica NPs (Si-graft-PS) blend system using 

the BF method. Blends of Si-graft-PS NPs with 10–60 wt% PDHF were dissolved in CS2 and the 

solution was cast onto a glass substrate under humid conditions (66%–85% humidity). After the CS2 

and water droplets completely evaporated, highly ordered close-packed micro-porous films were 

obtained. With this concept, it is also possible to force the localization of amphiphilic zeolite crystals 

at the interface inside the pores. Vohra et al. [82] reported that a solution of poly[(9,9-dioctylfluorenyl-

2,7-diyl)-co-(1,4-benzo-(2,10,3)-thiadiazole)] (PF8BT) random copolymer containing a carboxylic  

acid-functionalized oxonine-loaded zeolite crystals (OxZLCOOH) was used to prepare hybrid 

honeycomb films successfully. Confocal fluorescence microscopy clearly showed two different 

emissions from the borders of the pores and the rest of the film, which illustrated that the amphiphilic 

crystals moved toward the water droplet interface to stabilize it. The results indicated that two levels of 

organization were obtained. One is a regular hexagonal array of micro-pores in a polymer film, the 

other is a selective positioning of the zeolite at the borders of the pores [82]. Since Boker et al. [83] 

reported that the pore surfaces could be decorated by cadmium selenide (CdSe) quantum dots (QDs), 

several other NPs such as Fe2O3 [84,85], Fe3O4 [85], gold [82–88] or silver [84,87] and CdSe/CdS 

QDs [85] have been used to create highly ordered hybrid honeycomb films. The introduction of 

nanoparticles, which showed interfacial activity is of benefit to the honeycomb film formation by 

stabilizing the water droplets during the BF process. Nevertheless, some developments have still to be 

designed to create highly structured superhydrophobic and conductive films. Ji et al. [89] presented an 

elegant way to tune the localization of silica NPs inside a highly structured honeycomb film. Both 

hydrophilic and hydrophobic SiO2 NPs were used to prepare honeycomb-structured hybrid films, 

which shows that a honeycomb patterned structure can be successfully formed regardless of particle 

wettability. The hydrophilic original NPs were basically adsorbed onto the pore surface while 

hydrophobic octadecyltrimethoxysilane-modified particles were assembled on the interior walls. Due 

to the hydrophilic nature of raw silica particles, they remained mainly located in the water phase during 

the early stage of the BF process. For the hydrophobic functionalized silica NPs, the precipitating 

polymer preferentially adsorbed around the droplet, hence resulting in localization of the hydrophobic 

NPs inside the walls. Moreover, organic electronic devices and photonic bandgap materials can be 

achieved by mixing organic conductive NPs such as carbon nanotubes (CNT) [87,90] or fullerene  

C60 [91] with conjugated polymers. Recently, our research team [92] also reported a kind of hybrid 

polymer ordered porous honeycomb structure film with enhanced mechanical strength and low density. 

The film was fabricated with polyimide as a basic structure and nano-clay as the enhanced layer in the 

honeycomb wall borders, and this mimics the multi-scale structure of natural honeycombs (Figure 5). 

After examining the mechanical properties of the honeycomb structures with different contents of clay, 

the results show that the hardness of the honeycomb films increased with increasing clay content, and 

reached a maximum value of 0.037 GPa, which was about five times that for the honeycomb film 
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without clay. Because of the existence of the porous structure, the bulk density of the multiscale  

bio-inspired honeycomb structure films decreased and the porosity increased by 45.6%. Therefore, this 

kind of honeycomb structure, with high mechanical strength and low density, is considered to have wide 

applications in the areas of tissue engineering, aeronautical materials, separation films in lithium-ion 

batteries, and so on. Thus, the self-organized hybrid honeycomb films showed the combined properties 

of both the NPs as well as the ordered structures. Such hybrid films can be used as new photonic band 

gap materials [85], light-emitting devices [82] or magnetic patterned surfaces [84,85]. 

