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Community structure detection in complex networks is important since it can help better understand the
network topology and how the network works. However, there is still not a clear and widely-accepted
definition of community structure, and in practice, different models may give very different results of
communities, making it hard to explain the results. In this paper, different from the traditional
methodologies, we design an enhanced semi-supervised learning framework for community detection,
which can effectively incorporate the available prior information to guide the detection process and can
make the results more explainable. By logical inference, the prior information is more fully utilized. The
experiments on both the synthetic and the real-world networks confirm the effectiveness of the framework.

C
ommunity structure detection in complex networks is of critical importance for understanding not only
the network topology, but also how the network works1–3. In many real applications, the revealed com-
munities often correspond to functional modules of the network, such as pathways in metabolic networks,

or a group of people that have common interest. These functional modules can be considered building blocks of
networks. Furthermore, dynamics in the networks with communities can be very different from those without
communities.

However, it is very hard to give a general and widely-accepted definition of community structure due to the
complexity of real problems, and most of the revealed communities are model-based, which makes the results
hard to explain, or in other words, the correctness and meanings of the communities cannot be confirmed without
the background information about the functions of the nodes. Hence if the background information can be
effectively incorporated to guide the process of community structure detection, we will get much better results. In
our previous work, we have proposed a semi-supervised learning framework to incorporate two types of back-
ground information into community detection: must-link and cannot link4. An interesting question is: How to
make better use of the prior knowledge to do more with less?

In this paper, based on our previous work4 and logical inference, we propose an enhanced semi-supervised
learning framework for community structure detection, which can incorporate the available prior information
more effectively. The most important contribution of the framework is that it adds a logical inference step to more
fully utilize the two types of prior information, must-link constraints and cannot-link constraints, and can more
effectively combine the information with the topology structure of networks to guide the detecting process. The
experimental results show that the proposed method can significantly improve the detection performance. We
also evaluate which type of constraints is more useful, indicating that the constraints of must-link contribute
much more than that of cannot-link.

Results
In this section, we empirically tested the effectiveness of the enhanced semi-supervised learning framework for
community detection. To do this, we applied NMF, spectral clustering and InfoMap with the revised adjacency
matrices to several well-studied networks.

Data description. Both the synthetic and the real-world networks were used in our experiments. Details are as
follows:

1) GN1: The GN network, also known as the ‘‘four groups’’ network, has 128 nodes which are divided into four
equalized sized non-overlapping communities with 32 nodes each. On average, each node has Zin 1 Zout 5

OPEN

SUBJECT AREAS:
COMPLEX NETWORKS

STATISTICAL PHYSICS

Received
5 April 2013

Accepted
31 October 2013

Published
19 November 2013

Correspondence and
requests for materials

should be addressed to
Z.-Y.Z. (zhyuanzh@

gmail.com)

SCIENTIFIC REPORTS | 3 : 3241 | DOI: 10.1038/srep03241 1



16 neighbors, or in other words, it randomly connects with Zin

nodes in its own community and Zout nodes in other com-
munities. As expected, with an increasing Zout, the community
structure will become less and less clear and the problem more
challenging. In our experiment, we set Zout to 10 and Zin to 6.

2) LFR5: Compared with GN networks, LFR networks are more
realistic. In LFR networks, both the degree and the community
size distributions obey power laws, with exponents c and b.
Each node has a fraction 1 2 m of its neighbors in its own
community and a fraction m in other communities. Here m is
called the mixing parameter.

2) We set the parameters of the LFR network as follows: the
number of nodes was 1000, the average degree of the nodes
was 20, the maximum degree was 50, the exponent of degree
distribution c was 2 and that of community size distribution b
was 1, and the mixing parameter m was 0.9. The communities
did not overlap with each other.

