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Abstract

test for non-parametric data.

Background: Brain edema as a result of secondary injury following traumatic brain injury (TBI) is a major clinical
concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral
tissue, but their role in the pathology following TBI remains unclear.

Methods: In this study we used controlled cortical impact (CCl) as a model for TBI and investigated the role of
neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1
antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-
brain barrier function was assessed by Evan’s blue dye extravasation, and analysis of brain water content was used
as a measurement of brain edema formation (24 and 48 hours after CCl). Lesion volume was measured 7 and 14
days after CCl. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24
hours after injury, and microglial/macrophage activation 7 days after CCl. Data were analyzed using Mann-Whitney

Results: Neutrophil depletion did not significantly affect Evan’s blue extravasation at any time-point after CCl.
However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCl
indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and
14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/
macrophages 7 days after CCl, and of cleaved caspase-3 positive cells 24 h after injury.

Conclusion: Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of
large proteins, as well as contributing to cell death and tissue loss following TBI in mice.

Keywords: Neutrophil, traumatic brain injury, brain edema, controlled cortical impact, neuroprotection, blood-
brain-barrier, cell death, microglia, neutrophil-depletion, mouse.

Background

The pathological response following traumatic brain
injury (TBI) consists of the primary and secondary injury.
The primary injury results in death of neurons and glial
cells and widespread axonal damage at the moment of
impact or acceleration/deceleration. This primary injury
initiates a complex secondary injury cascade that includes
intracranial inflammation and edema formation. Due to
the non-expandable skull compartment, brain edema
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leads to increased intracranial pressure which in turn
causes reduced perfusion and oxygenation of the tissue
[1]. After a few days or weeks, the secondary injury cas-
cade has left TBI patients with a much larger brain lesion
and contributed to mortality among patients who sur-
vived the initial trauma [2].

Recruitment of polymorphonuclear leukocytes (PMN),
specifically neutrophil granulocytes, is characteristic of
the early inflammatory response following human TBI
[3]. Neutrophil recruitment has been shown to increase
over the first 24 hours after experimental TBI [4-6], and
is dependent on both leukocyte CD11/CD18 [7] and
endothelial intercellular adhesion molecule-1 (ICAM-1)
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[8]. It is well documented that neutrophils trigger altera-
tions in vascular permeability leading to plasma leakage
and edema formation in acute inflammation in peripheral
tissue [9,10]. More specifically, this relies on neutrophil
adhesion to the endothelial lining via B,-integrins since
functional blockade of the integrin adhesion molecule
CD11/CD18 abolishes not only recruitment but also
PMN-dependent plasma leakage [11]. The involvement
of neutrophils in brain edema formation following TBI
remains obscure and evidence exists both to support
[5,12], and refute their contribution to blood-brain bar-
rier (BBB) disruption [4,13,14].

When neutrophils are recruited to a site of injury or
infection they release a plethora of mediators such as
reactive oxygen species (ROS), proteases and pro-inflam-
matory cytokines, all of which have the potential to
adversely affect the integrity of the BBB [15]. The release
of elastase and matrix metalloproteases from neutrophils
has been shown to increase edema formation in animal
models of stroke [16,17]. In accordance, depletion of neu-
trophils was found to result in an attenuated leakage of
proteins across BBB following stroke [18]. Furthermore,
cerebral PMN accumulation was correlated with
increased intracranial pressure and brain water content
after cryogenic brain injury [19].

Although several studies have suggested an important
role for neutrophils in edema formation in the central
nervous system (CNS) following stroke [20], the present
study aims at clarifying the disputed role of neutrophils
following TBI. Using the controlled cortical impact (CCI)
model, which results in an ipsilateral cortical contusion
and cavitation as well as scattered neuronal loss in the
underlying hippocampus [21,22], we investigated edema
formation in mice with normal levels of neutrophils and
in mice that were depleted of neutrophils. In addition,
the effects of induced neutropenia on brain tissue loss,
apoptosis and microglia/macrophage activation after TBI
were evaluated.

