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Antisense transcription as a tool to tune
gene expression
Jennifer AN Brophy & Christopher A Voigt*

Abstract

A surprise that has emerged from transcriptomics is the preva-
lence of genomic antisense transcription, which occurs counter
to gene orientation. While frequent, the roles of antisense tran-
scription in regulation are poorly understood. We built a
synthetic system in Escherichia coli to study how antisense tran-
scription can change the expression of a gene and tune the
response characteristics of a regulatory circuit. We developed a
new genetic part that consists of a unidirectional terminator
followed by a constitutive antisense promoter and demonstrate
that this part represses gene expression proportionally to the
antisense promoter strength. Chip-based oligo synthesis was
applied to build a large library of 5,668 terminator–promoter
combinations that was used to control the expression of three
repressors (PhlF, SrpR, and TarA) in a simple genetic circuit (NOT
gate). Using the library, we demonstrate that antisense promot-
ers can be used to tune the threshold of a regulatory circuit
without impacting other properties of its response function.
Finally, we determined the relative contributions of antisense
RNA and transcriptional interference to repressing gene expres-
sion and introduce a biophysical model to capture the impact of
RNA polymerase collisions on gene repression. This work quanti-
fies the role of antisense transcription in regulatory networks
and introduces a new mode to control gene expression that has
been previously overlooked in genetic engineering.
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Introduction

Genetic engineers typically follow a simple scheme for controlling

gene expression: a promoter and terminator flank the gene in the

same orientation. Larger designs consisting of multiple genes are

often organized similarly, where transcription is designed to proceed

in one direction. This organization avoids potential interference

between promoters that can arise due to RNA polymerase (RNAP)

collisions (Shearwin et al, 2005), supercoiling (Pruss & Drlica, 1989;

Chen & Wu, 2006), non-coding RNAs (Georg & Hess, 2011), and

conflicts with the replication machinery (French, 1992; Vilette et al,

1995; Helmrich et al, 2013). Promoters that are oriented in the

opposite direction of genes produce antisense transcription, and

although this is generally regarded as a nuisance (Sharma et al,

2010; Singh et al, 2014), it can be useful for reducing leaky expres-

sion of toxic proteins (O’Connor & Timmis, 1987; Worrall &

Connolly, 1990; Saida et al, 2006; Fozo et al, 2008) and generating

genetic switches (Hongay et al, 2006; Chatterjee et al, 2011a,b).

Here, we propose that promoters oriented opposite to a gene can be

used reliably to tune gene expression and control the input thres-

hold of genetic switches.

Increased use of transcriptomics has demonstrated that antisense

transcription is surprisingly common across all organisms, including

archaea (Wurtzel et al, 2010), prokaryotes (Selinger et al, 2000;

Georg et al, 2009; Güell et al, 2009; Filiatrault et al, 2010; Wade &

Grainger, 2014), and eukaryotes (Dujon, 1996; Yelin et al, 2003; He

et al, 2008). For example, in E. coli, ~30% of all transcription start

sites were found to be antisense and internal to, or just after, genes

(Tutukina et al, 2007; Dornenburg et al, 2010; Thomason et al,

2015). Similarly in H. pylori, about half of the genes have at least

one antisense promoter (Sharma et al, 2010). Although some of this

antisense transcription is the result of inefficient termination by

intrinsic and rho-dependent terminators (Peters et al, 2012), it is

often driven by promoters with well-defined regulatory motifs, such

as housekeeping sigma factor binding sites (Dornenburg et al, 2010;

Raghavan et al, 2012; Wade & Grainger, 2014). Depending on the

organism, antisense transcription can be constitutive or regulated

under different environmental conditions (Beaume et al, 2010;

Nicolas et al, 2012).

While prevalent, the role of most antisense transcription in regu-

lation is unclear (Thomason & Storz, 2010; Sesto et al, 2013). Some

have postulated that the majority of antisense transcription is

non-functional and is background due to pervasive transcription

(Raghavan et al, 2012). However, antisense transcription is known

to be an important component of the genetic switches that control

bacterial competence (Chatterjee et al, 2011b) and virulence (Mason

et al, 2013), as well as Saccharomyces cerevisiae’s entry into meiosis

(Hongay et al, 2006). It also occurs frequently for genes that require
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tight expression control under defined conditions, such as toxic or

virulence proteins (Kawano et al, 2007; Fozo et al, 2008; Giangrossi

et al, 2010; Lee & Groisman, 2010). One role of antisense transcrip-

tion may be to impact the threshold of genetic switches (Liu &

Kobayashi, 2007), defined as the amount of input signal required to

reach half-maximal activity. It has been shown that the input thres-

hold required for gene expression can be tuned by changing the

translation efficiency of regulatory proteins, either by mutating ribo-

some binding sites or introducing small regulatory RNA, or by

sequestering the proteins using dummy operators or protein–protein

interactions (Buchler & Cross, 2009; Chen & Arkin, 2012; Lee &

Maheshri, 2012; Rhodius et al, 2013). There is evidence that anti-

sense promoters can similarly change regulatory circuits by control-

ling the expression of repressors, activators, r factors, and anti-r
factors (Tutukina et al, 2010; Hirakawa et al, 2012).

There are two classes of mechanisms by which antisense

promoters may regulate gene expression. The first involves the

antisense RNA (asRNA) that is generated, which can regulate gene

expression by binding to the mRNA to change its stability or trans-

lation, or act as a transcriptional regulator (Brantl & Wagner,

2002; Brantl, 2007). The second is transcriptional interference,

where the sense and antisense promoters interact directly or via

the RNAPs to cause the downregulation of a gene (Liu &

Kobayashi, 2007). There are four mechanisms by which transcrip-

tional interference can occur (Shearwin et al, 2005): (i) competi-

tion (promoters overlap and only one RNAP can bind at a time),

(ii) sitting duck (an RNAP that is slow to elongate is dislodged),

(iii) occlusion (one RNAP elongates over a promoter transiently

blocking the other), and (iv) collision (two actively transcribing

RNAPs collide) (Callen et al, 2004; Sneppen et al, 2005; Palmer

et al, 2009). Of these, modeling suggests that when promoters are

> 200 bp apart and oriented convergently, the dominant mecha-

nism of interference is collision (Sneppen et al, 2005). Regulation

by asRNA and transcriptional interference are not mutually exclu-

sive. Examples have been described where regulation occurs due

to only one mechanism (Liu & Kobayashi, 2007; André et al, 2008;

Hirakawa et al, 2012) or they work in concert (Giangrossi et al,

2010; Chatterjee et al, 2011b).

In this work, we harness antisense transcription as a reliable

“tuning knob” for the construction of genetic circuits. We introduce

a new composite part to the 30-end of the gene of interest that

consists of a unidirectional terminator followed by a reverse consti-

tutive promoter. We demonstrate that the antisense promoter

represses gene expression in accordance with its strength and that

the antisense transcription can cause a change in the threshold of

inducible systems. A large library of promoter–terminator combina-

tions was constructed via chip-based oligo synthesis (Tian et al,

2004) and screened using flow-seq to identify terminators and

promoters that can be used to construct reliable antisense regulation

(Sharon et al, 2012; Kosuri et al, 2013). This approach has been

used previously to elucidate how translation rates affect mRNA

stability (Kosuri et al, 2013) and codon bias influences RNA struc-

ture and translation (Goodman et al, 2013). Finally, we determined

the relative contributions of antisense RNA and transcriptional inter-

ference to repressing gene expression and introduce a biophysical

model to parameterize RNA polymerase collisions. This work contri-

butes to a larger effort to expand on the classic concept of an

“expression cassette” to include additional parts that utilize genetic

context to fine-tune expression levels (Lou et al, 2012; Mutalik et al,

2013; Brophy & Voigt, 2014).