3) Political books (unpublished http://www.orgnet.com/cases.
html): This dataset contains 105 books on US politics and
441 edges. Nodes are books sold by the bookseller Amazon.
com and edges represent co-purchasing of books. Nodes have
been manually given labels as ‘‘liberal’’, ‘‘neutral’’, or ‘‘conser-
vative’’.

4) Football team network1: this dataset is about the network of
American football games (not soccer) between 115 college
teams during regular season Fall 2000. The edges connect the
teams that had games.

Assessment standards. In this submission, we used the normalized
mutual information (NMI)6 to assess the effectiveness of our
approach. The value can be formulated as follows:
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where M1 is the ground-truth community label and M2 is the
computed community label, k is the community number, n is the
number of nodes, nij is the number of nodes in the ground-truth

community i that are assigned to the computed community j, n 1ð Þ
i is

the number of nodes in the ground-truth community i and n 2ð Þ
j is the

number of nodes in the computed community j, log is the natural
logarithm.

In general, the higher the NMI, the better the result.

Results analysis. Consequently, we compared the results of NMI
obtained by the models with and without prior information on
synthetic and real networks. For an undirected network with n
nodes, there are totally n(n 2 1)/2 node pairs available. We
randomly selected a percentage of node pairs, and determined
whether the pairs were ML or CL. Then we incorporated these
pairwise constraints into the adjacency matrix A to get B[1] and
B[2]. To evaluate which type of constraints is more useful, we
further used the following three matrices, where only one type of
constraints was incorporated:

B 1½ � ML
ij ~

B 1½ �, if i & j are known to be ML

Aij, otherwise,

(
ð2Þ

B 1½ � CL
ij ~

B 1½ �, if i & j are known to be CL

Aij, otherwise,

(
ð3Þ

and based on B[1]_ML,

B 2½ � ML
tk ~

a, if i & t are ML

and i & k are ML

B 1½ � ML
tk , otherwise,

8><
>: ð4Þ

Note that if we only consider the constraints of CL, the information
cannot be enhanced, so B[2]_CL should be identical with B[1]_CL, and
was not defined again. The results on synthetic networks were
averages of ten trails and have summarized in Fig. 1, 2. From these
figures, one can observe that: (1) The averaged NMI of the semi-
supervised learning with and without the information-enhanced step
increases with the increasing percentage of ML and CL pairs
constrained; (2) The information-enhanced step does significantly
increase the detection performance. For example, given 5 percent of
pairs constrained on GN networks, the NMI of the non-enhanced

Figure 1 | Averaged NMI of (A) NMF, (B) spectral clustering and (C)
InfoMap under different percentage of node pairs constrained on GN
benchmarks. The legend denotes the results on different objective

matrices. The inset compares the NMI results obtained by NMF, spectral

clustering and InfoMap on B[2].
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semi-supervised NMF (5 55.78%) is forty percent higher than that of
the unsupervised one (5 10.51%), and the NMI of the enhanced
NMF (5 87.35%) is further improved by more than thirty percent;
3) For the GN networks, the spectral clustering is slightly better,
while for the LFR networks, the InfoMap is better; 4) The type of
ML constraints contributes much more than that of CL constraints.
Note that for the LFR benchmarks, the results of NMF on B[2]_ML are
slightly better because, for B[2], with a high percentage of pairs

constrained, many elements are replaced by zero due to CL
constraints, and some columns only have few non-zero elements,
reducing the clustering performance.

In addition, Table 1 lists the percentage of nonzero elements in
matrix B[2] on LFR networks, from which one can observe that the
matrix becomes denser, but only a little bit, making it possible to
apply the framework for large scale networks. Actually since the prior
information may also delete some edges across different communities,
the matrix may not necessarily become denser. Note that the key
point of the method is to change the network’s adjacency matrix
(and accordingly, change the network’s topology) using prior
information, making the community structures clearer. However,
the performance may not necessarily be as good as on the network
with equivalent mixing parameter, because this kind of change is not
‘‘uniform’’, i.e., only the connections of the selected node pairs are
changed, making the topology characteristics of the network different
from the computer-generated networks, even if they have the same pin

or pout, where pin is the possibility that the two nodes in the same
community are connected, and pout is that in different communities.
Fig. 3 gives the relations among the percentage of pairs constrained,
the mixing parameter of LFR benchmarks, and pin, pout.

