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Abstract: Chronic infection with the hepatitis B virus (HBV) is a global health concern and accounts
for approximately 1 million deaths annually. Amongst other limitations of current anti-HBV treatment,
failure to eliminate the viral covalently closed circular DNA (cccDNA) and emergence of resistance
remain the most worrisome. Viral rebound from latent episomal cccDNA reservoirs occurs following
cessation of therapy, patient non-compliance, or the development of escape mutants. Simultaneous
viral co-infections, such as by HIV-1, further complicate therapeutic interventions. These challenges
have prompted development of novel targeted hepatitis B therapies. Given the ease with which highly
specific and potent nucleic acid therapeutics can be rationally designed, gene therapy has generated
interest for antiviral application. Gene therapy strategies developed for HBV include gene silencing
by harnessing RNA interference, transcriptional inhibition through epigenetic modification of target
DNA, genome editing by designer nucleases, and immune modulation with cytokines. DNA-binding
domains and effectors based on the zinc finger (ZF), transcription activator-like effector (TALE),
and clustered regularly interspaced short palindromic repeat (CRISPR) systems are remarkably well
suited to targeting episomal cccDNA. This review discusses recent developments and challenges
facing the field of anti-HBV gene therapy, its potential curative significance and the progress towards
clinical application.

Keywords: hepatitis B virus; covalently closed circular DNA; gene therapy; epigenetic modification;
designer nucleases

1. Introduction

Viral hepatitis accounts for up to 1.34 million deaths per year and remains the major cause
of morbidity and mortality from cirrhosis and hepatocellular carcinoma [1]. Hepatitis B virus
(HBV) infections contribute significantly to the global health problem and, with an estimated
257 million people chronically infected, it is a major health priority. More than 50 years have passed
since the discovery of the Australia antigen [2], and while valuable progress has been made in
vaccine and antiviral development, there is still no reliable cure for HBV infection. Worldwide
prophylactic vaccination programs have reduced the prevalence of HBV in children under the
age of five, but inadequate coverage in hyper-endemic African countries means that prevalence
remains high in some countries [1]. Management of chronic HBV infection involves use of immune
modulators or direct-acting antivirals, in the form of interferons or nucleoside/nucleotide analogs
(NAs). The rationale for combining these therapies is to manage both immune dysregulation as well
as viral pathogenesis. Currently, approved therapeutics include interferon α, pegylated interferon α,
lamivudine, telbivudine, adenovir dipivoxil, entecavir, tenofovir disoproxil fumarate, and tenofovir
alafenamide. Recommendations for first-line monotherapies are pegylated interferon α and the NAs
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with high barriers to resistance, which are entecavir, tenofovir disoproxil fumarate, and tenofovir
alafenamide [3–5]. Guidelines for administration of combination therapies sometimes vary as a result of
conflicting opinions about long-term efficacy, influence of patient selection, and whether simultaneous
or sequential administration is favored (reviewed by [6,7]).

The critical limitation of licensed therapeutics is their inability to reliably achieve a virological
cure [3]. While NAs inhibit posttranscriptional stages of viral replication, they do not target the
stable episomal covalently closed circular DNA (cccDNA). This key HBV replication intermediate
forms a minichromosome in the nucleus of hepatocytes [8–10], and may undergo epigenetic
modifications [11–13]. The hepatitis B X protein (HBx) plays a role in stabilizing cccDNA by inactivating
components of the structural maintenance of chromosomes (SMC) complex [14]. The cccDNA
associates with host transcription factors and viral proteins to enable viral gene expression and
replication. Associations with factors regulating methylation or heterochromatin formation may
also render cccDNA inactive, and lead to persistent latent or occult HBV infections. Cessation or
interruption of antiviral therapy, development of viral escape mutants, or immunodeficiency could
all lead to reactivation of HBV replication, highlighting the need for cccDNA-specific therapies.
This review focuses on recent advances aimed at generating HBV-targeting designer nucleases,
epigenetic modifications to the viral DNA and nucleic acid-based immune modulation to treat chronic
HBV infection.