Results

Repression correlates with the strength of the
antisense promoter

A simple system was designed to quantify the impact of an anti-

sense promoter on gene expression (Fig 1A). The isopropyl b-D-1-
thiogalactopyranoside (IPTG)-inducible promoter Ptac was used as
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Figure 1. Antisense transcription and its impact on gene expression.

A A schematic showing the antisense transcription reporter system. A
constitutive promoter (red) at the 30-end of rfp represses gene expression
by firing polymerases at the forward promoter Ptac (black).

B Strengths of the constitutive promoters used as PR (colors) and the forward
promoter (Ptac) at different inducer concentrations. The reference promoter
(Pbla) used to calculate promoter strength in units of polymerase firings per
second is shown (see Appendix for methods, promoter sequences, and
plasmid maps).

C Response functions for Ptac with different antisense promoters located at
the 30-end of RFP: no promoter, black; antisense promoters of different
strength, colors as in (B). The inset is the log10 transform of the same data
normalized by min and max.

D The fold repression (equation 1) is shown as a function of the induction of
the forward promoter. The colors correspond to antisense promoters of
different strength (B).

E The maximum fold repression (white circles) or threshold (gray squares) is
shown as a function of antisense promoter strength. The induction
threshold K was calculated by fitting equation 2 to the data in (C). The
lines are linear and exponential fits to the threshold (R2 = 0.9876) and
repression (R2 = 0.99737) data, respectively.

Data information: In all panels, the data represent the mean of three
experiments performed on different days, and the error bars are the standard
deviation of these replicates.

Source data are available online for this figure.
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the forward promoter to drive the expression of red fluorescent

protein (RFP). Downstream of rfp, there is a constitutive antisense

promoter PR whose RNAPs will be fired toward Ptac. The full

cassette was placed on a plasmid containing the p15A origin

(Appendix Fig S1). Four constitutive promoters of different strength

(Kosuri et al, 2013; Mutalik et al, 2013) were selected to serve as

the antisense promoters, and the impact on RFP expression was

quantified. The strengths of PR and Ptac were determined using a

separate plasmid system and normalized by a reference standard to

estimate promoter strengths as polymerase firing rates (Fig 1B)

(Materials and Methods).

The addition of an antisense promoter changes the response

curve for the IPTG induction of RFP in three ways (Fig 1C). First,

expression is reduced over the entire range of inducer concentra-

tion. We defined a parameter h that captures the magnitude of

repression,

h ¼ [RFP]0
[RFP]þ

(1)

where the subscripts +/0 represent the presence/absence of an

antisense promoter. Plotting h versus inducer concentration shows

that the impact of the antisense promoter is stronger when Ptac is less

active (Fig 1D). This biased repression is consistent with previous

findings that weak promoters are more susceptible to repression via

transcriptional interference and asRNAs than strong promoters

(Callen et al, 2004; Shearwin et al, 2005; Sneppen et al, 2005).

Second, the maximum repression increases with the strength of the

antisense promoter (Fig 1E, exponential regression; R2 = 0.99737).

Notably, the strongest promoter tested (apFAB96) is unable to comple-

tely repress expression. This promoter is among the strongest from a

large synthetic library (Kosuri et al, 2013) and of comparable strength

to the E. coli rrn promoters (Liang et al, 1999). Finally, the threshold

for induction increases as a function of the strength of antisense

promoter (Fig 1E, linear regression; R2 = 0.9876). Interestingly, the

shape of the induction curve remains similar for the different antisense

promoters (Fig 1C, inset). The cooperativity (n = 1.7 � 0.1) is also

unaffected by different antisense promoters. Thresholds and Hill coef-

ficients were calculated by fitting the response functions in Fig 1C to

the Hill equation

y ¼ ymin þ ymax � yminð Þ xn

Kn þ xn
(2)

where x is the concentration of IPTG, y is the activity of POUT, n is

the Hill coefficient, and K is the threshold level of input where the

output is half-maximal. Escherichia coli growth rates were also unaf-

fected by the addition of antisense promoters (Appendix Fig S2).

Multiplexed characterization of antisense promoters

Experiments were designed to quantify the impact of an antisense

promoter on the function of a simple genetic circuit. We chose to

characterize NOT gates, where an input promoter drives the expres-

sion of a repressor that turns off an output promoter (Yokobayashi

et al, 2002). This creates a response function that is inverted

compared to an inducible system alone. The NOT gate is a common

logic motif that has been used to build more complex combinatorial

logic and dynamic functions in living cells (Stanton et al, 2014). Our

design adds antisense promoters to the 30-end of the repressor

(Fig 2A), which reflects natural motifs where regulatory proteins

are controlled by antisense promoters (Eiamphungporn & Helmann,

2009). The design also adds unidirectional terminators between the

30-end of the repressor and the antisense promoter to demonstrate

that antisense promoters can alter gene expression when added to

the outside of complete expression cassettes.

Advances in chip-based DNA synthesis have made it possible to

simultaneously synthesize 10,000s of unique ~200 bp oligos (Kosuri

& Church, 2014). This length is appropriate to encode a terminator

and antisense promoter. A library was constructed based on 52

terminators (Chen et al, 2013) and 109 constitutive promoters

(Kosuri et al, 2013; Mutalik et al, 2013), paired combinatorially to

produce 5,668 unique composite parts (Fig 2A). All of the promoters

are synthetic and their strengths fall within a range of 0.0047 au to

21 au, with an average of 3.6 au (Kosuri et al, 2013). All of the

terminators are naturally occurring sequences from the E. coli K12

genome and were selected to encompass a wide range of terminator

strengths. The majority of these terminators are unidirectional and

allow RNAPs fired from the antisense promoter to proceed while

blocking those from the forward promoter (Chen et al, 2013). The

composite parts were synthesized and cloned into three NOT gates

made from TetR homologs (Materials and Methods) (Stanton et al,

2014). The NOT gate repressors (PhlF, SrpR, TarA) were selected to

represent different response function shapes (Fig 2B).

The NOT gate libraries were screened using flow-seq, a technique

where fluorescence-activated cell sorting (FACS) is used to sort the

cells into bins, the contents of which are determined using next-

generation sequencing (Materials and Methods) (Raveh-Sadka et al,

2012; Sharon et al, 2012). Here, we sorted the cells by NOT gate

threshold, that is, the input promoter activity at which the output flu-

orescence is reduced to half-maximum. To do this, each library was

grown with 100 lM IPTG and sorted by fluorescence into four log-

spaced bins (Fig 2C). At 100 lM IPTG, all of the gates lacking anti-

sense promoters are OFF (Fig 2B) and library members that are ON

are likely to have increased induction thresholds. NOT gates without

antisense promoters were grown with 0 and 100 lM IPTG to set

upper and lower bounds for sorting, respectively. 6.5, 18.3 and 4.9%

of the cells from the PhlF, SrpR, and TarA libraries have increased

fluorescence relative to the gates without antisense promoters.

