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It is now well established that many mammalian species possess leukocytes that are
able to lyse a variety of tumors in vitro without prior immunization (1, 2). These cells
have been termed natural killer (NK)' cells. Characterization of the NK cells reactive
against different lymphoid and solid tumor targets has revealed that they share
certain properties but differ in others. For example, NK activity of spleen cells against
the lymphoma YAC-1 is very low in mice injected with the bone-seeking isotope 88y
and in mice <3 wk of age (3). In contrast, NK activity against EL-4 lymphoma cells
is relatively unaffected in mice treated with **Sr and is present in mice 5 d old (4).
However, both the NK (YAC-1) and NK (EL-4) activities are stimulated by interferon
inducers administered in vivo (4). Stutman and coworkers (5, 6) have characterized
an NK cell active against solid tumors that they have termed a natural cytotoxic
(NQC) cell. One notable difference between NC cells and the typical NK cell active
against lymphoid tumors is that NC cells remain functional after incubation at 37°C
for as long as 6 d, whereas NK cells are labile at 37°C for as few as 6 h under the same
culture conditions (5, 6). These results suggest that NK cells in general may be a
heterogenous population. For purposes of discussion, we will designate all non-T, non-
B, and non-macrophage cells active in the natural cytotoxicity assay as NK cells and
will propose a tentative classification of NK cells.

To evaluate the concept of heterogeneity of NK cells, we have used a variety of
methods to distinguish between NK cells reactive against a panel of tumors, both
lymphoid and nonlymphoid. Our studies, presented here, indicate that NK cells in
fresh spleen cell suspensions can be classified into two broad categories on the basis of
their susceptibility to suppression by treatment with ®Sr, presence of NK alloantigens,
and activity in beige (bg/bg) mice.

Materials and Methods

Mice. (C57BL/6 X DBA/2)F, (B6D2F1), B10.D2, CBA/]J, C57BL/6]J, C57BL/6]-bg/bg,
and BALB/c mice were purchased from either The Jackson Laboratory (Bar Harbor, Maine)
or Charles River Breeding Laboratories (Wilmington, Mass.). Neonatal mice were obtained
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through breeding in our animal facility. The mice were 6-12 wk of age unless otherwise
indicated, and mice of either sex were used.

Tumor Cells. The tumor cell lines YAC-1, Cl.18, and WEHI-164.1 have been described in
detail elsewhere (7, 8) and were maintained in vitro by culturing in RPMI-1640 (Grand Island
Biological Co., Grand Island, N. Y.), with 10% fetal calf serum, penicillin and streptomycin,
L-glutamine, sodium pyruvate, and nonessential amino acids (complete RPMI-1640 medium).
FLD-3, a Friend virus-induced erythroleukemia of BALB/c origin (H-2%, was obtained from
Dr. Richard A. Steeves (Albert Einstein School of Medicine, New York) and maintained in
complete RPMI-1640. MPC-11 cells, a mineral oil-induced myeloma of BALB/c origin (H-2%
were obtained from the Salk Cell Distribution Center, San Diego, Calif,

NK Cell Assay. The assays used have been described in detail previously (4, 8-11). Approx-
imately 5 X 10° tumor cells were labeled with 100 pCi Na; *’CrO4 (New England Nuclear,
Boston, Mass.) in 0.5 ml of complete RPMI-1640 for 1-1.5 h, or by overnight incubation at 5
#Ci/ml. The cells were washed three times and diluted to a final concentration of 1 X 10°-2
X 10° tumor cells per ml. 1 X 10*-2 X 10* targets in 0.1 ml of complete RPMI-1640 medium
were placed in wells of Microtest II plates (Falcon Labware, Div. of Becton, Dickinson & Co.,
Oxnard, Calif.) with varying numbers of fresh spleen cells in 0.1 ml of complete RPMI-1640
medium. Generally, each spleen cell suspension was plated at four different effector to target
cell (E:T) ratios ranging from 100:1 to 1.5:1. Cells at each ratio were plated in triplicate or
quadruplicate. The incubation periods were 4-16 h with YAC-1, 12-16 h with WEHI-164.1,
8-18 h with Cl.18, and 24 h with FLD-3. These time periods were selected because preliminary
experiments indicated that significant lysis of these targets required assays of these durations.
After incubation, the plates were centrifuged at 200 g and 0.1 ml of supernate was harvested
from each well and counted in a Packard Prias (Packard Instrument Co., Inc., Downers Grove,
Ill) or a Beckman 4000 Auto-y counter (Beckman Instruments, Inc., Fullerton, Calif.). The
mean percent specific cytotoxicity was calculated as follows:

. s1 experimental — spontaneous (medium)
mean percent cytotoxicity = > Cr, cpm - X 100.
maximal (H20) — spontaneous

The variation between the replicates was <5%. Spontaneous release values depended on the
tumor target and the assay time but did not exceed one-third of the maximum release value in
the experiments reported herein. Where single figures are given, they are taken from the
corresponding linear part of the E:T vs. percent cytotoxicity curve.

Cold competition experiments were performed as described in detail previously (4, 11) by
using E:T ratios of 50:1 for YAC-1 and 25:1 for WEHI-164.1 and adding varying numbers of
cold (i.e., unlabeled) targets, generally at cold to hot (*'Cr-labeled) cell ratios (C:H) of 50:1, 25:
1, and 12.5:1. Note that C:H ratios of 50:1 were not exceeded because nonspecific inhibition,
particularly with tumor cells, becomes significant at high C:H ratios (11). ®'Cr release values
with labeled and cold targets were never significantly different from spontaneous release values
with labeled targets alone.

Mouse Pretreatments. Heat-killed Corynebacterium parvum organisms (Wellcome Laboratories,
Raleigh, N. C.) were injected intraperitoneally (2.1 mg/mouse). Cyclophosphamide was
obtained from Mead Johnson and Co., Evansville, Ind.; mice were injected intraperitoneally
with 300 mg/kg body weight. 6-8-wk-old mice were injected with 100 pCi ®Sr (Oak Ridge
National Laboratory, Oak Ridge, Tenn.) intraperitoneally and used 4-6 wk after the injection.
Mice were irradiated in a small-animal irradiator (Gammacell 40, Atomic Energy of Canada
Ltd., Commercial Products, Ottawa, Ontario, Canada; dual **Cs sources, 136 rad/min). The
details of these procedures have been described earlier (4).

Cell Pretreatments. Treatment of spleen cells with CE anti-CBA, anti-Nk-1.2, serum (9, 10)
and pretested rabbit complement (C) was performed by the following protocol. Erythrocytes
were removed from a fresh spleen cell suspension by hypotonic shock and 20 X 10° lymphocytes
from this suspension were treated with a 1:40 dilution of anti-Nk-1.2 for 30 min at 37°C in
complete RPMI-1640 without fetal calf serum. The cells were washed once in complete RPMI-
1640 and treated with C (1:8 dilution) for 30 min at 37°C in serum-free medium. The cells
were washed once and then adjusted to the appropriate concentration for an NK cell assay.
The viability of spleen cells after treatment with anti-Nk-1.2 plus C was 95-97%.
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Results

NK Activity of Spleen Cells from **Sr-treated Mice. NK activity against YAC-1, C1.18,
and MPC-11 was markedly reduced in B6D2F1 and B10.D2 mice pretreated with the
bone-seeking isotope *Sr (Table I). In contrast, NK reactivity against FLD-3 and
WEHI-164.1 was not different from spleen cells obtained from ®Sr-treated B10.D2
mice as compared with untreated controls. When spleen cells from **Sr-treated
B6D2F1 mice were used as effectors, NK activity against WEH]I-164.1 was modestly
reduced and, in some cases, NK (FLD-3) activity was greatly reduced.

To ascertain whether the reduced NK (FL.D-3) activity seen in some B6D2F1 mice
was due to lack of functional NK effector cells, as is the case with NK (YAC-1) (7), or
due to the presence of suppressor cells, a cell mixture experiment was performed (Fig.
1). The NK (FLD-3) activity of normal spleen cells could be greatly reduced by the
addition of spleen cells from *Sr-treated mice. This finding is in accord with our
previous observations relating to NK (EL-4) cells. NK (EL-4), like NK (FLD-3), is
usually normal in ®#Sr-treated mice, but when reduced, the lowering can be accounted
for by the presence of suppressor cells (4, 12). On the other hand, NK (YAC-1) is
always lowered in 8Sr-treated mice, and similar cell mixture experiments have
consistently failed to demonstrate suppressor cells in our hands (4, 12).