2. Hepatitis B Virus Therapies Under Development

Several novel anti-HBV therapeutics are in preclinical development or early clinical trial (reviewed
by [15,16]). Most candidate drugs are small molecule drugs designed to impede various stages of HBV
replication. Affordable next-generation NAs, which inhibit the viral polymerase with reduced toxicity
and higher barriers to HBV resistance are currently the preferred first-line of therapy. Other direct-acting
antivirals include HBV core protein allosteric modulators [17,18], HBV surface antigen (HBsAg) release
inhibitors [19,20] and nucleic acid polymers which also inhibit viral entry [21]. With the discovery that
the sodium taurocholate co-transporting polypeptide (NTCP) facilitates HBV entry into hepatocytes [22],
peptide inhibitors such as Myrcludex-B (NCT02881008 and NCT02888106) are also being developed for
therapeutic application [23]. Another popular host-related strategy has been to recondition the immune
system using interferons, cytokines, and peptides as immune modulators which are discussed in more
detail below (Section 3.3).

Use of gene therapy to disable HBV replication has shown promise and generated considerable
interest. Different strategies that have been employed include HBV-specific gene silencing, gene editing,
epigenome modification, and nucleic acid-based vaccination. Harnessing the RNA interference (RNAi)
pathway is a well-established strategy that has been used extensively to silence genes of HBV. RNAi is
an endogenous gene regulatory pathway that can be reprogrammed by exogenous RNA molecules.
Feasibility of using RNAi to treat HBV has been established and extensively reviewed elsewhere [24,25]
and will not be covered in detail here. Expressed or synthetic antiviral sequences may mimic primary
microRNAs, precursor microRNAs, or mature microRNAs (miRs) [26–29]. Because of easier large-scale
production, dose control and delivery to the cytoplasmic site of action, development of synthetic
short interfering RNAs (siRNAs) has advanced rapidly. These simulate mature miRs, and are now
in Phase 2 clinical trials. Anti-HBV siRNA formulations with impressive antiviral activity include
ARC-520 (NCT02065336), ALN-HBV (NCT02826018), and ARB-001467 (NCT02631096). However, since
their effect is transient, repeated administration of siRNAs will be required for long term anti-HBV
efficacy. To increase durability of an anti-HBV effect expressed HBV-targeting sequences have been
developed. For example, adeno-associated viral vectors (AAVs) have been used to deliver cassettes
that express HBV-targeting primary microRNA mimics [30]. Safe and sustained inhibition of HBV
replication in HBV transgenic mice indicates that this approach has potential for clinical translation.
Strategies targeting host factors have also shown significant promise in reducing cccDNA levels.
RNAi-mediated gene silencing of tyrosyl-DNA-phosphodiesterase 2, a DNA repair enzyme thought to
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mediate polymerase release from the relaxed circular DNA, delays its conversion to cccDNA in HepG2
cells [31]. A recent study has also demonstrated that silencing the expression of pre-mRNA processing
factor 31, an HBx-interacting partner, reduces cccDNA levels in HepAD38 cells [32].

3. Gene-Based Therapies to Target Covalently Closed Circular DNA

While the HBV therapeutic landscape is vast, few approaches are being developed to disable
cccDNA directly. Targeted mutagenesis by sequence-specific RNA-guided nucleases (RGNs) and
proteins has thus generated considerable interest, as the technology potentially provides the means to
cure HBV infection by permanently disabling cccDNA [33,34].

3.1. Designer Nucleases

Designer nucleases have dominated the anti-HBV gene editing field, with zinc finger nucleases
(ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced
short palindromic repeats (CRISPR) with CRISPR-associated (Cas) systems all showing antiviral
efficacy (Table 1). Nucleases act by inducing double stranded breaks at a pre-defined target site
within the HBV genome (Figure 1A). By exploiting the host cells’ error-prone non-homologous end
joining repair machinery, targeted mutagenesis is realized. HBV cccDNA is a primary candidate for
nuclease gene editing, owing to its episomal minichromosome configuration and limited sequence
plasticity. The compact viral genome and overlapping reading frames restrict development of escape
mutants, despite the low fidelity of the viral reverse transcriptase [35]. Insertions and deletions (Indels)
within the viral genome may give rise to aberrant or truncated proteins, which in turn interfere with
viral replication.