After sorting, cells were plated onto solid agar medium and eight

colonies from each bin were randomly selected and their full

response functions were measured (Fig 2D). As expected, the most

fluorescent bins (bins 3 and 4) captured gates with the largest

increase in threshold (Fig 2D, yellow and red). To quantify the

effects of the antisense promoter/terminator parts, each response

function was fit to equation 2.

Constructs from high fluorescence bins have increased thres-

holds K relative to lower fluorescence bins, but the Hill coefficient

n does not show a consistent trend across bins (Fig EV1). After

individual colonies were analyzed, we pooled the remaining cells

from each bin (50,000–200,000 colonies) and measured their

response functions in aggregate. Analysis of pooled constructs shows

that the ON and OFF states of all library members are essentially

constant and threshold differences between the bins are statistically

significant (Fig EV2, one-way ANOVA).

After sorting, the bins were sequenced to identify the

promoter/terminator combinations responsible for shifting gate
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thresholds. Briefly, plasmid DNA was isolated from bacteria in

each bin, then the composite parts were amplified from the plas-

mids and barcoded for multiplexed sequencing. Paired-end reads

were used to ensure complete sequencing of each promoter/

terminator pair (Materials and Methods). For the following

analysis, we removed any sequencing reads that did not

perfectly match the designed promoter/terminator pairs. The

percent of perfect sequences from the pools was 32.38%, which

is consistent with the error rate of chip-based oligo synthesis

(Kosuri & Church, 2014).

A

B F

C

D

E

Figure 2.
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The response threshold correlates with antisense
promoter strength

Previously measured values of the promoter and terminator

strengths were used to analyze the parts identified in each bin by

deep sequencing (Fig 2A). In all three libraries, antisense promoter

strength increases as a function of bin fluorescence (Appendix Fig

S3, linear regressions; R2 = 0.87421–0.96112). The high fluores-

cence bins (bins 3 and 4) contain constructs with greater median

antisense promoter strength than lower fluorescence bins (bins 1

and 2) (Fig 2E). In contrast, there is no consistent trend in the

forward or antisense terminator strengths across the sorted libraries

(Appendix Figs S3 and S4).

The parts responsible for shifting gate thresholds were further

explored by enrichment analysis. Enrichment identifies the parts

that are selected for, or against, in each bin during sorting (Materi-

als and Methods). Since high fluorescence bins (bins 3 and 4) have

an increased threshold relative to lower fluorescence bins (bins 1

and 2) (Fig EV1), composite parts that are enriched in high fluores-

cence bins are more likely to generate large shifts in gate thresholds

than those enriched in lower fluorescence bins. To visualize trends

in the data, enrichment was used to assign each composite part to

the one bin (1–4) that best reflects its ability to shift gate thresholds

(Fig 2F). Most composite parts with strong antisense promoters are

maximally enriched in bins 3 and 4 (Fig 2F, top). However, when

strong promoters are paired with bidirectional terminators that have

significant antisense termination efficiencies (Ts antisense > 10),

the composite parts are incapable of shifting circuit thresholds

(Fig 2F, left). In contrast, when strong antisense promoters are

paired with unidirectional terminators, the composite parts are

sorted into high fluorescence bins. These terminators (TS antisense

< 10) most likely facilitate greater shifts in gate thresholds than

bidirectional terminators by allowing more RNAPs fired from the

antisense promoter to proceed. Terminators that are predicted to

destabilize mRNA or contain cryptic antisense promoters also facili-

tate large shifts in gate thresholds (Fig 2F, right). Changes in mRNA

stability can result in a large shift because the mRNA produces less

protein before it is degraded (Chen et al, 2013); thus, more tran-

scripts are required to produce the threshold amount of repressor

protein. Similarly, terminators with cryptic antisense promoters

increase the gate threshold by increasing the basal level of antisense

transcription.

Characterization of terminator/promoter pairs as “parts”

One of our goals is to use antisense transcription to reliably change

the expression level of a gene or shift the threshold of a genetic

circuit. Ideally, the impact of an antisense promoter on these func-

tions would be predictable and a set of promoters of different

strengths could be used to tune expression. When building multi-

gene systems, it is desirable to use different terminators to control

each gene in order to avoid homologous recombination (Sleight &

Sauro, 2013). Therefore, we sought to identify a set of strong termi-

nators that could be used in conjunction with a set of antisense

promoters to reliably tune gene expression. Predictability would

require that the promoters impart their effect independent of the

terminator to which they are paired.

Some terminators may have mechanisms that impact the

effectiveness of the antisense promoter. As such, we eliminated

those with known features (cryptic promoters, bidirectional termi-

nation, hairpins that impact mRNA stability) from the set (Fig 2F).

Then, terminators and promoters were systematically removed until

there remained a core set of both in which the promoters produced

a reliable response when combined with any of the terminators.

This set, shown in Fig 3A, provides nine strong terminators that can

be fused to different genes or operons and twenty antisense promot-

ers that can be added to control their expression (Fig 3B). To con-

firm predictability, several terminator–promoter pairs were tested in

a reporter construct with Ptac and yfp. The repression produced by

these pairs collapse onto a single curve, independent of the identity

of the terminator used (Fig 3C, exponential regression; R2 = 0.9275)

(Appendix Table S2).

◀ Figure 2. Construction of a library of terminator/antisense promoter pairs and characterization of their impact on regulatory circuit performance.

A Library construction and flow-seq screening used to measure the impact of terminator/antisense promoter pairs on NOT gate performance. All combinations of 52
unidirectional terminators and 109 promoters were constructed to create a library of 5,668 transcriptional interference constructs. The terminator and promoter
strengths shown were measured previously (Chen et al, 2013; Kosuri et al, 2013; Mutalik et al, 2013). The library was synthesized as oligonucleotides, then cloned into
genetic NOT gates at the 30-end of the repressor gene (red box). Each library was transformed into Escherichia coli, grown with 100 lM IPTG, and sorted into bins of
varying YFP fluorescence to find constructs with increased induction thresholds. Bacteria from each bin were plated on solid media, and individual colonies were
selected to measure the full response function of sorted variants. Plates were scraped to isolate plasmids from bacteria in each bin, and plasmid DNA was barcoded
and deep-sequenced (Materials and Methods).

B Response functions of the starting NOT gates (no antisense promoters) built with TetR homologs: PhlF (left), SrpR (center), TarA (right). The response functions are
measured using Ptac activity as the input and YFP as the output. Ptac activity was measured using a separate plasmid system and converted into REU with a reference
standard (see Appendix for plasmid maps). Vertical lines (red) demarcate Ptac activity with 100 lM IPTG, the inducer concentration used to sort libraries.

C Fluorescence histograms of the unmodified NOT gates and libraries before sorting. Each unmodified NOT gate was grown with 0 lM (light gray) and 100 lM (dark
gray) IPTG to set upper and lower bounds for sorting, respectively. Libraries (green) were sorted into four bins, shown as colored vertical bars and numbered by
increasing fluorescence.

D Response functions of twenty four randomly selected clones from the sorted libraries colored by the bin in which they were found (coloring is same as in C). The
response functions of the NOT gates lacking antisense promoters are shown in black.

E Deep sequencing revealed the identities of antisense promoters in each bin. Previously measured values, shown in (A), were used to calculate the median promoter
strength of parts sorted into each bin. Box plots display the median, with hinges indicating the first and third quartiles. The unsorted library is marked “U”.