Effect of Anti-Nk-1.2 plus C on NK Activity. The NK activity in fresh spleen cells
from BALB/c mice against YAC-1 and Cl.18 was markedly reduced by prior
treatment of the spleen cells with anti-Nk-1.2 plus C (Table II). In contrast, NK
activity against FLD-3 and WEHI-164.1 was largely resistant to treatment with anti-

TabLE 1
Effect of ®Sr Treatment on NK Activity

Percent cytotoxicity at E:T of

Strain Target* Pr;t;s?t-
100:1 50:1 25:1 6.25:1 1.56:1

B10.D2 YAC-1 None 21 13 8 — —
89Srt 9 4 5 — —

CL18 None 15 — 11 8 —

898y 6 — 9 4 —

FLD-3 None — — 25 18 10

8gr — - 34 28 20

WEHI-164.1 None — — 65 55 29

®sr — — 68 66 49

B6D2F1 YAC-1 None 68 59 45 — —
89Sy 2 -3 -1 — —

Cl.18 None 23 — 16 3 —

8gr 2 — 7 1 —

MPC-11 None — 25 18 11 —

89Sr — 4 3 3 —

FLD-3 None — — 22 20 14

gy — — 5 12 8

FLD-3 None — — 20 15 4

#9Sr — — 15 13 8

WEHI-164.1 None — - 67 60 48

] — — 56 45 35

* The incubation period was 12 h with YAC-1 and WEHI-164.1, 18 h with Cl.18, and 24 h with FLD-3.
§ Mice pretreated with *Sr were given one 100 gCi injection intraperitoneally. The mice were tested 4-8
wk after the injection for NK activity.
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PERCENT SPECIFIC
CYTOTOXICITY

0 T T T
% 100 75 50 25 0o N
o] 25 50 75 100 ®SrorT
Fic. 1. The NK activity of mixtures (totaling 1 X 10° lymphocytes) of normal (N) spleen cells
with normal thymus (T; O) or with spleen cells from ®Sr-treated (®Sr) mice (@) was measured. 1
X 10° lymphocytes and 2 X 10* *'Cr-labeled FLD-3 cells were incubated in wells of microtiter plates

for 24 h. Closed squares (M) indicate the NK activity of unmixed normal spleen cells at E:T of 50:
1 (100% N), 25:1 (50% N), 12.5:1 (25% N), and 6.25:1 (12.5% N).

TasLe II
Effect of Anti-Nk-1.2 plus C on NK Activity

Percent cytotoxicity at E:T of

Target Strain Pretreatment*
50:1 25:1 12.5:1

YAC-1 BALB/c Cc 48 33 19
Anti-Nk-1.2 + C 7 4 -1

B6D2F1 C 40 23 11

Anti-Nk-1.2 + C 4 1 2

CBA C 38 20 11

Anti-Nk-1.2 + C 0 0 0

FLD-3 BALB/c Cc 25 20 9
Anti-Nk-1.2 + C 21 17 9

B6D2F1 Cc 18 20 12

Anti-Nk-1.2 + C 23 16 9

WEHI-164.1 BALB/c C 51 47 34
Anti-Nk-1.2 + C 39 32 23

CBA C 72 71 41

Anti-Nk-1.2 + C 79 68 58

CL18 BALB/c C 25 14 —
Anti-Nk-1.2 + C 4 3 —

MPC-11 BALB/c C 15 — —
Anti-Nk-1.2 + C 0 — —

* 20 X 106 lymphocytes were treated with a 1:40 dilution of anti-Nk-1.2 for 30 min at 37°C, washed, and
treated with a 1:8 dilution of rabbit C for 30 min at 37°C. The cells were washed and then adjusted to
the appropriate concentration for an NK cell assay.

Nk antibody plus C. It should be noted however, that in some experiments with anti-
Nk-1.2 plus C, a twofold reduction in NK activity against WEHI-164.1 has been
observed. However, this must be compared with the total abolition of NK activity
against YAC-1, which is generally effected by this treatment (Table II).