Methods

Animals and treatment

Male C57Bl/6 mice (Scanbur, Stockholm, Sweden) were
kept at 24°C, with 12 h light-dark cycles, and food and
water ad libitum. Experiments were approved by the
regional ethical committee for animal experimentation
(reference number: C66/9) and followed the rules and
regulations of the Swedish Agricultural Board. Neutro-
phil depletion (PMN depl) was achieved by i.p. injection
of anti-Grl mAb RB6-8C5 (100 pg, BioXCell, West Leba-
non, USA) 12 hours prior to injury and again 12 hours
after [23]. The antibody was administered i.p. to obtain a
sustained depletion over the first 48 hours of the experi-
ment. Differential white blood cell count using Tiirk
staining in a Biirker chamber was performed at the time
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of injury to confirm that the PMN depletion was success-
ful. The experiments were set up according to Table 1.
The animals experienced a small weight loss the day after
TBI, but started to gain weight day 3 after injury and had
recovered to original weight at day 7. There was no sig-
nificant difference between the treatment groups.

Controlled Cortical Impact (CCl)

CClI is one of the most widely used and characterized
models of TBI in rodents [21,24]. Anesthesia was induced
with inhalation of 4% isoflurane in air. During surgery,
general anesthesia was maintained with a mix of isoflur-
ane (1.4%) and N,O/O, (70/30%), delivered through a
nose cone. Mice were placed in a stereotaxic frame and
core temperature was maintained at 37°C using a heating
pad controlled by a rectal thermometer. Local anesthesia
(Marcain, AstraZeneca, Sweden) was applied to the scalp
and the skull was exposed by an incision along the mid-
line. A craniotomy (4 mm diameter) was made over the
right parietal cortex between the sutures of bregma and
lambda using a dental drill. The cortical contusion was
delivered by a 2.5 mm diameter piston set to an impact
depth of 0.5 mm from a pneumatically driven CCI device
(VCU Biomedical Engineering Facility, Richmond, VA,
USA). The velocity of the piston was set to 2.8 m/s. The
bone fragment was put back in place, secured with tissue
adhesive (Histoacryl, Braun, Germany), and the scalp
sutured. Naive mice did not undergo any surgical inter-
vention or anesthesia. Animals were sacrificed at indi-
cated time points (Table 1) with an overdose of
pentobarbital (300 mg/kg, Apoteket, Sweden).

Brain water content

Immediately following sacrifice with pentobarbital, the
brain was divided along the midline and the contralat-
eral and ipsilateral tissue was weighed immediately fol-
lowing removal to obtain wet weight (WW). The tissue
was then dried at 60°C for 72 hours and weighed to
obtain dry weight (DW). Water content was calculated
as a percentage of wet weight; % water content = (WW-
DW)/WW x 100.

Evans blue dye extravasation

Mice were injected with 100 pl Evans blue (EB, 2% in
PBS, Sigma) through the tail vein at indicated times
(Table 1). Evans blue dye injected intravenously binds
instantaneously to albumin and other plasma proteins
and serves as a marker for plasma exudation. Animals
were sacrificed as described above and perfused with
heparinized saline. Brain tissue from the contra- and
ipsilateral side was analyzed. The tissue samples were
snap frozen in -55°C isopentane and freeze-dried.
Freeze-dried specimens were homogenized in forma-
mide (1:20 w/v) and incubated at 60°C overnight. The
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Table 1 Experimental set up.
Sample size Time of sacrifice Analysis
Naive Naive + PMN depletion CCI CCI + PMN depletion
8 5 24 hours Evan’s blue extraction (EB injection given 4 hours after CCl)
7 7 24 hours Cleaved caspase-3
Neutrophil accumulation
6 6 8 8 24 hours Brain water content
2 3 5 6 48 hours Evan’s blue extraction (EB injection given 24 hours after CCl)
9 9 48 hours Brain water content
5 5 7 days Microglial/macrophage activation
Brain tissue loss
5 5 14 days Brain tissue loss

homogenate was centrifuged at 14000 rpm for 30 min
and the EB content in the supernatant was determined
spectrophotometrically at 620 nm (Titertek Multiscan).