F Heat map shows the bin in which each terminator/promoter pair was most enriched. Promoters are rank ordered by their strength, with the strongest at the top. The
terminators were grouped based on known or predicted terminator features and sorted by the predicted strength of a cryptic antisense promoter or impact on mRNA
stability, if relevant (Materials and Methods). Unidirectional terminators were sorted based on similarity in their profiles across the promoter set. Terminator/
promoter combinations that are not enriched in any of the bins are colored gray. Columns and rows > 90% gray were removed from the enrichment grid.

Source data are available online for this figure.
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Contribution of asRNA to repression

To determine the relative contributions of asRNA and transcrip-

tional interference to repression generated by antisense promoters,

we built a set of plasmids to express asRNA corresponding to the

reporter gene (Appendix Fig S5). These plasmids each have one of

the four antisense promoters (apFAB49, apFAB140, apFAB78, or

apFAB96) driving expression of the reverse compliment of RFP

followed by a strong bidirectional terminator (ECK120034435). The

cassette is placed on a plasmid containing the ColE1 origin, which is

maintained at a copy number approximately two times higher than

p15A (Deininger, 1990). The asRNA plasmids were co-transformed

into E. coli along with the original RFP reporter plasmid (pJBTI241,

Appendix Fig S1).

Using these data, the fold repression due to antisense RNA hasRNA
is calculated as in equation 1, where the subscripts +/0 now

represent the presence or absence of trans encoded asRNA. hasRNA
should be viewed as an upper bound on the contribution from

asRNA to total fold repression h. This is because its expression in

trans causes the asRNA to be longer (relative to the asRNAs gener-

ated at the 30-end by RNAP collisions) and expressed at a higher

level (due to the absence of RNAP collisions and the higher copy

number plasmid). Fold repression generated by transcriptional inter-

ference hTI was then determined by dividing the total fold repression

h by hasRNA. Thus, hasRNA and hTI reflect the relative contributions of

asRNA and transcriptional interference to total repression generated

by antisense transcription. Plotting h, hasRNA, and hTI versus inducer
concentration shows that asRNA and transcriptional interference

generate approximately equivalent contributions to repression

(Fig 4A, Appendix Fig S13). When the forward promoter is strongly

induced, the predicted cis contribution declines, which is consistent

with models of transcriptional interference (Sneppen et al, 2005)

(Fig 4A, Appendix Fig S13). It is noteworthy that strong repression

cannot be achieved through either transcriptional interference or

asRNA alone. They each contribute to the total repression that can

be achieved using antisense promoters. The cis regulation is likely

most important for achieving maximal repression when the asRNA

does not have specific regulatory qualities, such as RNA–RNA or

RNA–DNA interaction hairpins (Lucks et al, 2011; Mutalik et al,

2012), Hfq binding motifs (Brennan & Link, 2007), or RNase

processing sites (Lee & Groisman, 2010; Stazic et al, 2011).

A quantitative model of transcriptional interference

A differential equation model was developed to explore collision

interference and parameterize the repression that arises for different

forward and antisense promoter firing rates (/F and /R) and gene

length N. The model and parameters are shown in Fig 4B and

Appendix Table S3. Polymerases that originate from the forward

promoter PF transcribe a gene at a constant velocity v unless they

collide with polymerases from the interfering promoter PR on the

opposing strand of DNA. In the event of a collision, polymerases

may dissociate from the DNA.

Collision interference can be captured by two differential equa-

tions that track the steady-state concentration of polymerases on the

forward CF and reverse CR strands as a function of the distance from

the start site x (in bp):

dCF

dx
¼ �eFCFCR (3)

dCR

dx
¼ eRCFCR (4)

Here, the eF and eR are parameters that reflect the possibility that

RNAPs fired from the forward and antisense promoters encounter

collisions and dissociate from the DNA. Several factors may influ-

ence the frequency with which RNAPs encounter collisions and

dissociate from the DNA. For example, transcriptional bursting

could prevent RNAPs from encountering head-on collisions by

increasing the time between transcription events initiated at the

opposing promoter. In vitro experiments show that head-on RNAP

collisions result in stalling and backtracking of the enzymes (Cramp-

ton et al, 2006), which leaves them vulnerable to clearance (Roberts

A B

C

Figure 3. Composability of unidirectional terminators and antisense
promoters.

A The flow-seq data were used to identify a subset of promoters and
terminators that could be combined to obtain a reliable reduction in gene
expression.

B Each graph shows a terminator (name at top), and each point is a promoter
from the list in (A). The x-axis (<Bin#>) is the average for the promoter
across the complete terminator set, and the y-axis (Bin#) is the bin for the
specific terminator. The Bin# is calculated as described in Fig 2F.

C Repression was explicitly measured for a subset of terminator/promoter
pairs selected from (A). The pairs were cloned into the plasmid from (A)
with Ptac and yfp, and fold repression (equation 1) was measured as a
function of the forward promoter activity (see Appendix Table S1 for
terminator/promoter combinations tested). Maximum fold repression is
plotted against the previously measured promoter activities (Kosuri et al,
2013); R2 = 0.9275. Composite parts are marked by terminator
(ECK120035132, circle; ECK120010831, square; ECK120034435, triangle;
ECK120021270, diamond; ECK120010793, star; ECK120030221, x;
ECK120010815, +). Data represent the mean of three experiments
performed on different days, and the error bars are the standard deviation
of these measurements.
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& Park, 2004; Nudler, 2012). However, co-translating ribosomes

(Proshkin et al, 2010) and actively transcribing RNAPs (Epshtein &

Nudler, 2003; Epshtein et al, 2003) have been shown to rescue

stalled/backtracked complexes by realigning the 30-termini of the

RNA transcript with the enzyme’s active site. In addition, there are

active mechanisms that favor the termination and release of RNAPs

transcribing non-coding RNA (Kaplan & O’Donnell, 2003). There-

fore, the model was built to accommodate the differences in dissoci-

ation for RNAPs fired from forward and antisense promoters of

different strengths.

Boundary conditions are defined by the rates that polymerases

are fired, that is, begin elongating, at the forward CF(x = 0) = /F/v

and reverse CR(x = N) = /R/v promoters. The polymerase velocity

v = 40 bp/s is held constant (Vogel & Jensen, 1994; Sneppen et al,

2005). The equations are numerically solved for each /F and /R

combination (Materials and Methods). We chose to model PF as Ptac
with ten different IPTG concentrations and PR as four different

constitutive promoters: apFAB49, apFAB140, apFAB78, and

apFAB96 (Fig 1B). Simulated repression can be calculated as the

ratio of full-length (x = N) transcripts produced from PF with and

without an antisense promoter

h ¼ CF jeF ¼ 0

CF jeF [ 0
; (5)

providing a prediction that can be compared with measurements

(equation 1). For each combination of forward and antisense

promoters, h is calculated and compared with that derived from

experiments.

Repression due to asRNA is not included in the model. Rather,

our approach was to fit the model predictions to the two bounds

that we measured. First, results were fit to total repression h, which

assumes that there is no contribution from asRNA to the observed

repression. Next results were fit to hTI, which represents the mini-

mum amount of repression attributable to transcriptional interfer-

ence. These bounds were then used to fit the underlying biophysical

parameters and provide a range of values that reflect the possible

contribution of transcriptional interference to gene repression.