The results on the network of politics books are shown in Fig. 4,
from which one can see that the trends are similar with that on the
synthetic networks and the information enhanced step significantly
improve the performance.

A case study: college football network. In this subsection, we
analyzed the football team network as a case study to show the
effectiveness of our semi-supervised learning framework.

In the football network, there are 115 nodes (teams), and they
belong to 12 different conferences. Most of them played against
the ones in the same conference more frequently. However, there
are also abnormal teams that played more frequently against the ones
in other conferences, including the teams 37, 43, 81, 83, 91 (in con-
ference IA Independents), 12, 25, 51, 60, 64, 70, 98 (in conference
Sunbelt), 111, 29 and 59. For more details, please see our previous
work4.

Figure 2 | Averaged NMI of (A) NMF, (B) spectral clustering and (C)
InfoMap under different percentage of node pairs constrained on LFR
benchmarks. The legend denotes the results on different objective

matrices. The inset compares the NMI results obtained by NMF, spectral

clustering and InfoMap on B[2].

Table 1 | Density comparison of the standard adjacency matrix A and the matrix B[2] on LFR networks. The entries are the percentage of
nonzero elements in matrix B[2] given different percentage of pairs constrained p. The percentage of nonzero elements in A is 1.97%

p 1% 2% 3% 4% 5% 10% 20% 30% 40% 50%
B[2] 1.97% 1.93% 1.87% 1.99% 2.25% 2.97% 3.20% 3.22% 3.23% 3.23%
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Figure 3 | Relations among the prior information, the mixing parameter
of LFR benchmarks, and pin, pout, where pin is the possibility that the two
nodes in the same community are connected, and pout is that in different
communities.
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Combined with our previous work4, we set the community num-
ber to 11, and the teams 37, 43, 81, 83, 91 (conference IA
Independents) did not have ground-truth conference labels, or in
other words, there were 110 labeled teams and 110 3 (110 2 1)/2
5 5995 team pairs available. Firstly, we randomly selected some pairs
in them as prior information: if the two teams were in the same
conference, they were must-link (ML), otherwise, they were can-
not-link (CL), and then we proceeded to implement the informa-
tion-enhanced step. Finally, we applied NMF on the revised
adjacency matrices to give the partitioning results.

Fig. 5 gives the partitioning results of NMF corresponding to
different percentage of pairs constrained (with and without informa-
tion-enhanced step), from which, one can observe that:

i) When no prior information is given, there are five abnormal
teams mis-clustered: teams 29, 60, 64, 98, 111.

ii) When given 5 percent of pairs constrained, the number of ML
and CL pairs of constrained without the information-enhanced
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Figure 4 | Averaged NMI of NMF under different percentage of node
pairs constrained on the network of politics books. The legend denotes the

results on different objective matrices.

Figure 5 | Comparison of the semi-supervised learning results of NMF with and without the information-enhanced step corresponding to different
percentage of pairs constrained (color online). (a): Real grouping in football dataset. There are 12 conferences of 8–12 teams (nodes) each. Teams in

conference 6 are not labeled. (b): Result of NMF without any prior information. (c): Result of NMF given 5 percent of pairs constrained (without the

information-enhanced step). (d): Result of NMF given 5 percent of pairs constrained (with). (e): Result of NMF given 20 percent of pairs constrained