Lesion and Hemispheric Volumes

Mice that were sacrificed one (n = 5+5) or two (n = 5
+5) weeks after injury were transcardially perfused with
heparinized isotonic saline (1000 U/l) and then with
phosphate-buffered 4% formaldehyde (Histolab AB,
Gothenburg, Sweden). Following rapid removal the
brain was placed in 4% formaldehyde in PBS at 4°C for
24 hours and 30% w/v sucrose at 4°C for 72 hours. It
was then snap frozen in -55°C isopentane. Seven sec-
tions from bregma levels -1 to -4 mm, 500 pm apart,
were stained with Mayer’s Hematoxylin and Eosin (His-
tolab) and, using a digital camera (mcmb5c; Zeiss Gmbh),
photographed in a stereomicroscope (Zeiss Stemi 2000-
C; Zeiss Gmbh). The hemispherical volume and cortical
lesion volume were calculated using Image] (NIH,
Bethesda, MD, USA.). Volumes (n) were calculated
using the formula: X, _ (A, + A, . ;) x dI2, where A
is the hemispherical or cortical lesion area and d the
distance between sections [25]. Tissue loss of the ipsilat-
eral (injured) hemisphere was calculated as a percentage
of the contralateral (uninjured) hemispheric volume.

Immunohistochemistry

Immunohistochemistry was used to determine parenchy-
mal cell apoptosis (cleaved caspase-3, n = 7+7) and neu-
trophil infiltration (Gr-1, n = 7+7) 24 hours after CCI,
and microglial/macrophage activation (Mac-2 expression,
n = 5+5) 7 days after CCI. Brains were fixed as described
above and cryosectioned to 12 pum thick coronal sections,
thawed and fixed in acetone for 1 min. Normal horse
serum (10%) in PBS with 0.1% Triton-X-100 was used to
block unspecific binding. Four sections, from different
bregma levels were incubated with antibodies to cleaved
caspase-3 (Cell Signaling Technology), Gr-1 (Abcam,
Cambridge, U.K.) or Mac-2 (Cedarlane Laboratories, Bur-
lington, ON, Canada) in PBS with 0.3% Triton X-100

(1:200) overnight. Following washing with PBS for 3 x 5
min, sections were incubated with an AlexaFluor-conju-
gated rabbit-anti-rat secondary antibody (Molecular
Probes, Eugene, OR, USA, 1:200) in PBS with 0.1% Tri-
ton-X-100 for 30 min. Slides were washed with PBS and
mounted using Vectashield with DAPI (Vector labora-
tories, Burlingame, CA, USA) as a nuclear marker. A
fluorescence microscope system (Zeiss Axiovision, Zeiss
Gmbh, Gottingen, Germany) was used to capture immu-
nohistochemical images of cleaved caspase-3, Gr-1 and
Mac-2 staining at 100x magnification. Images from
bregma levels -1.5, -2.0, -2.5 and -3.0 mm were evaluated
using Axiovision image analysis software. Three regions
of interest (600 um x 800 pm) in the cortex and one in
the dentate gyrus of the hippocampus were evaluated
bilaterally in each animal (Figure 1).

Statistics

Statistical evaluations were made using Statistica (StatSoft,
Tulsa, OK, USA). After testing the data for normality, the
non-parametric Mann-Whitney test was used. Results are
presented as means + SEM.

Results

Controlled cortical impact causes PMN accumulation in
cortical tissue

Controlled cortical impact (CCI) was used as a model for
TBI to investigate the role of neutrophils in the injury
response. To confirm that the injury resulted in recruit-
ment of PMN, brain sections taken 24 hours after injury
were stained with an antibody against the Gr-1 antigen. In
line with previous research [3-6], TBI resulted in accumu-
lation of PMN in the injured cortex (174.7 + 10.7 cells/
field, Figure 2). As expected, this response was significantly
reduced (p < 0.05) in the neutropenic animals (25.5 + 4.7
cells/ field). In contrast to what was observed in the cor-
tex, there was no obvious neutrophil recruitment to the
hippocampus (1.2 + 0.47 cells/ field and 2 + 0.82 cells/
field for neutropenic mice and control animals, respec-
tively). In the contralateral cortex only a few Gr-1 positive