We first simulated collision interference with eF = eR = 1, since

previous models of transcriptional interference assume that actively

transcribing polymerases never survive head-on collisions (Sneppen

et al, 2005; Chatterjee et al, 2011a,b) (Fig 4C). However, assuming

eF = eR = 1 predicts too much repression and results in a poor fit to

our experiments. To optimize eF and eR, the model was solved where

these parameters are varied in the range [0,1] in increments of 0.01

(Appendix Fig S6). This was repeated for each value of /F and /R in

our data set, and the values of eF and eR that generate repression

closest to the experimentally measured hTI were determined. This

yielded a set of 80 optimal values of eF and eR, corresponding to all

of combinations of forward and antisense promoter activities (40

pairings) fit to either h or hTI. The optimal values of eF and eR
produced behavior that closely matches the experimental data

(Fig 4D, linear regression; m = 1, R2 = 0.84082). Values of e < 1

are interpreted as cases where polymerases either avoid or survive

collision and continue transcribing. Importantly, the model does not

assume that one RNAP must dissociate in order for the RNAP on the

opposing strand of DNA to survive collision. This ability to bypass

is supported by in vitro experiments done with viral (Ma &

McAllister, 2009) and yeast (Hobson et al, 2012) RNA polymerases.

The optimum values of eF and eR are surprisingly constant across

the dataset and are independent of the identity of the antisense

promoter or the firing rate of the forward promoter (Appendix Fig

S7). e values fit using h represent the probabilities that polymerases

collide and dissociate when transcriptional interference is assumed

A B

C D E

Figure 4. Mechanisms of repression by antisense transcription.

A The total fold repression h generated by the apFAB96 antisense promoter is
shown as a function of forward promoter activity using the characterization
system in Fig 1A (black line). This is compared to the repression observed
when the same promoter is used to drive the transcription of asRNA in
trans from a separate plasmid (dashed red line) (Appendix Fig S5). The
repression due to transcriptional interference hTI (solid red line) is inferred
from the total and trans asRNA repression data (see text for details).

B Schematic of the transcriptional interference model. A forward PF and
antisense PR promoter are located on either side of a gene, N bases apart.
The promoters fire at rates /F and /R RNAP/second. Polymerases transcribe
at a constant velocity v unless they collide with polymerases fired from
opposing promoter. Polymerases collide and dissociate from the DNA with
a probability e.

C Comparison of model predictions to experimental data when eF = eR = 1.
Each data point shows experimentally measured repression (h - white,
hTI - gray) for each PF/PR pair plotted against model predictions generated
with the same promoter combinations. Repressions predicted by the model
were calculated using equation 5.

D Comparison of model predictions to experimental data for the highest
scoring eF and eR. The optimal eF and eR values simulate repression closest
to the experimentally measured value (Materials and Methods). Data points
show experimentally measured repression (h – white, hTI – gray) for each
PF/PR pair plotted against model results generated with the optimal eF and
eR values for each promoter combination.

E The range of optimal e values that result from fitting the model to h (which
assumes that transcriptional interference is the sole mechanism of
repression) or hTI (which is the minimum amount of repression attributable
to transcriptional interference). Box plot extends from the median optimal
eF and eR when the model is fit to hTI (<eF> = 0.07, <eR> = 0.52) to median
optimal eF and eR when the model is fit to h (<eF> = 0.14, <eR> = 0.47).

Data information: In all panels, the data represent the mean of three
experiments performed on different days, and the error bars are the standard
deviation of these replicates. Fold repression h is the magnitude of gene
expression produced by forward promoter in the absence of an antisense
promoter divided by the amount of gene expression produced in the presence
of an antisense promoter.

Source data are available online for this figure.
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to be the sole mechanism for gene repression. In contrast, e values
fit using hTI reflect the smallest possible contribution of transcrip-

tional interference to gene repression. Thus, we find a range of e
values that reflect the potential contributions of collision interfer-

ence to gene repression. We find that the probability that a poly-

merase dissociates due to a competing polymerase is significantly

larger for RNAPs fired from the antisense promoter (<eR> = 43–

54%) as compared to those from the forward promoter (<eF> = 7–

15%) (Fig 4E). In addition, the model predicts that fold repression

due to transcriptional interference increases exponentially as a func-

tion of the antisense promoter strength and distance between the

two promoters (Fig EV3A and B). To test repression as a function of

distance between the forward and antisense promoters, we modified

our antisense reporter system and inserted yfp between the 30-end of

rfp and the antisense promoter (Fig EV3D). This increases the

distance between the two promoters from 850 to 1,500 bp. Measur-

ing repression of RFP and YFP using this system shows that repres-

sion increases as the distance between the two promoters grows.

Discussion

This work demonstrates that antisense promoters can be reliably

used to tune gene expression. The degree of repression is propor-

tional to the strength of the antisense promoter over a > 30-fold

range. This builds on the modern revisiting of the classical “expres-

sion cassette” to incorporate additional non-canonical parts to tune

expression, insulate against context, and provide for rapid debugging

via omics techniques (Mutalik et al, 2013; Nielsen et al, 2013). In

this paradigm, there are alternative means to control the expression

level of a gene, such as changing the forward promoter (Mutalik

et al, 2013) or RBS (Salis et al, 2009), or adding small RNA (Lucks

et al, 2011; Mutalik et al, 2012; Na et al, 2013) or 30-hairpins to alter

mRNA stability (Carrier & Keasling, 1997). While some of these

approaches can achieve greater ranges of expression control, anti-

sense promoters have unique features that are advantageous for

some applications. Notably, they offer a means of control external to

the expression cassette. This is particularly valuable when the

forward control elements (promoter and RBS) have been engineered

to integrate additional regulatory information (Cox et al, 2007;

Carothers et al, 2011; Stanton et al, 2014; Stevens & Carothers,

2015). In these cases, it is not simple to adjust the overall expression

level without interfering with how the signals are integrated. Exploit-

ing antisense transcription allows for control without changing the

inputs to the system or the sequence of the forward transcript. In

addition, our flow-seq data demonstrate that the impact of the anti-

sense promoter is largely context independent. From this, we derived

a set of unidirectional terminators that can be combined with the

antisense promoter in a modular manner. Thus, implementing this

control is simple and modular and can be done with existing

promoter libraries.

The performance of antisense transcription is derived from its

unique synergy between its impact on transcription from the

forward promoter and post-transcriptional impact on protein expres-

sion. For our system, we find that antisense RNA and collision

between actively transcribing RNA polymerases contribute roughly

equally to repress gene expression. This synergy is important

because transcriptional interference implements its control at the

transcriptional level and would not be able to repress mRNAs made

by RNAPs that avoid collision. Antisense RNAs prohibit escaped

mRNA transcripts from being translated. For asRNAs with weak

affinity for the target mRNA, cohesion between the two mechanisms

may facilitate greater repression of target genes than the asRNA

alone.

The model predicts some mechanistic details about collision

interference. Most strikingly, polymerases transcribing translated

mRNA survive or avoid ~85% of their head-on collisions, which

may explain the inability to completely abolish gene expression with

transcriptional interference alone, despite the use of very strong

interfering promoters. Polymerase survival rates are not as high if

the polymerase is fired from the antisense promoter (~50%

survival). This imbalance may be due to the differences in the

kinetic properties of the two promoters, for example, burstiness and

differential dissociation of the RNAPs. Single-molecule experiments

that measure polymerase survival rates directly could be done to dif-

ferentiate between these two mechanisms. Additional experiments

can also refine our understanding of antisense transcription by

parameterizing additional mechanisms. The model presented here is

limited to collision interference as the mechanism of repression in

cis; however, several additional factors, such as r-loop formation

(Gowrishankar et al, 2013), changes in DNA topology (Chen & Wu,

2006), differences in local asRNA concentration (Llopis et al, 2010),

and occlusion interference (Palmer et al, 2009), could also be

considered. Direct measurement of asRNA activity in cis and trans,

as well as the measurement of RNA duplex formation and

degradation rates, r-loop formation, and other modes of transcrip-

tional interference, would facilitate the construction of a more

detailed mechanistic model of repression mediated by antisense

transcription.