Zinc fingers (ZFs) are abundant multifunctional mammalian proteins that occur naturally
as transcription factors. By exploiting the specific targeting of nucleotide triplets of single ZFs,
these proteins may be engineered to form arrays with defined DNA binding properties [36]. Addition
of a FokI effector domain at the C-terminus of a ZF yields an engineered nuclease that cuts one strand of
a DNA duplex. ZFN dimers, with cognates on complementary strands of the DNA duplex, may thus be
used to create double stranded breaks [37]. Anti-HBV ZFNs were first described in a proof-of-concept
experiment where 36% of plasmid-derived viral sequences were disrupted in a cell culture model of viral
replication [38]. More recently Weber et al. reported on delivery of self-complementary adeno-associated
viral vectors (scAAVs) encoding ZFNs targeting the polymerase/X (1), polymerase/core (2) and
polymerase (3) viral open reading frames (ORFs) [39]. Using inducible liver-derived HepAD38 cells
to mimic natural HBV infection [40], ZFN pairs 1, 2 and 3 cleaved 9.8, 34, and 28% of the viral
targets respectively. These results were confirmed using single molecule real time sequencing which
additionally identified potential off targets, albeit at low frequencies. Interestingly ZFN pair 2 resulted
in the highest detectable targeted disruption, yet it was also found to be cytotoxic. Only ZFN pair 3
showed antiviral efficacy but cleavage of cccDNA could not be verified.

As with ZFNs, TALENs are dimeric engineered nucleases that comprise a DNA-binding protein
fused to an endonuclease domain. The transcriptional activator-like effector (TALE) is derived from the
Xanthomonas bacteria where individual repeat domains comprising 33–35 amino acids recognize
a single base pair [41,42]. The nucleotide binding specificity of these repeats is predetermined
by repeat-variable di-residues (RVDs) located at amino acid positions 12 and 13 [43,44]. Linking
multiple repeats in a defined order generates engineered TALEs with highly specific DNA binding
properties. Unlike with ZFNs, nucleotide binding affinity of each monomer comprising the DNA
binding domain is not influenced by a neighboring unit. Our group first described antiviral efficacy of
engineered TALENs on HBV cccDNA in cultured cells and inhibition of viral replication in a murine
model [45]. TALEN dimers designed to bind within the surface (S) and core (C) ORFs showed optimal
cleavage activity in the HepG2.2.15 cell line without measurable cytotoxicity. Importantly, cccDNA
targeted disruption frequencies of 35% and 12% were achieved with the S and C TALEN pairs
respectively. Using the murine hydrodynamic injection (HDI) model, co-administration of HBV
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replication-competent plasmids with TALEN-encoding sequences demonstrated in vivo antiviral
efficacy of the nucleases and there was no evidence of liver toxicity. A significant and substantial
reduction in serum concentrations of HBsAg and circulating viral particle equivalents was observed
in TALEN-treated mice, and targeted mutagenesis of up to 87% was achieved. Deep sequencing
verified large deletions in viral DNA, which were likely to inactivate HBV replication. A subsequent
study by Chen et al. confirmed the cccDNA-specific antiviral potential of TALENs designed to target
conserved regions within the polymerase (RNaseH sequence) and C ORFs [46]. This was achieved in
liver-derived Huh7 cells transfected with linear viral sequences that generate cccDNA and recapitulate
HBV replication [11,12]. A reduction in viral protein expression was observed across genotypes
A, B, C, and D, emphasizing the applicability of anti-HBV TALENs to a variety of viral isolates.
Moreover, a synergistic effect was shown when combining IFN-α with core TALENs, to result in an
approximately 60% reduction in copies of cccDNA. In another study, co-transfection of linear donor
sequences encoding trimeric gene silencers significantly augmented anti-HBV efficacy of S or C TALEN
pairs in HepG2.2.15 cells [47]. This approach exploited the homology directed repair pathway to
introduce the artificial primary microRNA-encoding sequences directly into viral DNAs. In doing so,
the viral genome may be permanently disrupted and after homologous recombination, HBV DNA
transcribes an antiviral sequence from its own rearranged genome.