Kenne et al. Journal of Neuroinflammation 2012, 9:17
http://www.jneuroinflammation.com/content/9/1/17

Page 4 of 11

s

o a

@
<€

Figure 1 Three regions (600 x 800 pum) in the cortex and one in the dentate gyrus of the hippocampus were selected for counting of
apoptotic cells and activated microglia/macrophages. The arrow indicates the presence of the contusion.
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cells were found (2.3 + 0.09 cells/ field for neutropenic
mice and 3.2 + 0.24 cells/ field for control animals).

Brain edema following TBI is neutrophil-dependent

We used two methods to determine edema formation 24
and 48 hours following TBI. These time points were cho-
sen as brain edema following CCI peaks during the first
two days [26]. In addition, PMN accumulation following
CCI is known to take place 24 and 48 hours after injury
[6,22,27]. First, water content in the injured brain was
used as a measure of edema after CCI. As expected,
water content was significantly higher (p < 0.05) in the
ipsilateral side of the brain in mice that received TBI
compared to naive animals (Figure 3A). Neutrophil
depletion resulted in significantly decreased (p < 0.05)
water content in the ipsilateral hemisphere compared to
untreated TBI animals both at 24 h (78.2% + 0.21% vs.
79.1% + 0.22%) and 48 h (78.8% + 0.21% vs. 79.9% +
0.53%) after injury. No statistical difference was observed
in the contralateral hemisphere.

To further examine the effects of neutrophil depletion
on plasma exudation we used Evan’s blue dye as a marker
for albumin extravasation (Figure 3C). Baseline leakage of
EB was determined in naive mice and there was no

difference between neutropenic and intact mice (0.0325
AU + 0.0013 AU vs. 0.0308 AU + 0.0030 AU). CCI
resulted in a significant (p < 0.05) increased EB extravasa-
tion in the injured area compared to the contralateral side
or to naive animals at either time point after injury (Figure
3B). However, depletion of PMN did not result in attenu-
ated levels of extracted EB compared to control mice at 24
hours (0.1706 AU + 0.0269 AU vs. 0.1875 AU + 0.0107
AU), or 48 hours (0.0325 AU + 0.0013 AU vs. 0.0308
AU =+ 0.0003 AU). Taken together, these data indicate that
PMN depletion counteracts the increase in brain water
content, but does not protect from BBB breakdown fol-
lowing CCL

Neutrophil depletion attenuates tissue loss following TBI

To determine the impact of PMN depletion during CCI
on injury size later in the disease process, we analyzed
lesion volume (Figure 4 A and 4B) and tissue loss, in
the injured hemisphere in comparison to the uninjured
hemisphere (Figure 4 C and 4D. Induced neutropenia
resulted in significantly reduced (p < 0.05) lesion volume
two weeks after injury (3.626 + 0.22 mm?® for control
and 2.488 + 0.23 mm?® for PMN depleted mice). There
was a tendency for an attenuated lesion volume also at
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Figure 2 Neutrophil accumulation in the injured cortex 24 hours after injury is dramatically reduced in neutropenic mice. A)
Micrographs of Gr-1 positive cells (green) 24 hours after CCl in the cortex and hippocampus. Blue represents nuclear staining using DAPI.
Scalebar is 100 pm. B) Quantification of Gr-1 positive cells in the cortex and hippocampus of intact (black bars, n = 7) and PMN-depleted (open
bars, n = 7) mice. * indicates significant difference at p < 0.05. Values are mean + SEM.
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one week after injury in the PMN depleted mice,
although the difference was not significant (3.646 + 0.58
mm? for control and 2.208 + 0.08 mm?® for PMN
depleted mice) Furthermore, in neutrophil-depleted
mice there was a significant reduction (p < 0.05) of ipsi-
lateral hemispheric tissue loss compared to injured con-
trol mice both at seven (5.9 + 0.85% vs. 10.3 + 1.61%)
and fourteen (10.9 + 1.1% vs. 17.2 + 1.7%) days after
injury (Figure 4 A and 4B). These data strongly suggests
that neutrophil depletion at the time of injury protects
from brain tissue damage.