Considering natural genomes, antisense promoters could be a

simple evolutionary mechanism to tune gene expression. Since

housekeeping sigma factors—such as r70—have relatively informa-

tion poor binding sites, promoters are expected to frequently arise

spontaneously during evolution (Raghavan et al, 2012). Thus,

constitutive antisense promoters could provide a simple mechanism

to reduce gene expression that can be rapidly discovered during an

evolutionary search. This is consistent with the lack of conservation

of antisense promoters between species (Nicolas et al, 2012;

Raghavan et al, 2012), which appear and disappear quickly in

evolutionary time to fine-tune expression. Antisense transcription

would be an easier solution to find than making mutations to the

sense promoter, which can be significantly constrained by needs of

regulatory signal integration (Price et al, 2005). Thus, the total

expression of a gene could be tuned without disturbing the integra-

tion of signals. The rate of evolution around any individual promot-

ers may not be high (Raghavan et al, 2012) because there are many

similar solutions that can be found.

Here, we show how antisense transcription can be integrated into

a simple NOT gate, which has been a common motif in building

larger synthetic genetic circuits. Antisense transcription provides a

mechanism where the switching threshold can be tuned without

impacting other characteristics of the gate, such as the cooperativity.

More complex circuits could be built by exploiting antisense tran-

scription in both prokaryotic and eukaryotic systems where anti-

sense regulation is known to occur (Hongay et al, 2006; Chatterjee

et al, 2011b; Mason et al, 2013) and additional tuning knobs can
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help improve the performance of synthetic systems (Murphy et al,

2010; Nevozhay et al, 2013; Brophy & Voigt, 2014). The simple

constitutive promoters we employ here could be exchanged for

dynamic promoters that respond to inducers or cellular/environmen-

tal conditions or implement negative feedback. This occurs in natu-

ral regulatory networks; for example, many of the antisense

promoters in B. subtilis are regulated by alternative sigma factors

that respond to different environmental conditions (Nicolas et al,

2012). This gets more complex as the sigma factors themselves are

regulated by antisense transcription (Eiamphungporn & Helmann,

2009). Even more interesting architectures have been observed in

nature; for example, there are many that involve overlapping 50- and
30-UTRs. The overlap can include entire genes; for example, diver-

gent operons have been observed where the promoter for each

occurs one gene into the other (Chatterjee et al, 2011b; Lasa et al,

2011). These motifs would enable mutually exclusive switch-like

changes between the sets of genes that are expressed (Sesto et al,

2013). Collectively, this points to antisense transcription as some-

thing that should be routinely incorporated into engineered systems,

as opposed to being avoided.

Materials and Methods

Strains and media

Escherichia coli strains NEB10b (D(ara-leu)7697 araD139 fhuA

DlacX74 galK16 galE15 e14- /80dlacZDM15 recA1 relA1 endA1

nupG rpsL (StrR) rph spoT1 D(mrr-hsdRMS-mcrBC)) and DH10B

(F- D(ara-leu)7697 araD139 DlacX74 galE15 /80dlacZDM15 recA1

endA1 nupG rpsL mcrA D(mrr-hsdRMS-mcrBC) k-) were used for all

experiments. Cells were grown in either LB Miller broth (Becton

Dickinson 244630) or M9 minimal medium supplemented with

glucose (6.8 g/l Na2HPO4, 3 g/l KH2PO4, 0.5 g/l NaCl, 1 g/l NH4Cl;

Sigma M6030), 2 mM MgSO4 (Affymetrix 18651), 100 lM CaCl2
(Sigma C1016), 0.4% glucose (Fisher scientific M10046), 0.2%

casamino acids (Becton Dickinson 223050), 340 mg/ml thiamine

(vitamin B1) (Alfa Aesar A19560). Carbenicillin (100 lg/ml) (Gold

Bio C-103), kanamycin (50 lg/ml) (Gold Bio K-120), and/or chlo-

ramphenicol (35 lg/ml) (USB Corporation 23660) were added to

growth media to maintain plasmids when appropriate. Isopropyl

b-D-1-thiogalactopyranoside (IPTG) (Gold Bio I2481C) was used as

the inducer for all constructs.

Measurement of response functions

Escherichia coli strains were grown for 16 h in LB media containing

antibiotics in 96-deep well blocks (USA Scientific 1896–2000) at

37°C and 250 rpm in an INFORS-HT Multitron Pro. After 16 h, the

cultures were diluted 1:200 into M9 medium with antibiotics and

grown for 3 h with the same shaking and temperature settings as

the overnight growth. Next, the cultures were diluted 1:700 into

fresh M9 medium with antibiotics and different concentrations of

isopropyl b-D-1-thiogalactopyranoside (IPTG). These cultures were

grown for 6 h and then diluted 1:5 into phosphate-buffered saline

(PBS) containing 2 mg/ml kanamycin or 35 lg/ml chloramphenicol

to arrest protein production, and fluorescence was measured using a

flow cytometer.

Cytometry measurement and data analysis

Cells were analyzed by flow cytometry using a BD Biosciences

Fortessa flow cytometer with blue (488-nm) and red (640-nm)

lasers. An injection volume of 10 ll and flow rate of 0.5 ll/s were

used. Cytometry data were analyzed using FlowJo (TreeStar Inc.,

Ashland, OR), and populations were gated on forward and side scat-

ter heights. The gated populations consisted of at least 30,000 cells.

The median fluorescence of the gated populations was used calcu-

lated using FlowJo and used for all reporting. Autofluorescence of

white cells (NEB10b without plasmids) was subtracted from all fluo-

rescence measurements.

Promoter strength calculations

Promoter firing rates (RNAP/second) were estimated using NEB10b
cells harboring one of the following plasmids: pJBTI26, pJBTI264,

pJBTI265, pJBTI266, pJBTI267, pJBTI136 (Appendix Fig S10). Fluo-

rescence of each strain was measured as described above. Fluores-

cence produced by the strain harboring plasmid pJBTI136

(<YFP> = 528 au) was used to define a promoter firing rate of 0.031

RNAP/second, which has been reported for promoter Pbla (Liang

et al, 1999). Fluorescence of strains carrying the other plasmids was

divided by fluorescence produced by the strain harboring pJBTI136

and multiplied by 0.031 RNAP/second to obtain promoter firing

rates. The hammerhead ribozyme insulator RiboJ (Lou et al, 2012)

was used to standardize the 50-UTR of YFP mRNA so that changes

in fluorescence could be attributed solely to differences in poly-

merase firing. To convert promoter firing rates (RNAP/second) back

to arbitrary units reported by the cytometer, multiply the firing rates

by 17,032.

Relative expression units (REUs) were calculated using DH10B

cells harboring one of the following plasmids: 0RFP2, pAN1717

(Appendix Fig S11A). Strains harboring 0RFP2 and pAN1717 were

grown and measured in parallel with experimental strains. To convert

raw RFP fluorescence measurements into REU, RFP produced by

experimental strains was divided by red fluorescence produced by the

strain harboring 0RFP2. To convert our reported RFP measurements

(REU) back to arbitrary units, multiply the REU value by 2,295. To

convert raw YFP fluorescence measurements into REU, YFP produced

by experimental strains was divided by YFP produced by pAN1717.