Use of RGNs is now the most popular method of inactivating HBV gene expression. This bacterial
CRISPR/Cas9 system relies on an RNA guided DNA binding domain with associated Cas9
endonuclease [48]. These RGNs typically comprise a CRISPR RNA (crRNA) with sequences that
are complementary to a pre-defined DNA target sequence and a trans-activating crRNA (tracrRNA).
Annealing of the RNA to its cognate enables Cas9-mediated double-stranded target DNA cleavage.
Fusing crRNA and tracrRNA to form a single guide RNA (gRNA) has further simplified the system,
which has made RGNs the easiest nucleases to engineer. Since first reported by Lin et al. in 2014 [46], more
than 16 publications have described anti-HBV efficacy of RGNs [49–65] (Table 1). Targeted mutagenesis
of cccDNA in mammalian cell cultures was first demonstrated by Seeger and Sohn [49], who designed
CRISPR/Cas9 constructs to bind the conserved enhancer II/core promoter and precore ORFs. Subsequent
studies confirmed that single or multiple gRNAs spanning the entire HBV genome cleaved cccDNA to
cause indel formation and resultant reduced viral protein expression [50–52,54–56,59,62–65]. However,
methods used to detect mutagenic events vary greatly between individual studies, which makes it
difficult to compare efficiency of different gRNA constructs directly. Nevertheless, as with all designer
nucleases, targeting conserved regions is advantageous as antiviral efficacy is achieved across different
genotypes [53,55]. A second study by Seeger and Sohn used next generation sequencing to map
CRISPR/Cas9-induced cccDNA mutations [58]. The majority of indels were identified as small deletions
when extremely high targeted cleavage (up to 90%) was achieved. Although off-target cleavage may be
frequently associated with CRISPR/Cas9 action [66–68], data on the potential of HBV RGNs to create
nonspecific mutations is scarce. Using multiple gRNAs to improve antiviral efficacy [46] or to excise
integrated viral DNA fragments (Figure 1A) [62] may exacerbate this issue. As expected off-target
cleavage events were detected by deep sequencing when multiple gRNAs were used [57,62]. However,
other studies report no detectable genotoxic activity [54,61,63], which may be a result of differences
between gRNA design and properties of the viral target sequences. Replacing the Cas9 endonuclease
with engineered nickases may improve specificity of HBV RGNs. With this configuration, gRNA and
Cas9 nickases comprising heterodimers are required to effect double stranded DNA cleavage [51,57].
Another challenge with the CRISPR/Cas9 system relates to delivery of the combined gRNA and the
large Cas9 endonuclease. Sequences encoding these two components exceed the transgene capacity
of the popular AAVs. A recent publication by Scott et al. demonstrated that the smaller Cas9 derived
from Staphylococcus aureus (Sa), together with expression cassettes encoding short gRNAs targeting the
HBV surface ORF, could be packaged into single stranded AAVs (ssAAV) [63]. Efficient delivery and
expression of the RGN-encoding ssAAVs in HepG2.2.15 and hNTCP-HepG2 cells resulted in decreased



Genes 2018, 9, 207 5 of 15

viral replication, target specific cccDNA cleavage, and reduced cccDNA copy numbers. Analysis of
sequences at predicted off target sites did not reveal non-specific mutagenesis.