NK Activity in Beige Mice. C57BL/6 mice homozygous for the beige mutation
(bg/bg) have reduced NK activity against YAC-1 lymphoma cells in short-term *'Cr
release assays (13). In contrast, NK activity against FLD-3 and WEHI-164.1 is normal
in such mice (Table III). The low NK (YAC-1) seen in beige mice can be partially
and in some experiments totally corrected by a prolongation of the assay period to 16
h (Table IIl), which suggests that any defect in NK activity against FLD-3 and
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Tasre III
NK Activity in Berge Mice

Percent cytotoxicity at E:T

Experi- . Assay of 100:1
ment Strain time Pretreatment VAC WELT
1* 1641 FLD-3
h

1 C57BL/6 +/+ * None 27 76 57
C57BL/6 bg/bg * None 3 78 61
2 C57BL/6 +/+ 16 C 24 100 —
Anti-Nk-1.2 + C 1 88 —
C57BL/6 bg/bg 16 C 15 95 —
Anti-Nk-1.2 + C 0 84 —

* The incubation period was 12 h with YAC-1 and 18 h with WEHI-164.1 and FLD-3 in experiment 1.

TagpLe IV
NK Activity of Spleen Cells from Mice Pretreated with C. parvum or
Cyclophosphamide
Percent cytotoxicityt
Strain Pretreatment*

YAC-1 FLD-3 WEHI-164.1

C57BL/6 None 35 — 26
C. paroum 59 — 60
BALB/c None 25 26 42
C. parvum 53 37 61
Cyclophosphamide 10 ND§ 47
B6D2F1 None 34 14 50
Cyclophosphamide 10 5 66

* Mice received intraperitoneally 2.1 mg C. pareum or 300 mg/kg body weight of
cyclophosphamide.

1 The mean percent cytotoxicity of cells from C57BL/6 and BALB/c mice was
measured at an E:T ratio of 50:1. The mean percent cytotoxicity of cells from
B6D2F1 mice was measured at an E:T ratio of 25:1. The incubation period was 12
h with YAC-1 and WEHI-164.1, and 24 h with FLD-3.

§ Not done.

WEHI-164.1 can be masked by the longer duration of the assay. If this were so, no
distinction could be made between NK (YAC-1) and NK (FLD-3) or NK (WEHI-
164.1) on the basis of data from beige mice. That this is not the case was clarified
when we tested the ability of anti-Nk-1.2 plus C-treated spleen cells of beige mice to
lyse YAC-1 cells in a long-term assay. Table III shows that although some Nk
(YAC-1) reactivity can be seen in beige spleen cells, when the effectors and targets are
incubated for 16 h, all such activity is mediated by Nk-1.2 antigen-positive cells,
whereas the NK reactivity against WEHI-164.1 in beige mice is, as expected, mediated
by cells not sensitive to anti-Nk-1.2 plus C treatment.

NK Activity of Spleen Cells from Mice Pretreated with C. parvum or Cyclophosphamide. The
NK activity against FLD-3 and WEHI-164.1 was enhanced by pretreatment with C.
parvum similar to the increase seen with YAC-1 (Table IV). Pretreatment with
cyclophosphamide, an agent known to suppress NK activity, reduced NK activity in
B6D2F1 mice against FLD-3 and YAC-1. The cytotoxic activity against WEHI-164.1,
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however, was generally found to be resistant to the suppressive effect of cyclophos-
phamide. Pretreatment with cyclophosphamide reduces the number of nucleated cells
obtained from a spleen by 60-75% (unpublished observations). Therefore, cyclophos-
phamide reduced the total number of NK cells in the spleen against all targets, but
it further decreased the frequency of NK cells active against FLD-3 and YAC-1. In
contrast, the frequency of NK cells reactive against WEHI-164.1 was not affected.