Figure 5. SEM images of the prepared honeycomb structure films. From image (a–e) the 

contents of nanoclay in the polymer solution are 0 wt%, 0.3 wt%, 0.5 wt%, 0.75 wt%, and 

0.9 wt%, respectively; (f) High-magnification SEM image of; (e) showing the walls of the 

porous structure consisting of the clay layer with a thickness of ca. 50–80 nm and length of 

ca. 300–600 nm, marked by circles. From these figures, it can be seen that the pores  

have become more orderly and homogenous with the increase of nano-clay content  

(g) Hardness; and (h) modulus curves of polyimide-clay honeycomb structure films 

prepared with different clay content solution. Inset: Plot of the enlarged curves (with the 

nano-clay contents of 0 wt%, 0.3 wt%, 0.5 wt%, and 0.75 wt%) of (g) hardness;  

and (h) modulus with the range of 1000–2000 nm depth. From these figures, we know that 

the hardness and the Young’s modulus increased with increasing clay content [92]. 

 

3.2. In situ Formation of the Hybrid Honeycomb Films 

Mixtures of polymer and metallic precursors of NPs have been used to create micro-patterned 

honeycomb structure hybrid polymer films by the BF method. The polymer helps the formation of the 

honeycomb film with micron-sized pores and the walls are filled with the precursors of NPs. Thus, 

highly structured hybrid honeycomb polymer films can be created in situ. Li et al. [93] fabricated 

patterned “bead in pore” composite film with hemispherical or mushroom-like TiO2 microparticles 
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lying in the holes of a honeycomb-like polystyrene matrix (Figure 6) from the TiCl4/PS/CHCl3 solution 

via the BF method. The TiCl4 precursor was located inside the condensed water droplets which acted 

as “microreactors” for the TiCl4 hydrolysis. It is a very simple way to prepare hemispherical or 

mushroom-like TiO2 microparticles and to obtain the hexagonally nonclose-packed arrays of 

asymmetrical particles with or without a polymer matrix. This method is versatile in that other 

polymers also can be employed, and other hemispherical or mushroom-like particles may be obtained 

by using the corresponding precursors. It opens a new way to fabricate asymmetrical inorganic 

particles and their ordered arrays, which may find applications in photonic crystals, biomedicine, 

catalysis, and so on. The polymer-nanoparticle composite film can also be prepared by a one-pot 

reduction of metallic ions during the film formation as described by Jiang et al. [94]. In this work, by 

an in situ reduction method, the blended solution of silver NPs and polyurethane (PU) influenced the 

formation of regular pore arrays on the surface, which depends upon the humidity levels and the 

content of Ag NPs and polymer. The results showed that addition of Ag NPs promoted honeycomb 

structure formation under low humidity (<30% humidity). Chen et al. proposed an alternative strategy 

to fabricate functional honeycomb-patterned films with controllable pore sizes via BF based on 

ionomers [95], which are polymers with a small mole fraction of chemically bonded ionic moieties. In 

this case, well-defined poly(methyl methacrylate)/cadmium acrylate (PMMA/Cd(AA)2) ionomers were 

synthesized via radical polymerization and Cd(AA)2 (two acrylates bonded to one Cd2+) acted as a 

cross-linker. Subsequently, ordered porous films were successfully deposited on glass substrates from 

the ionomer solutions under a humid environment. The pore sizes of these films could be simply 

adjusted by changing the experimental parameters such as the concentrations of the ionomer solutions 

or the molar ratios of monomers. Moreover, depending on the chemically bonded Cd2+ ions in the 

polymer matrixes, in situ generation of CdS NPs was possible by exposing the chloroform solution of 

PMMA/Cd(AA)2 to a H2S atmosphere. Evaporation of the solvent yielded honeycomb-patterned 

PMMA/CdS QDs-polymer films which showed favorable fluorescence in the absence of quenching, 

characteristics of the good dispersion of the NPs in the polymer film.  

Figure 6. SEM images of the obtained composite film from the TiCl4/PS/CHCl3 solution 

with different concentrations of TiCl4: (a) 0.3% v/v; and (b) 0.4% v/v (PS, 1 wt %, relative 

humidity, 30%). Insets in (a) and (b) are the magnified mushroom-like particles, 

respectively. Scale bar = 0.5 μm [93].  