To convert our reported YFP measurements (REU) back to arbitrary

units, multiply the REU value by 550. When measuring NOT gate

response functions (Fig 2B), input promoter (Ptac) activity was

measured using plasmid pJBTI26 (Appendix Fig S11B) and converted

into REUs as described here. Cellular autofluorescence was subtracted

before conversion to RNAP/second or REU by measuring the fluores-

cence of unmodified NEB10b cells.

Promoter strength measurements reported throughout the paper

as au are from the RNA-seq experiments of Kosuri et al (2013). In

these experiments, promoter strengths are calculated using RNA-seq

read depth of mRNA produced by each promoter driving the expres-

sion of green fluorescent protein.

Classification of terminators

Terminators that encode cryptic antisense promoters or destabilize

mRNA when placed at the 30-end were identified by analyzing data
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from Chen et al’s study of E. coli intrinsic terminators. In this study,

termination strength was measured by observing the changes in

GFP and RFP expression that occur when a terminator is placed

between two fluorescent proteins (50 GFP and 30 RFP). Strong termi-

nators resulted in a large drop in RFP fluorescence relative to a

control plasmid with no terminator (pGR). Chen et al measured

several terminators in both the forward and reverse orientation,

which allowed us to identify unidirectional terminators for this

study. We classified terminators as unidirectional if they have termi-

nation strength < 10 in the reverse orientation and > 10 in the

forward direction.

Average levels of GFP and RFP fluorescence produced by plas-

mids carrying Chen et al’s library of terminators were used to iden-

tify terminators that encode cryptic antisense promoters or

destabilize mRNA. Terminators that decreased GFP expression rela-

tive to the average were assumed to destabilize mRNA. Similarly,

terminators that increased RFP expression when measured in the

reverse direction were assumed to encode cryptic antisense promot-

ers. We classified terminators that decreased GFP expression more

than one standard deviation below the mean as destabilizing mRNA

and terminators that increased RFP expression more than one stan-

dard deviation as encoding cryptic antisense promoters.

Library design and construction

The terminator/ antisense promoter library was built as described

previously (Kosuri et al, 2013). The library was constructed based

on 52 terminators (Chen et al, 2013) and 109 constitutive promoters

(Kosuri et al, 2013; Mutalik et al, 2013), paired combinatorially to

produce 5,668 unique composite parts. We used 90 promoters from

an existing library (Mutalik et al, 2013) and 19 from the Anderson

promoter library on the BioBricks Registry. The terminators are

naturally occurring sequences from the E. coli K12 genome that

were previously characterized by Chen et al (2013) and selected to

encompass a wide range of terminator strengths. The composite

parts were checked for restriction sites (NotI and SbfI) and none

were found. To generate the final library, all sequences were

flanked by restriction enzyme sites (NotI and SbfI) and PCR primer

binding sites: (i) ATATAGATGCCGTCCTAGCG and (ii) AAGTATCT

TTCCTGTGCCCA.

The oligonucleotide library was constructed by CustomArray,

Inc., using their CMOS semiconductor technology. The library was

delivered as a 1 fM oligonucleotide pool and amplified using specific

PCR primers: oj1299 and oj1300 (Appendix Table S4). The PCR

products were then digested with NotI (New England Biolabs

R3189) and SbfI (New England Biolabs R3642) restriction enzymes

and cleaned with DNA Clean & Concentrator columns (Zymo

Research C1003). Plasmid backbones encoding repressor protein-

based NOT gates (PhlF, SrpR, TarA; maps in Appendix Fig S9) were

amplified by PCR with primers to add NotI and SbfI restriction sites

to the 30-end of the repressor gene. Plasmid backbones were then

digested with the same restriction enzymes and cleaned using DNA

Clean & Concentrator columns. After digestion, the library inserts

and plasmid backbones were ligated using T4 DNA ligase

(New England Biolabs M0208) and cloned into E. coli NEB10b-
electrocompetent cells (New England Biolabs C3020K), resulting in

three libraries (PhlF, SrpR, and TarA) of ~160,000 clones each and

> 20-fold coverage of the designed sequence space. Each library was

scraped from solid media plates and frozen at �80°C in 200 ll
aliquots with 15% glycerol for subsequent analysis.

Library growth and fluorescence-activated cell sorting (FACS)

To grow libraries for flow cytometry analysis or cell sorting, one

aliquot of each library was thawed and 10 ll of the sample was

added to 3 ml of LB media supplemented with carbenicillin in 15-ml

culture tubes (Fischer Scientific 352059). Once thawed, the remain-

ing library aliquot was discarded to avoid cell death from repeated

freeze–thaw cycles. The inoculated libraries were grown for 12 h at

30°C and 250 rpm in a New Brunswick Scientific Innova 44.

NEB10b control strains containing unmodified NOT gate plasmids

(Appendix Fig S9) were inoculated from single colonies into 3 ml of

LB supplemented with carbenicillin and also grown at 30°C and

250 rpm After 12 h, both library and control strain cultures were

diluted 1:200 into 25 ml of M9 medium with carbenicillin in 250-ml

Erlenmeyer flasks (Corning 4,450–250) and grown at 37°C and

250 rpm for 3 h. Next, the cultures were diluted to 0.001 OD600 in

25 ml of M9 medium with carbenicillin and either 0 or 100 lM
IPTG. These cultures were grown for 6 h to obtain exponential

phase growth. At the end of 6 h, cultures were diluted to OD600

~0.05 into PBS containing 35 lg/ml chloramphenicol to arrest cell

growth and protein production until sorting. Aliquots of each library

were also frozen at �80°C with 15% glycerol (VWR BDH1172) to

serve as “unsorted” controls.

Cell sorting was done on a BD Biosciences FACSAria II with a

blue (488-nm) laser. Each NOT gate library was sorted into four

non-adjacent log-spaced bins based on YFP fluorescence. Control

strains grown with 0 and 100 lM IPTG defined the upper and lower

boundaries for bin placement, respectively. One million cells were

sorted into the lowest fluorescence bin (Bin 1; Fig 2C, blue), which

captured 9.8–13.9% of each library; 50,000–200,000 cells were

sorted into all other bins, which captured 0.2–4.4% of the cells in

each library. After sorting, cells were plated on solid media to mini-

mize the effect of growth rate differences on library representation.

Each bin was then scraped from the solid media plates and frozen at

�80°C in 200 ll aliquots with 15% glycerol (VWR BDH1172) for

subsequent analysis.

Sorted library sequencing

Plasmids were isolated from cells in each bin using a miniprep kit

(Qiagen 1018398) by thawing one aliquot of each frozen sorted bin

and using the entire sample as input to the kit. For deep sequencing,

30 ng of each miniprepped sample was amplified for thirty cycles of

PCR with Phusion High-Fidelity Polymerase Master Mix (New

England Biolabs M0531). This PCR step added barcodes to each

sample using primers oj1302, 1334 – oj1348 (Appendix Table S4).

Amplification of samples was verified with gel electrophoresis and

quantified using a NanoDrop spectrophotometer (ND-1000).

Unsorted control samples were identically processed and sequenced.