Figure 1. Strategies for hepatitis B virus (HBV) gene editing and epigenome modifications.
The covalently closed circular DNA (cccDNA), which may be methylated, forms a minichromosome
with transcriptionally active (open circles) and inactive (closed circles) chromatin. (A) Designer nucleases
cleave at pre-defined sequences within the HBV genome to effect targeted mutagenesis. Employing
multiple nucleases to digest different sequences may lead to targeted excision. Mutated cccDNA may
be transcribed, but mutant viral proteins cannot carry out viral replication; (B) Epigenetic modification
involves conversion of actively transcribed DNA to a transcriptionally inactive state without altering
the nucleotide sequence the viral DNA. Targeted modifications occur when DNA-binding domains
guide epigenetic effectors to pre-defined sequences of cccDNA. Histone modification and cccDNA
methylation may affect epigenetic modifications by acting directly on the cccDNA or on associated
histone proteins. Indels: insertions and deletions; ZFN: zinc finger nuclease; TALEN: transcription
activator-like effector nuclease; CRISPR/Cas: clustered regularly interspaced palindromic repeats with
CRISPR-associated protein; HDAC: histone deacetylase; DNMT: DNA methyltransferase; Me: methyl.

3.2. Epigenetic Gene Silencing

Natural epigenetic modification of DNA may silence gene expression and is a host defence
mechanism against expression of viral genes. Epigenetic modification is a stable and heritable
gene regulatory mechanism found in many different organisms. It involves chemical alteration
of DNA or associated proteins without changing the encoded genetic information. It is involved
in typical cell development and multiple normal or abnormal cellular responses (reviewed by [69]).
There is accumulating evidence to indicate that epigenetic machinery controls transcription of HBV
cccDNA (Figure 1B), and contributes to the outcome of chronic HBV infection [70–72]. Use of
exogenous epigenetic modifiers has thus attracted interest as a mode of disabling cccDNA. Epigenetic
modifications include histone acetylation or deacetylation, histone methylation or demethylation,
cccDNA methylation, and cccDNA minichromosome acetylation (reviewed by [73,74]). In cooperation
with viral factors such as HBx and the core antigen (HBc), the major epigenetic modifiers of HBV DNA
include histone acetyltransferases/deacetylases (HATs/HDACs) [12], lysine methyltransferases [75],
protein arginine methyltransferases [70,76], and DNA methyltransferases (DNMTs) [77].
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Table 1. Overview of designer nucleases for HBV gene therapy. RVDs: repeat-variable di-residues; tracrRNA: trans-activating crRNA; HDI: hydrodynamic injection;
RGN: RNA-guided nucleases

ZFN TALEN CRISPR/Cas

DNA binding domain

• Individual ZF proteins recognise
nucleotide triplets

• Typically arranged in arrays of three to
four ZFs

• Heterodimers
• Targets 18–24 bp

• Individual TALE monomer RVDs recognise
a single nucleotide

• Modular assembly of TALE repeats
• Heterodimers
• Targets ~40 bp

• Single complementary guide RNA
• Requires PAM and tracrRNA
• Targets ~20 bp

Nuclease domain • FokI endonuclease fusion protein • FokI endonuclease fusion protein • PAM-dependent Cas protein

Advantages • Naturally occurring mammalian proteins • Easily assembled, highly specific • Very easily synthesized and assembled

Disadvantages • Require arduous
context-dependent assembly

• Large size limits packaging of both
heterodimers into a single delivery vector

• Higher potential for off-target cleavage, large
Cas proteins limit packaging into
delivery vectors

HBV model systems • Huh7 [38]
• HepAD38 [39]

• Huh7 [45–47]
• HepG2.2.15 [45,47]
• Mouse HDI model [45,46]

• Huh7 [50,55,59,63,64,78]
• HepG2.2.15 [50–52,54,56]
• HepAD38 [49,52,55,64]
• HepaRG [52]
• HepG2 [53,54,56,57,59]; HepG2 NTCP *

[49,51,54,58,63,64]; HepG2.H1.3 [51];
HepG2.A64 [60,62]

• Mouse HDI model [50,53,54,56,60,61,78];
Transgenic mice [56,59,60]

cccDNA

Cleavage
(%) • No • Yes (12–35%) [45,46] • Yes (10–91%) ** [49,51,54,58,63]