 
  

b)a) b)a)
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4. Formation of Small Organic Molecular Honeycomb Patterned Films 

Formation of macroporous honeycomb structures using polymers and hybrids have been well 

studied. However, there are few studies about the fabrication of honeycomb structures using small 

molecules as building blocks by the BF method. Kim et al. [96] first reported the application of the BF 

method to a small molecule. The photoresponsive organogelator self-assembled into supramolecular 

fibrillar networks and further a hierarchically ordered honeycomb structure. Babu et al. [97] also 

reported the formation of hierarchical macroporous structures from an amino acid linked p-conjugated 

organogelator. Recently, a new organogelator was synthesized and large-scale ordered honeycomb 

patterns were also observed [98]. Furthermore, we reported the successful fabrication of honeycomb 

structure by the BF process from derivatives of the small molecule tetraphenylethene (TPE) (Figure 7), 

showing an extraordinary phenomenon of aggregation-induced emission (AIE) [99]. In this process, 

TPE derivatives with the twist and non-planar substituted groups are chosen. TPE units become 

amorphous more easily than crystalline, which is critical for gaining viscosity and stabilizing the water 

droplets during evaporation. The fluorescence data including micrographs and spectra indicate that 

these honeycomb structures are highly emissive due to the AIE feature of TPE derivatives. These 

structures lead to a small red-shift in photoluminescence compared to the smooth film. The success of 

fabricating the honeycomb structure of TPE derivatives may, for certain applications, represent an 

advance with respect to the more commonly used polymers, due to the inherent drawbacks of polymers 

such as phase separation and nonreproducibility of molecular weight distribution from batch to batch. 

These findings open up a new way for the development of honeycomb structure materials with small 

organic molecules.  

Figure 7. The fluorescent images of the as-prepared honeycomb structure films from  

(a) TPE-1; (b) TPE-2; and (c) TPE-3, The insets are the corresponding photographs of the 

films; excitation: 405 nm; (d) molecular structures of tetraphenylethene derivatives used in 

experiments [99]. 

 

d)d)
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5. Formation of Organometallic and Ceramic Honeycomb Structures 

The structure of organometallic polymers can be optimized by employing different monomers and 

through polymer blending, which give them unique solubility and fusibility over classical ceramic 

materials. Thus organometallic polymers are suitable candidates as precursors for ceramics, such as 

SiC, Si3N4, AIN, BN or TiN. Pyrolysis can transform these polymers into the ceramic state. When the 

organometallic PPE (Figure 8c) was cast from CS2, a well-shaped honeycomb structure film formed 

(Figure 8) [100–102]. Due to the high content of silicon, carbon, and cobalt, BFAs of PPE do not melt, 

but form a highly crosslinked and insoluble ceramic material upon heating to 600 °C. In this case, the 

formed material is not just organic but ceramic in nature owing to the higher pyrolysis temperature. 

The ceramic yields are high: 88% for pyrolysis under nitrogen and 97% for pyrolysis under air. 

Electron-dispersive X-ray scattering gives the elemental composition of these ceramics. When the 

pyrolysis was performed under nitrogen a C, Si, Co ceramic formed, while during pyrolysis under air a 

Si, Co, O ceramic was obtained in which all of the carbon was burned out. The originally 

interconnected holes in the honeycomb structure collapsed into ceramic wells. Heating a thermoset 

material should enable fabrication of other permanent structures. When a honeycomb structure of 

carboxylated nitrocellulose, cast from amyl acetate, was treated with NiII acetate or CoII acetate in 

water, clean ion exchange took place without disruption of the array. Pyrolysis of the cobalt- or  

nickel-containing bubble layer at 700 °C gave flat honeycomb structures of 60 nm in height, indicating 

a 25% ceramic yield. The metallized carbon networks show interesting conducting properties [103].  

Ma et al. [104] also reported a similar facile methodology to prepare highly ordered ceramic 

micropatterns on solid substrates by pyrolyzing UV cross-linked polymer microporous films formed 

by a polydimethylsiloxane-b-polystyrene block copolymer and tetrabutyl titanate Ti(OC4H9)4, as a 

functional precursor of TiO2. 

Figure 8. Bubble arrays from polymer PPE (a) before; and (b) after pyrolysis at 500 °C 

under nitrogen. The inset in (a) shows the hexagonal diffraction pattern of the array [100]. 