Effect of Lethal Irradiation on NK Activity in B6D2F] Mice. We were interested in
testing the effect of short-term lethal irradiation on NK activity against FLD-3 and
WEHI-164.1 because the YAC-1 NK cell has already been shown to be radio resistant
(3). B6D2F1 mice were lethally irradiated (800 rad) and 3 d later, their pooled spleen
cells had retained NK activity against YAC-1 and WEHI-164.1 but had lost the
ability to lyse FLD-3 (Table V). As with cyclophosphamide, short-term lethal
irradiation reduced the total number of nucleated cells in the spleen by 80-90%.
Therefore, the frequency of NK cells active against YAC-1 and WEHI-164.1 was
normal but that against FLD-3 was decreased.

Effect of Age on NK Activity.  As with YAC-1 (1, 2), the NK activity in B6 mice <3
wk old against FLLD-3 was reduced when compared with B6 adult mice (Table VI).
In contrast, spleen cells from (B6 X C3H)F; mice 1 d old were able to lyse WEHI-
164.1 as well as adult mice. There was no lytic activity against YAC-1 cells in 1-d-old
(B6 X C3H)F; mice.

Competitive Inhibition of NK Actwvity against YAC-1 and WEHI-164.1. To test whether
the antigens recognized by NK cells against different targets were similar, we carried
out cold competition studies (Table VII). These results indicate that the NK cell that
kills YAC-1 recognizes target structures that are expressed on YAC-1 and CI1.18,
whereas the NK cell that lyses WEHI-164.1 is largely specific for that target. There
was some inhibition of YAC-1 lysis by FLD-3 and WEHI-164.1, suggesting either

TaBLE V
NK Actintv of Shleen Cells from Tethally Trradiated RENIOET Mire

Percent Cytotoxicity}

Pretreatment*
YAC-1 FLD-3 WEHI-164.1
None 50 27 50
800 rad, -3 d 64 1 57

* 10 B6D2F ! mice were lethally irradiated (800 rad) and their pooled spleen
cells were used 3 d later in an NK cell assay.

% Mean percent cytotoxicity at an E:T ratio of 25:1 with YAC-1, WEHI-
164.1, and FLD-3.

TasLe VI
Effect of Age on NK Activity

Assay Percent cytotoxicity at E:T of 100:1

Age time Strain
YAC-1 WEHI-164.1 FLD-3
3
1d 18 (B6 X C3H)F, 0 65 0
8 wk 18 (B6 X C3H)F, 24 57 ND
2 wk 24 C57BL/6 — — -1

8 wk 24 C57BL/6 — — 17
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TasLe VII
Competitive Inhibition of NK Activity against YAC-1 and WEHI-164.1

Percent cytotoxicity against*

Experiment  Cold cell type YAC-1 (C:H) WEHI-164.1 (C:H)
50:1 25:1 12.5:1 50:1 25:1 12.5:1
1 YAC-1 -1 6 12 29 30 30
FLD-3 32 47 46 58 54 46
WEHI-164.1 24 32 37 10 24 34
2 YAC-1 1 5 10 — — —
CL18 13 25 28 — — —

* E:T ratio was 50:1 for all C:H ratios with labeled YAC-1, and 25:1 for all C:H ratios with labeled
WEHI-164.1; mean percent cytotoxicity without cold targets was 50 with YAC-1 and 45 with
WEHI-164.1 in experiment 1, and 35 with YAC-1 in experiment 2.

that a minor subpopulation of NK cells that lyse YAC-1 recognizes target determi-
nant(s) shared between the three tumors, or that the target structures on FLLD-3 and
WEHI-164.1 resemble to some extent (cross-react with) those on YAC-1. FLD-3 did
not inhibit lysis of the WEHI-164.1 target by NK cells, and YAC-1 competed poorly,
in a plateau fashion, as compared with cold WEHI-164.1. This minor degree of
inhibition of NK-mediated WEHI-164.1 lysis by YAC-1 can be interpreted in the
same two ways as the inhibition of lysis of YAC-1 by WEHI-164.1 (see above).
However, the fact that some reduction of NK activity against WEHI-164.1 can often
be achieved by treatment of spleen cells with anti-Nk-1.2 plus C (Table II and our
unpublished ohservations) suggests that WEHI-164.1 might be susceptible to lysis by
two different NK cell types: the major activity is WEHI-164.1 specific, preserved in
neonatal, beige, and 8Sr-treated mice, and is resistant to anti-Nk-1.2 plus C treatment,
and a minor component is mediated by the NK cell that lyses YAC-1, which
recognizes a separate shared target structure on the two tumors.