Neutrophil depletion reduces apoptosis 24 h after injury

Apoptotic cells, as determined by cleaved caspase-3
staining, were assessed in the cortex and the dentate
gyrus of the hippocampus 24 hours after TBI (Figure 5).
As expected, the hemisphere ipsilateral to the injury
showed an increased number of apoptotic cells, both in
cortex and hippocampus, compared to the contralateral
side. Neutropenia significantly reduced (p < 0.05) the
number of cleaved caspase-3 positive cells in the cortex
(187.3 + 37.4 cells/ field vs. 293.2 + 28 cells/ field), but

not in the dentate gyrus (41.1 + 9.5 cells/ field vs. 50.2 +
9.7 cells/ field), indicating that the accumulation of PMN
in the cortex contributes to caspase-3 activation.

Microglial/macrophage activation is attenuated in
neutrophil-depleted mice

In order to investigate the effect of neutropenia on micro-
glial/macrophage activation, immunostaining with specific
antibodies to Mac-2 was performed on brain sections
from animals 7 days post injury, based on previous time
course studies [22]. The hilus of the dentate gyrus was
chosen to evaluate the injury to the hippocampus, as in
our hands this area shows the most change after CCI.
Mac-2 positive cells in the ipsilateral hippocampus and
cortex were assessed using a fluorescence microscope
(Figure 6A). There was a large number of activated micro-
glia/macrophages in the cortex after TBI, which was sig-
nificantly (p < 0.05) reduced in the PMN-depleted group
(99.7 + 14 cells/ field vs. 144.8 + 15 cells/ field; Figure 6B).
On the other hand, counting the number of positive cells
revealed that there was only a small number of activated
microglia/macrophages in the dentate gyrus of the
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Figure 3 Brain water content but not macromolecule extravasation following TBI is affected by neutrophil depletion. A) Brain water
content in the contralateral and ipsilateral areas 24 and 48 hours after CCl in intact (black bars, 24 hrs: n = 8, 48 hrs: n = 9) and PMN-depleted
(open bars, 24 hrs: n = 8, 48 hrs: n = 9) mice. Values for naive mice are provided for comparison. B) Evan’s blue content in the contralateral and
ipsilateral sides 24 and 48 hours after CCl in intact (black bars, 24 hrs: n = 8, 48 hrs: n = 5) and PMN-depleted (open bars, 24 hrs: n = 5, 48 hrs:
n = 6) mice. Dashed line represents baseline EB leakage in naive mice 24 hours after injury for comparison. * indicates significant difference at p
< 0.05. Values are mean + SEM. C) Representative image of EB leakage 24 hours following CCl.
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hippocampus (Figure 6B), 10.3 + 3.2 cells/ field for neutro-
penic mice and 10.5 + 2.2 cells/ field for control animals.
These data are in line with a previous study of neutrophil
depletion in a model of intracerebral hemorrhage (ICH)
[18].

Discussion

Cerebral edema and secondary injury are feared compli-
cations of TBI. Recruitment of neutrophil granulocytes
is known to cause increased vascular permeability and
edema formation in peripheral tissue. However, the con-
nection in the CNS between neutrophil emigration and

edema formation is not clear. Therefore, this study used
antibody-induced neutrophil depletion to investigate the
role of neutrophils in brain edema formation following
CCI in mice. As additional endpoint parameters, we
looked at the brain tissue loss, microglia/macrophage
activation and apoptosis of cells in the injured area.
Cerebral edema is a consequence of structural and
functional changes of the BBB, the microcirculation or of
parenchymal cell volume regulation, and can be classified
as cytotoxic or vasogenic. Cytotoxic edema occurs as a
result of intracellular swelling of glia and neurons and
may arise independently of the integrity of the BBB, as a



Kenne et al. Journal of Neuroinflammation 2012, 9:17
http://www.jneuroinflammation.com/content/9/1/17

Page 7 of 11

Cortex

Hippocampus

indicates significant difference at p < 0.05. Values are mean + SEM.