 

6. Formation of Metal and Metal Oxide Nanoparticle Honeycomb Structure Films 

6.1. Formation of Metal Nanoparticle Honeycomb Structure Films 

Dodecanethiol-coated gold NPs cast from toluene in moist air can form regular honeycomb 

structures. When the casting was performed at high air velocities with a horizontally tilted nozzle, the 

formed bubble arrays were not spherical and hexagonally ordered but were elliptically distorted, and 

a) b) c)a) b) c)a) b) c)
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showed more of a brick-wall-type rectangular arrangement [105]. Korgel et al. [38,106] have 

investigated the BF formation of dodecanethiol or perfluoro-thiol stabilized gold NPs (5 nm) cast from 

Freon-type solvents or CS2. Casting of trioctylphosphine-stabilized InMnAs NPs from chloroform was 

explored as well. Hexagonal bubble arrays with bubble dimensions from 350 nm to 5 μm formed upon 

evaporation in a humid environment. Korgel investigated the mechanism of bubble formation in these 

systems and found that the gold nanocrystals do not reduce the interfacial tension between Freon and 

water [38]. However, poorly solvated and heavily washed gold NPs reduce the water/nanoparticle 

contact angle from 94° to 83° and modulate the Freon/water contact angle. In this case, the Freon/water 

contact angle decreased from >150° to 112°, suggesting that the NPs stabilize a water-in-Freon 

“Pickering” emulsion [107]. The decreased contact angle leads directly to the observed large-area, 

hexagonally ordered preparations of the droplet rafts. When such gold hexagonal arrays were 

pyrolyzed at 400 °C, the organic ligand was burned off and gold-honeycomb arrays were obtained 

(Figure 9) [106]. Besides the gold NPs, heptacosafluoro-pentadecane-1-thiol stabilized silver NPs  

(2 nm) can also form highly ordered bubble arrays whose diameter is 2–3 μm [108]. The polymer’s 

concentration becomes sufficiently high due to evaporation of the solvent. This arrangement is fixed 

and the immobilized NPs stay at the interface. The phenomenon of interfacial segregation of NPs by 

immiscible liquids had been described earlier and was used as a guiding principle to construct these 

hierarchically self-assembled BFAs [107,109]. 

Figure 9. SEM image of a 5.36 g/L Au NPs deposited sample annealed at 400 °C for  

60 min. The inset shows a magnified view of one of the hexagons [106]. 

 

6.2. Formation of Metal Oxide Nanoparticles Honeycomb Structure Film 

As mentioned above, Karthaus et al. reported that a patterned zinc oxide (ZnO) containing polymer 

honeycomb film was achieved using ZnO NPs precursor and a poly(styrene-co-maleic anhydride)  

(PS-co-PMAh) by the BF method [110]. They also described the method to create a pure ZnO 

honeycomb film with photocatalytic properties. An amphiphilic polyion complex (PIC) was first 

prepared by mixing equimolar amounts of an aqueous solution of poly(styrene sodium sulfonate) 

(PSSNa) and a vesicular emulsion of bishexadecyldimethyl ammonium bromide. The PIC was further 

mixed with zinc complex, acetylacetonate hexahydrate Zn(acac)2, in various ratios. The 5:1 mixing 

ratio of Zn(acac)2:PIC produced stable honeycomb structures after pyrolysis. The pyrolysis obviously 

led to shrinkage of the film, but the integrity of the in-plane structure of the honeycomb film was well 
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preserved. The organic material in the rim decomposed, and thus the rim got thinner but the pore-pore 

distance remained similar. Zhao et al. used the same process to introduce a honeycomb structured 

hybrid film into inorganic photoactive TiO2 film [111]. In their study, a solution of PS with titanium 

tetraisopropoxide (TTIP) as TiO2 precursor was prepared. They demonstrated a simple and effective 

vapor phase hydrothermal modification method (calcination at 550 °C for 2 h) which is capable of 

transforming a honeycomb structured hybrid film into a photoactive TiO2 film without dismantling the 

originally templated three-dimensional structure (Figure 10). The preservation of the organic/inorganic 

hybrid film structure during its conversion to pure inorganic film by means of pyrolysis was ensured 

further [111]. 

Li et al. [48,112] proposed a very interesting way to create a hierarchical structured honeycomb 

hybrid film. A classical procedure was used to prepare a honeycomb structure film from an 

amphiphilic diblock copolymer, polystyrene-b-poly(acrylic acid) (PS-b-PAA) solution in CS2, 

containing ferrocene or zinc acetyl acetaonate (Zn(acct)2) as chemical precursors of ZnO NPs. This 

film’s formation was followed by a photochemical cross-linking of the copolymer under UV light. 