Discussion

NK cells remain a somewhat poorly defined class of cells that may have important
functions in host defense and immunoregulation (1, 2, 14, 15). At present, the best
definition is that NK cells, which are not classical T cells, B cells, or macrophages, are
capable of lysing a variety of tumor and some normal cells in vitro (1). Whether all
the cells that are capable of NK function in vitro belong to a single class in terms of
lineage, origin, and differentiation remains an open question. Some indications that
natural killing may be mediated by a heterogenous population of cells has been
provided by the studies of Stutman et al. (5), Paige et al. (6), and Lohman-Matthes
and Domzig (16, 17). Although cold target competition studies and adsorption of NK
cells over tumor cell monolayers suggest a certain selectivity in target cell recognition
(18), these by themselves only indicate a possible heterogeneity of recognition struc-
tures, rather than heterogeneity in the class of cells bearing the recognition units.
Here we provide a clear indication that NK cells in fresh spleen cell suspensions can
be classified into two distinct categories based on three major criteria: susceptibility
to the reduction of activity in mice treated with ®Sr, reduced activity in mice with
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the beige mutation, and the susceptibility to lysis by an anti-Nk-1.2 alloantiserum
and complement.

Our earlier studies had indicated that NK activity against YAC-1 but not EL-4
lymphoma was reduced in ¥Sr-treated mice (4, 12). An analysis of low NK (YAC-1)
activity in ®Sr-treated mice has indicated that an intact bone marrow microenviron-
ment may be essential for the full functional differentiation of NK (YAC-1) cells (7).
By this criterion, NK cells could be classified into those that are marrow dependent,
such as NK cells reactive against YAC-1, RL &-1, MPC-11, and Cl.18, whereas those
reactive against FLD-3,? EL-4, and WEHI-164.1 can differentiate from splenic stem
cells in the absence of an intact bone marrow. The NC cell activity against BALB/c
methylcholanthrene (meth A)-induced sarcoma is also minimally affected in %Sr-
treated mice (19). It is interesting to note that this notion of marrow dependence is
also supported by studies in estrogen-treated mice. Mice treated with high doses of
estrogens develop osteopetrosis, and these mice are strikingly similar to **Sr-treated
mice with respect to NK activity (20, 21). NK (YAC-1) activity is reduced, it is not
boosted significantly by an interferon inducer (pI:pC), and yet NK (or NC) activity
against the BALB/c meth A sarcoma is unaffected (19). Preliminary results obtained
in osteopetrotic humans (lacking normal bone marrow) also show a lowered NK
reactivity against HSV-1-infected fibroblasts (C. Lopez, personal communication),
supporting the concept of marrow dependence of certain human NK cells. It should
be pointed out that although NK reactivity against EL-4 and FLD-3 is often normal
in most *¥Sr-treated mice, it is low in some instances. However, the reduction in
activity against these targets in ®Sr-treated mice is generally triggered by the
“activation” of suppressor cells by interferon inducers (12) and not due to a lack of
functional NK cells.

The experiments with anti-Nk-1.2 alloantiserum provide independent evidence for
the subclassification of NK cell activity into two classes. The antiserum used has been
defined in detail elsewhere (9, 10). Under the conditions used here, this serum is NK
cell specific and stains only 2-5% of spleen cells (22; unpublished observations in a
fluorescence-activated cell sorter analysis). It seems more than coincidental that
marrow-dependent NK cells, i.e., those that lyse YAC-1, Cl.18, and MPC-11, are also
Nk-1.2 antigen positive, as defined by significant reduction in NK activity by
pretreatment with anti-Nk-1.2 plus C. The marrow-independent NK cells, including
those that lyse meth A sarcoma (O. Stutman, personal communication), are resistant
to such a treatment and may, by this criteria, be considered Nk-1.2 antigen negative.
We cannot state with certainty that NK (FLD-3) and NK (WEHI-164.1) are totally
devoid of Nk-1.2 antigens. The possibilities of very low antigen density and resistance
to complement-mediated lysis must also be considered. It may be recalled that Ly-5
antigen is expressed on several cell types, including T cells, NK cells, and B cells.
However, B cells cannot be lysed by anti-Ly-5 serum plus C under the usual conditions
(23). Although resistance to C-mediated lysis cannot be ruled out completely, it seems
to be an unlikely explanation because NK (WEHI-164.1) can be lysed by heterologous
anti-mouse and anti H-2 antisera and C.> Nevertheless, positive selection studies will
be required to answer this question definitively.