CCl + PMN depletion B

Figure 4 Tissue loss following TBI is attenuated in neutrophil-depleted mice. Top panels represent the lesion volume (A) and hemispheric
tissue loss (B) one and two weeks after TBI in mice with intact PMN (black bars, n = 5) and mice that were rendered neutropenic (open bars, n
= 5). The bottom panel () displays representative images of Mayer's Hematoxylin and Eosin stained brain sections that were used for analyses. *
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result of energy metabolic crisis and perturbation of ion
homeostasis. A disruption of the BBB or disturbances in
the microcirculation on the other hand results in vaso-
genic edema [1]. Increased brain water content is an
important clinical feature of TBI potentially resulting in
raised intracranial pressure, lowered cerebral perfusion
pressure and eventually reduced cerebral blood flow with
impaired glucose and oxygen delivery to the brain tissue
[1]. Brain water content has been shown to increase fol-
lowing TBI in rodents and remain elevated for up to 7
days [28]. As PMN do not seem to mediate the early BBB
breakdown, during the first 4 hours, after trauma [29],
we investigated the effects of PMN depletion on cerebral
edema formation 24 and 48 hours after injury. By mea-
suring brain water content we show that the edema after
CClI is attenuated in mice that are depleted of neutro-
phils. This attenuation was maintained for at least 48
hours after injury. In order to assess whether disruption
of the BBB and plasma extravasation (vasogenic edema)
contributed to the increased brain water content during
the first days after injury, we used Evan’s blue as a marker
for macromolecule extravasation. However, our results
suggest that the enhanced macromolecular leakage across

the BBB 24 or 48 h after injury occurred independently of
neutrophils. It is known that neutrophil-adhesion to
postcapillary venules in peripheral tissue results in
decreased endothelial barrier function and extravasation
of macromolecules [10]. Our results indicate that the
BBB might respond differently to neutrophil adhesion.
This difference could be explained by the morphology,
biochemistry and function of the BBB that are distinct
from that of the endothelial lining in peripheral tissue
[30]. Another possibility is that the mechanical trauma
from the CCI results in a breakdown of the BBB that is
independent of PMN recruitment. Thus, the strong
mechanical impact on the blood vessels and the hemor-
rhage formed will mask any PMN-dependent leakage
that is evident in response to a more diffuse injury
[5,12,31]. Moreover, cerebral edema and macromolecular
leakage have been shown not to be temporally correlated
[1] indicating that BBB breakdown is not the only factor
leading to edema following TBI. For example, osmotic
brain edema caused by imbalances between blood and
brain tissue, e.g. hyponatremia, is a common feature of
clinical TBI [1]. It is therefore possible that the edema
formation may increase without EB leakage being
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Figure 5 Neutrophil depletion attenuates the number of cleaved caspase-3 positive cells. A) Microphotographs of cleaved caspase-3
positive cells (green) 24 hours after CCl in the cortex and hippocampus. DAPI was used for nuclear staining (blue). Scalebar is 100 pm. B)
Quantification of cleaved caspase-3 positive cells in cortex and hippocampus of intact (black bars, n = 7) and PMN-depleted (open bars, n = 7)
mice. * indicates significant difference at p < 0.05. Values are mean + SEM.
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affected [32], perhaps explaining the results of the pre-
sent study.

Possible mechanisms behind the neutrophil-dependent
tissue swelling in our study could be release of ROS and
proteases such as matrix metalloproteinases (MMPs) in
the parenchymal tissue leading to breakdown of cells and
a cytotoxic edema. Modulation of free radicals seems to
improve several parameters, such as edema formation,
injury size and neurological score, after TBI [33]. PMN
derived substances such as MMPs and ROS, have been
shown to have a direct cytotoxic effect on neuronal cells
in vitro [34], which could explain the increasing brain
water content seen after injury. The cytotoxic effects of
PMN may explain the attenuation in apoptotic cell count
in neutropenic animals. However, it is difficult to discern
whether the apoptotic cells cause the edema or vice
versa.