After 4 h of UV exposure, the cross-linked film was heated to 450 °C within 2 h and held for another  

5 h under air atmosphere. During the pyrolysis, the functional precursor turned into oxide and replaced 

the polymer skeleton, leading to functional inorganic patterns (ZnO). Indeed, such functional inorganic 

honeycomb films were used to grow ZnO nanorod arrays from ferrocene (using acetylene flow at  

750 °C) and zinc precursors, respectively (Figure 10) [48]. In addition, Wu et al. [40,113–118] have 

shown that surfactant-encapsulated polyoxometalate (POM) clusters are a new type of building block for 

fabrication of honeycomb structures. A series of hydrophobic surfactant-encapsulated clusters prepared 

from POM with different compositions, shapes, and sizes, are able to self-assemble into ordered 

honeycomb structures [113,117]. Sakatani et al. [119] reported the fabrication of macroporous films 

using surfactant-modified NPs (SiO2, TiO2, Co, and CdS) based on the BF method. Hierarchically 

porous materials made of metallic oxides can also be obtained through calcinations of the macroporous 

films. Xu et al. [120] reported that hierarchically ordered two-dimensional architectures can be 

prepared from various nanocrystal building blocks.  

Figure 10. (a) SEM image of hydrothermal ZnO nanorod arrays grown from Zn(acct)2 

honeycomb structured pattern.[48]; (b) SEM image of the PS/TTIP as TiO2 precursor 

honeycomb structured film after 24 h UV light treatment and then calcined at 550 °C [111]. 

 
  

a) b)a) b)
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7. Other films including BFAs from DNA, Graphene and even Living Bacteria 

Besides the above-mentioned, some special material honeycomb structure films were also reported. 

Wu et al. [121] reported the self organization of DNA into honeycomb structures on solid substrates by 

a simple solution casting of DNA-ditetradecyldimethylammonium (DTDA) complex at high relative 

humidity (Figure 11a,b). This work investigated the effects of the substrate type, DNA-DTDA 

complex concentration, solvent type, and two different DNA-surfactant complexes on the 

morphologies of the microporous films. Furthermore, the dye molecule rhodamine B (RhB) was 

loaded into the DNA-DTDA complex to obtain a fluorescent honeycomb film. The present research 

gives a convenient route to fabricate DNA-based honeycomb films, establishes the multicomponent 

self-assembly in honeycomb films to endow the DNA-surfactant complex with fluorescent properties, 

and provides the films with increased functionality. Nakashima et al. [122] prepared the graphene 

honeycomb films self-assembled on glass substrates from the graphene oxide (GO) specified organic 

solution. The soluble GO materials in many organic solvents including low dielectrically nonpolar 

organic solvents such as toluene and hexane can be easily obtained with the aid of 

tridodecylmethylammonium chloride (TDMAC), and this would greatly extend the fundamental 

research and novel applications of graphene materials. Under high relative humidity conditions, the 

cast films from the GO complex in toluene on the glass substrates have honeycomb super-structures 

with ordered macropores (Figure 11c–d), which are very useful in many areas of nanoscience and 

technology, including nanoelectronics, nanodevices, catalysts, and sensors, etc. In addition, 

Shimomura attempted to fabricate honeycomb-patterned bacterial cellulose (BC) by controlling the 

bacterial movement using an agarose film scaffold with honeycomb-patterned grooves (concave  

type) [123]. The patterned agarose film was prepared by three steps. The first was transcription of a 

honeycomb-patterned polycaprolactone film template with polydimethyl siloxane. When the bacteria 

were cultured on the scaffold under atmospheric conditions, only bacterial proliferation was observed. 

Honeycomb-patterned BC was obtained when cultured under a humid CO2 atmosphere. Electron 

diffraction and polarized microscopic observation showed that the patterned BC is comprised of the 

well defined cellulose. In another attempt to fabricate honeycomb-patterned BC, the bacteria were 

cultured on the patterned cellulose and agarose film with convex type of honeycomb. This culture 

yielded no honeycomb-patterned BC. Therefore, concave type honeycomb scaffold is more suitable to 

fabricate honeycomb-patterned BC. 
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