% Lust, J. A, V. Kumar, and M. Bennett. Lysis by natural killer cells and rejection by irradiated mice
of Friend virus induced erythroleukemia cells. Manuscript in preparation.

? Burton, R. C,, S. P. Bartlett, V. Kumar, and H. J. Winn. Studies on natural killer (NK) cells. III.
Serological evidence for heterogeneity of NK cells. Manuscript in preparation.
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Studies in beige mice further support and extend the notion of NK cell heterogeneity
developed from the aforementioned experiments. The function of the Nk antigen-
positive, marrow-dependent class of NK cells is impaired in beige mice (Table III).
However, the lytic ability of beige spleen cells can be considerably restored by
prolongation of the NK assay (Table III). Thus, the beige mutation appears to cause
more of a delay in, rather than lack of, killing. Cells that mediate such delayed killing
of targets of the YAC-1 type are still distinguishable from those that are responsible
for the lysis of WEHI-164.1 cells, which normally take longer to be lysed, by being
susceptible to anti-Nk-1.2 plus C. It is interesting to note that beige mice and *Sr-
treated mice seem to have defects affecting the same class of cells, and there are some
similarities between beige mice and *Sr-treated mice. These include a relative
resistance to boosting by interferon and a normal frequency of target-binding cells (7,
13). Nevertheless, the basis of the NK defect in ®*Sr-treated and beige mice must be
quite different, because beige mice seem to have a stem cell defect (13). Thus their
“NK defect” can be adoptively transferred to normal mice by bone marrow cells, and
they themselves can be largely “cured” by normal hemopoietic stem cell transplants.
On the other hand, the low NK (YAC-1) of ®Sr-treated mice cannot be cured by a
normal bone marrow cell infusion, and spleens of **Sr-treated mice do possess normal
stem cells for NK (YAC-1) (7, 24).

One difference between the two categories of NK cells is the length of time required
for target cell lysis. In general targets such as YAC-1, RL &-1, and MPC-11, can
be lysed in a shorter period of time (4-6 h), whereas tumors such as WEHI-164.1,
FLD-3, and meth A take a longer period of incubation for optimal lysis (12-48 h).
Could the differences be related merely to the length of the assay? We do not believe
this to be the case because spleen cells from **Sr-treated mice and anti-Nk-1.2 plus C-
treated spleen cells remain deficient in their ability to kill YAC-1 cells, even if the
assay is prolonged to 16-24 h, the usual time necessary to observe the lysis of FLD-3
and WEHI-164.1. With beige mice, the delayed killing of YAC-1 is mediated by Nk-
positive cells as discussed above. Nevertheless, it could be argued that tumors such as
FLD-3 or WEHI-164.1 may be efficient inducers of interferons in vitro. The interferon
could then recruit new NK cells from their precursors, even if the mature NK cells
had been depleted by anti-Nk plus C or by ®Sr treatment. That this is not the case
is indicated by our preliminary studies (25), in which equivalent amounts of interferon
were generated in 24-h culture supernates of spleen cells with a variety of tumor cells,
including YAC-1, FLD-3, and some NK-insensitive tumor cells such as 1.1210, but no
correlation was found between the induction of interferon in vitro and the lysis of the
tumor cell line.