(without). (f): Result of NMF given 20 percent of pairs constrained (with), and all the labeled teams are corrected clustered.
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step is 300 (5 percent of node pairs available), and increases to
1130 after the information-enhanced step (18.85 percent of
node pairs available). There are three abnormal teams mis-clus-
tered: teams 29, 64, 111. An interesting observation here is that
the team 64 is mis-clustered into two different conferences
(conference 10 and conference 5) under the non-information-
enhanced learning and the information-enhanced learning. The
reasons are as follows: in this experiment, before the informa-
tion-enhanced step, there are 7 CL pairs and no ML pairs
related with node 64, among which, two are related with the
conference 10 while none is related with the conference 5. After
the information-enhanced step, there are 18 CL pairs and no
ML pairs related with 64, among which, seven are related with
the conference 10 and there are still no pairs related with con-
ference 5. The result is thus guided by the enhanced prior
information and the team 64 is reassigned to conference 5.
Note that since the pairs of constrained are selected randomly,
another round of the experiment may result in different net-
work partitions. Table 2 gives more details about the ML and CL
pairs related with the team 64.

iii) When given 20 percent of prior knowledge, the number of ML
and CL pairs of constrained is 1199 (20 percent, before
enhancement), and increases to 5651 (94.26 percent, after).
There is only one team 111 mis-clustered into the conference
12 under the non-enhanced learning. After enhancement, all
the labeled teams are corrected clustered. The teams of the
conference 12 are all in the CL set of the team 111, which is
very helpful to the community structure detection process.
Table 3 gives more details about the ML and CL pairs related
with the team 111. The team 64 is clustered correctly. Before the
information-enhanced step, there are 30 CL pairs and 3 ML
pairs related with 64, and after enhancement, there are
102 CL pairs (including almost all the labeled teams that are
not in conference 11) and 6 ML pairs (including all the labeled
teams in conference 11) related with 64.

In summary, our semi-supervised learning framework does make
better use of the prior information and can significantly improve the
model performance.

Discussion
In this paper, we propose an enhanced semi-supervised learning
framework for community structure detection. The framework can
add the supervision of must-link (ML) and cannot-link (CL) pairwise
constraints into the adjacency matrix. Through the information
enhancement based on logical inference, the detection performance

can be improved significantly. Note that this step is only feasible
under the case of non-overlapping communities. If otherwise, for
example, node i has multiple community labels, the prior information
that nodes i and t are ML and nodes i and k are CL may not neces-
sarily result in the fact that nodes t and k are also CL.

In addition, we evaluate the contributions of the two types of
constraints, indicating that the type of ML constraints is much more
important than CL, which is interesting, because in many real scen-
arios, it is easier to get the constraints of ML (positive constraints)7,8.

An interesting problem which is related with our work is the
analysis of dynamic networks, such as detecting the communities
in a series of time-varying networks. Given the network structure
at time t, we can find some conservative relationships between nodes
and use them as ML and CL constraints to detect the communities in
the new network at time t 1 1, which is termed by us as online semi-
supervised learning.

Methods
Enhanced semi-supervised learning for community structure detection. In this
section, we give our enhanced learning framework for community structure
detection. Firstly, given an undirected and unweighted simple graph G, we can define
the associated symmetric adjacency matrix A as follows:

Aij~
1, if i*j, or i~j,

0, if i 6*j, or i=j,

�
ð5Þ

where i , j means there is an edge between nodes i and j, and i 6*j means there is no
edge between them.

In many real applications, there is often some prior information available, We can
try to incorporate this information into the community detection process to make the
result more explainable and clear. Specifically, if we have known that some pairs of
nodes are must-link (the two nodes are in the same community, ML), or some pairs of
nodes are cannot-link (the two nodes are not in the same community, CL), or both, we
can incorporate these pairwise constraints into the adjacency matrix A to get a new
matrix B[1] as follows4:

B 1½ �
ij ~

a, if i and j are known to be ML

0, if i and j are known to be CL

Aij otherwise,

8><
>: ð6Þ

In addition, based on logical inferences, one can get further knowledge of the con-
straints that i) if nodes i and t are ML, and nodes i and k are ML, then t and k should
also be ML (The friend of my friend is my friend); ii) if nodes i and t are ML, and nodes i
and k are CL, then t and k should also be CL (The friend of my enemy is my enemy),
which leads to the following revision of B[1]:

B 2½ �
tk ~

a, if i & t are ML, and i & k are ML

0, if i & t are ML, and i & k are CL

B 1½ �
tk otherwise,

8><
>: ð7Þ

In this paper, we call this logical inference step as information-enhanced step. After
this step, the prior knowledge is more fully utilized. We set a to 2 in this work4.