Reduction
(%) • No • Yes (60%) [46] *** • Yes (35–80%) **[50,54–56,59,63] [52,64] ***

Alternative effector
domain

• DNMT3a–catalytic methylation [79]
• KRAB-transcriptional repressor [80]

• KRAB-transcriptional repressor [81] • Cas9 nickase-RGN heterodimer (targets ~40 bp)
[51,57]

* Varying methods of introducing the NTCP receptor into HepG2 cells. ** Results from single and/or multiple gRNAs. *** Incorporates co-administration of NAs.
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Hypoacetylation of cccDNA-bound histone 3/4 results in low HBV viremia in hepatitis B patients,
whereas hyperacetylation increases HBV replication [11]. HDAC inhibitors have been shown to
suppress cccDNA transcription in duck hepatitis B virus (DHBV) [82,83]. Methylation of arginine
3 on cccDNA-bound histone 4 prevents RNA polymerase binding and transcription in an arginine
methyltransferase 5 and HBc-dependent manner [70,76]. Transcriptional inhibition by methylation
can be direct, by blocking binding of transcriptional factors or RNA-polymerase loading, as well as
indirect, by recruiting histone-modifying and chromatin remodelling complexes to the methylated
DNA (reviewed by [69]). Epigenetic gene silencing may facilitate reduction of viral reservoirs through
normal hepatocyte turnover and prevention of replenishment of the cccDNA pool. Furthermore,
epigenetic modifications may accelerate cccDNA decay, as was shown following IFN-α treatment
of DHBV infections [82]. HBV cccDNA contains three CpG islands: island I, island II and island
III [84,85]. Island I overlaps the start site of the S gene, island II encompasses enhancer I, the HBx gene
promoter and the core promoter, whereas island III harbors the Sp1 promoter and start codon of the
polymerase gene. Methylation of island I is rare and variable across genotypes, whereas methylation
of island II and III is more conserved. Island III methylation is associated with reduced serum HBsAg
concentrations in chronically infected patients and correlates with hepatocarcinogenesis. Island II
methylation is associated with reduced pregenomic RNA (pgRNA) transcription, viral replication
and viremia [72,86]. In vitro studies showed that several DNMTs are upregulated in response to HBV
infection, leading to viral DNA methylation, decreased HBV gene expression, and diminished viral
replication [77,87]. Importantly, similar reduction in viral gene expression and viremia was observed
in human tissue samples with methylated HBV DNA [85,88,89].

Despite the importance of HBV DNA epigenetic modification for disease progression, evidence
supporting the feasibility of using epigenetic modifiers against HBV is currently limited. Few studies
have taken advantage of the sequence-specific binding domains of designer nucleases for their
repurposing as epigenetic silencers. By replacing a nuclease domain of a designer nuclease with
an epigenetic modulator, ZFs, TALEs, and CRISPR/Cas have usually been modified for epigenetic
editing of endogenous genes (reviewed by [90]). However, this strategy is theoretically applicable
to targeted epigenetic modification of HBV DNA. One study reported successful epigenetic editing
of HBV DNA after fusing the catalytic domain of DNMT3a to a ZF that targeted the HBx promoter
sequence [79]. The engineered sequence caused methylation of targeted CpG sites, downregulation of
viral mRNAs and proteins, and a decrease in viral replication in cell culture and in HBV transgenic
mice. Repressors based on the Krüppel associated box (KRAB) domain have also been investigated as
ZF [80] and TALE [81] fusions. Although these KRAB-repressors inhibit viral replication, verification
of heterochromatin formation, which is important to achieve permanent gene silencing, remains
to be confirmed. Studies demonstrating antiviral efficacy and sustainability of epigenetic editors
on HBV replication are preliminary. However, investigations aimed at developing the approach to
treat other chronic viral infections, such as HIV [91], are more advanced. Moreover, Food and Drug
Administration (FDA) approval of HDAC inhibitors for cancer treatment [92] supports the notion that
epigenetic editing has clinical potential for treatment of HBV infection.