On the basis of the data discussed above, we propose that NK cells be classified
into two categories: NK-A cells would include the Nk antigen-positive, marrow-
dependent NK cells, and NK-B would designate Nk antigen-negative cells, which
have normal activity in **Sr-treated and beige mice (Table VIII). The NC cells
described by Stutman et al. (5) would thus fall into the NK-B category. It appears
that NK-A cells that react largely against lymphoid targets are a much more
homogenous group as compared with NK-B cells (Table VIII). NK-B cells all share
certain common characteristics, but also differ from each other in several respects. For
example, although NK cells reactive against the meth A sarcoma (19), WEHI-164.1,
and FLD-3 are all marrow independent and Nk antigen negative, NK (FLD-3) differ
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TasrLe VIII
Classification of NK Cells
Type Characteristics Target selectivity
NK-A Lytic activity reduced in ®Sr-treated and beige ~ YAC-1, CL18, RL &-1,
mice; susceptible to lysis by anti-Nk-1.2 + C MPC-11*

NK-B (includes NC Normal in *Sr-treated mice, normal in beige FLD-3, WEHI-164.1,
cells) mice; resistant to lysis by anti-Nk-1.2 + C meth A*

* Classification of RL 3-1 and Meth A was based on data in references 4 and 19, respectively.

from the rest. Unlike the other cells in the NK-B category, NK (FLD-3) are absent or
nonfunctional in newborn mice and are markedly reduced in frequency in mice given
lethal whole body irradiation (—3 d) or cyclophosphamide. NK (WEHI-164.1) and
NC cells reactive against meth A sarcoma seem not to differ much among themselves.
Further investigations may reveal subsets among the two major categories we have
defined. At present, however, similarities between the cells classified as NK-B seem
significant enough to group them together. This distinction between NK-A and NK-
B can be applied solely to the NK activity of normal fresh spleen cells, because
boosting with interferon or in vitro culture is known to change the physical charac-
teristics, antigen expression, and target selectivity of NK-like cells (26, 27).

It is tempting to speculate that the NK-B cells that are Nk antigen negative and
marrow independent may be precursors of NK-A cells; the transition from NK-B to
NK-A may require an intact marrow. In previously reported experiments (4), we have
found that NK (EL-4) appears earlier than NK (YAC-1) in the spleens of lethally
irradiated mice transplanted with normal syngeneic precursor bone marrow cells.
However, such a schema is by no means proven, and delineation of the relationships
between NK-A and NK-B cells must await further investigations. In closing, it may
be pointed out that the existence of two or more classes of NK cells does not necessarily
argue for or against heterogeneity of putative NK cell receptors or their clonal
distribution. T and B cells, which are two distinct classes of immunocompetent cells,
are known to share similar idiotypic determinants (28). It is therefore conceivable
that distinct classes of cells that can mediate natural cytotoxicity may use similar
recognition structures if common cell surface antigens are present on their target cells.

Summary

Mice were treated with the bone-seeking isotope, **Sr, cyclophosphamide, and
short-term lethal irradiation in vivo, and murine spleen cells were treated with anti-
Nk-1.2 plus complement (C) in vitro. Fresh spleen cell suspensions from the above
groups and from beige and neonatal mice were subsequently tested for natural killer
(NK) cell activity against a panel of lymphoid and nonlymphoid tumor cell targets.
NK cell reactivities against YAC-1, MPC-11, and C1.18 tumors were markedly and
consistently reduced in (a) mice treated with ®Sr, (b) spleen cells treated with anti-
Nk-1.2 plus C, and (¢) C57BL/6 bg/bg mice. In contrast, NK activities against
FLD-3 and WEHI-164.1 tumors were usually normal in mice treated with #Sr, in
beige mutant mice, and in spleen cells after treatment with anti-Nk-1.2 antibody and
C. It appears, therefore, that two major groups of NK cells exist in fresh mouse spleen
cell suspensions. NK-A cells are marrow dependent, Nk antigen positive, and deficient
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in beige mice; these lyse YAC-1, MPC-11, and CI.18 tumors. NK-B cells, which are
responsible for the lysis of WEHI-164.1 and FLD-3, are Nk antigen negative, marrow
independent, and unaffected by the bg/bg mutation. Other features of NK-B cells
suggest that these NK cells, although they share the characteristics mentioned above,
differ among themselves especially with respect to age of maturation and susceptibility
to cyclophosphamide and total body irradiation. The NK-B group may therefore
include subsets that remain to be defined.

We thank Kathleen Donovan for excellent secretarial assistance in the preparation of this
manuscript and Dr. C. Lopez and Dr. O. Stutman for communicating their unpublished
results.
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