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ABSTRACT Here, we report the complete genome sequences of mannanase-producing
bacteria, namely, Niallia sp. strain Man26 and Bacillus subtilis strain Man122, isolated
from the intestine of Penaeus monodon, the black tiger shrimp. Mannanases are used in
various industries, such as food, animal feed, and biorefinery, to hydrolyze mannan to
oligomers and mannose.

Mannanase is a hydrolytic enzyme for the degradation of mannan and hetero-
mannan, a hemicellulose component of the plant cell wall, to generate mannooli-

gosaccharide (MOS), which is an important prebiotic for animals (1). Many bacteria are
known to be able to produce mannanase, including Gram-positive bacteria such as
Bacillus (2–7).

In this study, mannanase-producing Bacillus and Niallia strains were isolated from
the intestines of black tiger shrimp (Penaeus monodon) reared at a BIOTEC shrimp facil-
ity (Thailand). Shrimp intestine was minced into small pieces and added to 200 mL of
1� phosphate buffer (pH 7.4). The culture broth was serially diluted and plated on
selective M9 medium containing 1% MOS from copra meal. Bacterial colonies were
screened for their ability to produce mannanase using the Congo red staining method
on locust bean gum agar plates (8, 9).

Bacteria were cultured in Luria-Bertani broth at 30°C for 48 h with shaking at 250 rpm.
For each isolate, 3 mL was collected for DNA extraction using the ZymoBIOMICS DNA mini-
prep kit (Zymo Research, USA) according to the manufacturer’s protocol. The bacterial ge-
nome sequencing was performed using both Illumina and Nanopore platforms. For short
reads, paired-end 2 � 150-bp sequencing libraries were constructed using the NEBNext
Ultra II DNA library preparation kit and sequenced with an Illumina NovaSeq sequencer.
The sequencing adapters were trimmed using Fastp v0.19.5, and the quality of cleaned
reads was determined using FastQC v0.11.9 (10). For long reads, transposase-based DNA
library preparation was applied using the rapid barcoding kit (RBK004; Oxford Nanopore
Technologies [ONT]). The DNA library was loaded on a MinION flow cell v106 (R10.3) and
sequenced with a MinION Mk1C sequencer for 48 h. The raw signals were obtained, base
called, and demultiplexed using Guppy v5.0.16 with the super accurate model (–c
dna_r10.3_450bps_sup.cfg –r –trim_barcodes –barcode_kits SQK-RBK004), followed by
adapter trimming using Porechop v0.2.4 software (11). The quality of ONT raw reads was
determined with NanoPlot v1.28.1 (12). The raw read filtering was based on a mean quality
score of 8 using NanoFilt v2.5.0, and only reads with lengths of 1,000 bases were stored
for the de novo assembly. The genomes were constructed by hybrid assembly together
with correction, circularization, and rotation using Unicycler v0.4.4 (13). Here, we report the
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complete genome sequences of Niallia sp. strain Man26 (GC content, 38.1%) and Bacillus
sp. strain Man122 (GC content, 43.8%). The genomes were annotated using the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP) v4.11 (14). The assembly quality assess-
ment by QUAST v5.0.2 (15) and associated statistics are reported in Table 1. Default param-
eters were used except where otherwise noted.

Data availability. All genome sequences, including chromosomes and plasmids,
were deposited in the NCBI database under BioProject accession number PRJNA799131,
including raw reads from Illumina and ONT sequencing under SRA accession numbers
SRR17687495 and SRR17687496 for Man26 and SRR17701557 and SRR17701558 for
Man122, respectively. In addition, the assembled contigs were deposited in GenBank
under accession numbers CP095743, CP095744, CP095745, CP095746, CP095747, and
CP095748 for Man26 and CP091872 for Man122.
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TABLE 1 Relevant statistics for sequencing and assembly of two mannanase-producing
bacteria isolated from intestine of the black tiger shrimp (P. monodon) in Thailand

Parameter

Data for strain:

Man26 Man122
GenBank accession no. CP095743, CP095744, CP095745, CP095746,

CP095747, CP095748
CP091872

No. of short reads 6,164,481 5,731,944
No. of long reads 182,103 62,327
No. of assembled contigs 6 1
N50 (bp) 3,887,076 4,105,902
Genome size (bp) 5,714,135 4,105,902
GC content (%) 38.1 43.8
No. of coding sequences 5,705 4,070
Coding proportion (%) 83.6 87.8
No. of rRNAs 29 30
No. of tRNAs 130 87
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