3.3. Immune Modulation for Covalently Closed Circular DNA Attenuation

Administration of recombinant IFN-α or its pegylated derivatives remains the only
immunomodulatory drugs licensed for management of chronic HBV infection. IFN-α is therefore the
only licensed anti-HBV therapy capable of eliminating cccDNA. Immunomodulation has been shown
to augment innate and adaptive immune responses against the virus. Stimulating T-cell-mediated
elimination of infected hepatocytes, and indirectly cccDNA, is thus a promising immune-based strategy
to achieve functional cure from HBV infection. However, the success rate of IFN therapy remains
low and side effects represent a major shortcoming of this therapy. Gene therapy to enable durable
expression of immune modulators may be useful to attenuate cccDNA.
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Expression of IFN-α-encoding sequences in the liver has been explored as a means of improving
anti-HBV efficacy and reducing side effects of conventional IFN-α treatment. One of the first
studies explored expression of murine IFN-α2 under transcriptional control of the liver-specific
transthyretin promoter [93]. The IFN-α expression construct was delivered to the livers of mice
using a helper-dependent adenovirus (HDAd), and the interferon response genes 2′,5′-oligoadenylate
synthetase and tumor necrosis factor α (TNF-α) were effectively induced. As a surrogate for assessing
anti-HBV potential of this system the authors challenged mice with a murine coronavirus, MHV-2.
Mice pre-treated with the HDAd carrying IFN-α were protected from infection and did not exhibit any
toxic side effects. Fiedler et al. assessed usefulness of a gene therapy-based approach to express IFN-α
or IFN-γ in a woodchuck hepatitis virus (WHV) model of HBV infection [94]. Sequences encoding
woodchuck IFN-α or IFN-γ (wIFN-α or wIFN-γ) were delivered to woodchucks with an HDAd.
In animals chronically infected with WHV, viral replicative intermediates in the liver and serum were
considerably diminished. This was a significant finding as WHV maintains very high viral loads in its
host, much higher than in chronic HBV carriers. Furthermore, no obvious side effects were observed
and wIFN-α expression lasted for at least a year. In contrast to the promising results achieved with
wIFN-α, expression of wIFN-γ did not have a significant effect on WHV replication. This differs
from the results of Dumortier et al. who demonstrated that IFN-γ expression was able to limit HBV
replication in mice [95].

Subsequent work assessed utility of AAV vector for delivery of interferon expression cassettes.
Berraondo et al. tested intrahepatic and intramuscular expression of AAV8-delivered wIFN-α5
following administration to woodchucks chronically infected with WHV [96]. Interferon was readily
expressed at both sites of delivery, but expression in the liver was superior. Furthermore, only expression
of interferon from the liver was associated with an antiviral response. Although the higher vector dose
had a more pronounced antiviral effect, it was also associated with greater toxicity. The woodchuck
with the greatest decrease in viremia exhibited such severe side effects that it required euthanasia
prior to completion of the study. Another limitation of the approach was the transient nature of the
antiviral effect, which was attributed to immune-mediated clearance of AAV-infected hepatocytes.
To improve their delivery system Berraondo et al. developed a modified IFN-α which was fused to
sequences encoding apolipoprotein A (InterApo) [97]. Initial assessment demonstrated that InterApo
exhibited an improved safety profile while maintaining antiviral efficacy in HBV transgenic mice.
In the woodchucks chronically infected with WHV, AAV-delivered InterApo was well-tolerated but
showed little efficacy. This was attributed to the high WHV load in woodchucks with chronic hepatitis.
Pre-treatment of woodchucks with the NA entecavir with subsequent administration of AAV-InterApo
facilitated immune-mediated clearance. However, the antiviral effect was transient and viral rebound
to pre-treatment levels eventually occurred.