13.1 M constructs were sequenced in a single MiSeq 150 paired-end

lane with the sequencing primers oj1301, oj1303, and oj1356

(Appendix Table S4). To correct for the fact that fewer cells are

sorted into the later bins (BIN2-4), the samples were mixed such

that the “unsorted” and “BIN1” samples were present in equimolar

ratios and made up 90% of the final sequenced mixture. The
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“BIN2”, “BIN3”, and “BIN4” samples, which were also mixed in

equimolar ratios, constituted the last 10% of the final sequenced

mixture. This resulted in 1.7–2.2 million sequencing reads from the

each of the “unsorted” and “BIN1” samples and 100,000–180,000

sequencing reads from each of the “BIN2”, “BIN3”, and “BIN4”

samples (Appendix Table S1).

Deep sequencing analysis

Custom software (“IlluminaSeqAnalysis.m”, Code EV1) was written

to combine paired-end reads and identify composite parts with

perfect sequence identity to designed constructs. Each set of paired

150-bp reads was aligned and merged into a contig based on over-

lapping sequence. NotI and SbfI restriction enzyme sites were identi-

fied, and all sequences (including adapter and constant primer

sequence) outside the restriction sites were trimmed from both ends

of the contig. Reads that did not pair or did not have both restriction

sites were discarded since all composite parts were under 200 bp,

and thus, paired reads should have overlapping sequence and yield

contigs with both restriction sites. Of the 13.1 M constructs

sequenced, 11.2 M (85.30%) yielded paired reads with overlapping

sequence and both restriction sites. Once paired, all remaining

contigs with mismatches (insertions, deletions, or substitutions) to

designed constructs were discarded. Of the 11.2 M contigs, 3.6 M

(32.28%) are perfect matches to the designed library. This is consis-

tent with the error rate of chip-based oligo synthesis (Kosuri &

Church, 2014).

Analysis of the perfect sequences shows that 70.0–77.5% of

the composite parts appear at least once in each of the unsorted

libraries (Fig EV4, Appendix Table S1). When we select for

library members that alter the NOT gate response functions,

coverage of the library decreases to 50.2–74.8% in Bin 1, 38.5–

50.0% in Bin 2, 25.0–26.1% in Bin 3, and 15.8–25.3% in Bin 4

(Fig EV4). This is expected since a limited subset of the

constructs will be capable of shifting the gate thresholds. Indeed,

> 50% of the composite parts encode promoters weaker than

apFAB49, which generated less than a twofold change in RFP

expression in our original experiments (Fig 1D).

Sorted-parts strength analysis

Custom software (“IlluminaPerfSeqAnalysis.m”, Code EV1) was

written to analyze the perfect oligonucleotides, that is, sequences

that are perfect matches to the designed library, sorted into each

bin. Analysis relied on previously measured terminator (Chen et al,

2013) and promoter (Kosuri et al, 2013; Mutalik et al, 2013)

strengths; therefore, all sequences with mutations were disregarded

because they could change a part’s activity and convolute the analy-

sis. Occurrences of each promoter and terminator were counted per

bin and used to calculate the median promoter, forward and reverse

terminator strengths for each bin.

Enrichment calculation

To calculate enrichment for each composite part, we normalized the

counts of each composite part in a bin to the total number of perfect

sequences in that bin. We defined the frequency of a composite part

fijx in a bin as

fijx ¼ cijxP
i cijx

(6)

where cij is the number of occurrences of composite part i in bin j

for library x, where x = PhlF, SrpR, or TarA. Then, we defined

enrichment Eijx as the ratio of the frequencies of a composite part i

in a sorted bin j to the frequency of that composite part in the

unsorted pool (fiux).

Eijx ¼ fijx
fiux

(7)

If a composite part did not appear in the unsorted library at

least once (fiux = 0), ciux was set to one, indicating one count of

the part in the unsorted library. This correction was used to

ensure that none of the enrichments were infinite. Enrichment Eijx
for each composite part was then averaged by bin across all three

libraries. We defined the average enrichment Eij for a composite

part as

Eij ¼
P

x Eijx
N

(8)

where N = 3, the total number of libraries. To ensure that compos-

ite part behavior is consistent across all three libraries, any

composite parts that did not appear in all three libraries for a given

bin were assigned an enrichment of zero for that bin, that is, if

Eijx = 0 for any x, Eij = 0.

Next each composite part was assigned to the bin where its aver-

age enrichment was highest. Maximum average enrichment Emax for

each composite part i was calculated as

Emaxi ¼ max
1� j� 4

ð�EijÞ (9)

Then, the composite part i is assigned to the bin j, where

Eij = Emaxi. If the maximum enrichment is less than one, the

composite part is depleted in the sorted library and is not assigned

to a bin (Fig 2F, gray). Depletion of a composite part in all of the

sorted bins relative to the unsorted pool may be the result of biases

in cell recovery after sorting or in amplification of the DNA for deep

sequencing. The matrix of bin assignments was generated using

custom software (“IlluminaEnrichmentGrid.m” Code EV1) and used

to create Fig 2F.

Measurement of growth curves

Escherichia coli strains were grown for 16 h in LB media containing

antibiotics, when appropriate, in 96-deep well blocks (USA Scientific

1896–2000) at 37°C and 250 rpm in an INFORS-HT Multitron Pro.

After 16 h, the cultures were diluted 1:200 into M9 medium with

antibiotics and grown for 3 h with the same shaking and tempera-

ture settings as the overnight growth. Next, the cultures were

diluted to OD600 = 0.001 into fresh M9 medium with antibiotics and

100 lM IPTG; 150 ll of these cultures was grown in black 96-well

optical bottom plates (Thermo scientific 165305) at 37°C and 1 mm

orbital shaking in a BioTek Synergy H1 plate reader. Optical density

measurements at 600-nm wavelength (OD600) were made every

20 min for 12 h.
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Construction and testing of the transcriptional
interference model

Custom MATLAB software was written to solve the model ODEs

(equations 3 and 4) with mixed boundary conditions. Initial mesh

for the MATLAB boundary solver bvp4c was formed using MATLAB

function bvpinit with general solutions for the model ODEs derived

in Wolfram Alpha’s Mathematica:

CFðxÞ ¼ C1

eR þ C2eC1x
(10)

CRðxÞ ¼ C1

eF

C2e
C1x

eR þ C2eC1x

� �
(11)

Integration constants were approximated using boundary

conditions CF(x = 0) = /F/v and CR(x = N) = /R/v. eF and eR were

input directly into the model for eF = eR = 1 or parameter sweep

experiments. Model results were reported as polymerase concen-

trations CF(x) and CR(x). Full-length transcript production is

assumed to be proportional to CF|eF = 0, which should be a

measure of polymerases fired from PF that successfully transcribe

the entire stretch of DNA between promoters. Fold repression h
is calculated using equation 5, which compares CF in the

absence of interference (CF|eF = 0) to CF with an interfering

promoter (CF|eF > 0). Model results for each forward/interfering

promoter pair were scored by simple comparison to experimental

data:

s ¼ abs hTI m � hTI p

� �� ��1
(12)

where s is the score for a specific promoter pairing, hTI_m and hTI_p
are measured and predicted repression, respectively, for that pair.

The best eF and eR values were calculated for each forward/interfer-

ing promoter pair using a weighted average, where each e was

weighted by its score.

Data availability

Brophy, JAN, Voigt, CA (2015). Antisense library. NCBI Sequence

Read Archive SRP065456.

Expanded View for this article is available online.
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