Acute injury to the brain activates the microglia and
the release of pro-inflammatory cytokines [35]. It has
been shown that neutrophils may stimulate recruitment
and activation of monocytes/macrophages in peripheral
tissue [36]. Here, we show that microglial/macrophage
activation is less prominent in mice that are rendered

neutropenic, which suggests a similar relationship
between neutrophil recruitment and phagocytic cell acti-
vation in the brain as in peripheral tissue. This relation-
ship is further strengthened by the lack of PMN
accumulation in hippocampus, which is associated with
few apoptotic cells and activated microglia/macrophages.
Our findings are supported by previous research using a
model of intracerebral hemorrhage in rat, where neutro-
penia resulted in significantly reduced number of acti-
vated microglia/ macrophages 7 and 14 days after injury
[18]. The results described in this study might also be
due to an attenuation of the secondary injury caused by
PMN thus requiring less activation of microglia/
macrophages.

In addition to decreased apoptosis, we show that neu-
trophil depletion results in attenuated brain tissue loss
and lesion volume following TBI. The neuroprotective
effect of neutropenia was significant at both 7 and 14
days after injury. Thus, there is a beneficial effect of
early PMN depletion in the injury development, possibly
due to less PMN-related cytotoxicity, less edema or a
reduced number of inflammatory cells in the injured
area. Several studies have shown an association between
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Figure 6 Microglial/macrophage activation is reduced in neutropenic mice. A) Microphotographs of Mac-2 positive cells (green) 7 days
after CCl in the cortex and hippocampus. DAPI was used for nuclear staining (blue). Scalebar is 100 um. B) Quantification of Mac-2 positive cells
in cortex and hippocampus following CCl (black bars, n = 5) or CCl and neutrophil depletion (black bars, n = 5). *
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attenuated edema formation and reduced tissue loss fol-
lowing experimental TBI [24,37,38]. However, the role
for PMN has not been elucidated. It has previously been
shown that blocking ICAM-1 results in improved neuro-
logical scores following brain injury, possibly due to
reduced PMN recruitment [39]. In addition, decreased

neutrophil recruitment as a result of a deficiency in the
chemokine receptor CXCR2 correlated with reduced tis-
sue damage following closed head injury in mice [40].
Further, an attenuation of the acute inflammatory
response and edema formation was associated with
decreased neuronal damage and behavioral deficits 28
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days after TBI [41]. Moreover, when comparing two dif-
ferent models of TBI (weight drop and CCI), it was
shown that the weight drop model gave an increased
PMN accumulation, which was associated with a larger
lesion volume in those animals [27], providing additional
support for the role of PMN in tissue loss.

PMN may aggravate cerebral injury by several
mechanisms; especially their ability to secrete MMPs,
ROS and cytokines have been implicated in this respect
[34]. Inhibiting any of these factors were shown to be
neuroprotective in in vivo models of TBI [33,42-44],
making the assumption that PMN activation and infil-
tration is involved in the secondary injury after TBI
highly plausible. ROS scavenger treatment lowered
ICAM-1 expression and reduced neutrophil recruitment
to the rat brain following TBI resulting in attenuated
morphological brain damage [6]. In addition, inhibiting
the recruitment of PMN to the brain following ische-
mia-reperfusion injury prevents the increase in MMP-9
[45]. Data like these may explain why treatments result-
ing in decreased PMN recruitment could lead to attenu-
ated infarct size following ischemia-reperfusion injury
[46,47]. Our results further strengthen the role for PMN
in the tissue damage following TBI

Conclusion

In this study we show that neutrophils have a role in
edema formation following TBI, possibly most influen-
tial on the cytotoxic edema. Furthermore, early neutro-
phil depletion is effective in reducing the tissue loss that
arises secondary to the injury. This association between
PMN-induced brain edema and neuronal damage is a
novel link in the disease progress following TBI and
interference with neutrophil recruitment may be a com-
plementary treatment in the management of TBL
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