Further evaluation of gene therapy-based immune modulation explored antiviral effects of
sequences encoding interleukins. Crettaz et al. assessed efficacy of HDAd-delivered interleukin-12
(IL-12) in the WHV model [98]. The authors used a murine IL-12 sequence, under transcriptional
control of an inducible promoter, and delivered the cassette directly to the liver with the viral
vector. Interestingly, woodchucks with a viral load lower than 1010 viral genome equivalents per
ml of serum responded well to treatment, whereas those with higher viral loads did not. Extensive
characterization revealed decreased intrahepatic viral DNA and RNA levels. Liver inflammation was
reduced, and woodchuck hepatitis e and surface antigens were cleared from the serum. Significantly,
disappearance of intrahepatic core antigen was attributed to a T-cell response against the virus,
which was induced by IFN-γ. Importantly, the treatment was shown to be well-tolerated. The same
group subsequently evaluated efficacy of IL-12 expressed from a Semliki Forest Virus vector [99].
While the aim was to assess the anti-tumor effects of the constructs in WHV-induced HCC, the authors
also showed strong antiviral responses resulting from intrahepatic IL-12 expression. As before,
the anti-tumor and antiviral effects were attributed to the induction of T-cell responses. The potential
of using cytokines to treat HBV infection was further highlighted by a recent study that evaluated
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efficacy of dual expression of IFN-α and IL-15 to counter HBV replication in transgenic mice [100].
Co-administration of an AAV encoding the IFN-α gene and an AAV carrying the IL-15 sequence
resulted in near complete clearance of intrahepatic HBc and viral DNA replication intermediates. More
importantly, IFN-α and IL-15 expression were shown to induce an antibody response and a functional
antiviral CD8+ T-cell response. The authors further assessed their combination strategy using
recombinant IFN-α and IL-15 on samples from patients with chronic HBV infection. After stimulation
of peripheral blood mononuclear cells from these patients with an HBc peptide in the presence of
IFN-α and IL-15, effector function was restored to HBV specific CD8+ T-cells.

Reconstituting the cytotoxic T-cell response against HBV holds great promise as a strategy for the
immune-mediated clearance of the virus in chronic carriers. While engineered T-cells with chimeric
T-cell receptors against HBV antigens have been developed, investigations are yet to progress beyond
preclinical development of the technology [101–105]. DNA vaccines have the potential to induce
strong antibody and T-cell-mediated immune responses and thereby clear chronic HBV infections
(reviewed by [106]). While studies exploring this strategy are few, inducing strong antiviral immunity
with therapeutic vaccines in conjunction with cytokine-mediated stimulation of an immune response
undoubtedly has potential for management of chronic hepatitis B.

4. Discussion/Perspective

Realization of a functional or complete cure for chronic HBV infections requires innovative
therapeutic approaches aimed at disabling and eliminating the persistent episomal cccDNA. Drugs
that act directly on the viral genome, such as designer nucleases and epigenetic modifiers, have the
potential to disable viral replication permanently. Restoration of the anti-HBV immune response
may also facilitate clearance of infected hepatocytes and thus diminish or eradicate the cccDNA pool.
A combination of gene-based immune and cccDNA-targeting gene therapy may provide the means to
achieve this goal.

Other challenges, which are broadly associated with implementing gene-based therapies [107],
also need to be met for the approach to be successful against HBV. Efficient liver-specific delivery
using viral or non-viral vectors still remains a challenge [108,109]. This will be particularly important
if multiple doses of gene therapy are required. Improving DNA-binding specificity, particularly
for designer nucleases, and defining off target effects are vital to limit unintended side effects [110].
The lack of suitable chronic HBV infection models also complicates the development of gene therapies
for the treatment of the disease. The CRISPR/Cas9 system has been shown to target cccDNA efficiently
in primary duck hepatocytes infected with DHBV [65]. Although DHBV infection of ducks provides
a useful model of chronic HBV infection, it does not recapitulate all aspects of the condition in humans.
Despite the challenges facing clinical translation of gene-based curative therapy for chronic HBV
infection, the field is gaining momentum and significant progress seems imminent.
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