Table 2 | Must link and cannot link pairs of teams related with team 64 and the teams in conference 10 and 5. The boxed nodes are that
included in ML or CL

Node 64 ML CL

Non-enhanced none 21, 44, 57, 59, 72, 85, 107
Enhanced none 19, 21, 27, 39, 44, 55, 57, 59, 62, 66, 72, 85, 86, 88, 96, 97, 107, 114
Conference 10 18, 21, 28, 57, 63, 66, 71, 77, 88, 96, 97, 114
Conference 5 45, 49, 58, 67, 76, 87, 92, 93, 111, 113

Table 3 | Must link and cannot link pairs of teams related with team 111 and the teams in conference 5 and 12. The boxed nodes are that
included in ML or CL

Node 111 ML CL

Non-enhanced 45, 67 3, 7, 10, 13, 15, 18, 24, 26, 27, 46, 79, 82, 88, 101
Enhanced 45, 67 a total of 95 teams
Conference 5 45, 49, 58, 67, 76, 87, 92, 93, 111, 113
Conference 12 29, 47, 50, 54, 59, 68, 74, 84, 89, 115
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Note that the idea of the information-enhanced step can be traced back to the
balance theory in psychology9,10, which was used for explanation of attitude change.

Illustrative examples. We use a small example to intuitively show the ideas behind
our framework. Figure 6 (A) is part of a network, where nodes 1, 2, 3, 4, 5, 6 are in the
same community, and node 7 in another community. Based on some domain
knowledge, we may know that nodes 3 and 5, nodes 4 and 5 are must-link, and nodes 3
and 7 are cannot-link. By logical inference, nodes 3 and 4 should also be must-link,
consequently, nodes 4 and 7 should be cannot-link, and finally, nodes 5 and 7 should
also be cannot-link. The background information is thus significantly enhanced.

In addition, we illustrate the effectiveness of the approach with a GN network: given
an undirected and unweighted ‘‘equally sized four groups’’ network with 128 nodes, we
want to detect the communities in it. The heatmap of the associated adjacency matrix
A is shown as the upper left in Fig. 7. Suppose that we have some prior information
about the functions of the nodes, and can thus determine a percentage of pairs of
nodes as must-link (ML) or cannot link (CL). These pieces of information on ML and
CL are incorporated into the adjacency matrix A. As expected, the communities
become more and more clear as the percentage of pairs constrained increases.
Furthermore, an surprising observation is the effectiveness of logical inferences, which
has dramatically improved the data quality (the second row in Fig. 7).

After incorporating the background information into the adjacency matrix, we can
then apply some unsupervised learning models, such as nonnegative matrix factor-
ization (NMF), spectral clustering and InfoMap, on them for community structure
detection.

Nonnegative matrix factorization (NMF). The model of NMF is often formulated as
the following nonlinear programming11,12:

min
W,H

X{WHk k2
F

s:t: W,H§0,

or in other words, given an nonnegative matrix X of size n 3 n, we try to find two
nonnegative matrices, W of size n 3 k and H of size k 3 n, such that: X < WH. The
objective matrix X for NMF can be selected as A, B[1], or B[2]. The communities of the
network can be revealed from H: node i is of community k if Hki is the largest element
in the ith column. The algorithm of multiplicative update rules for NMF can be
summarized in Algorithm 1.

Algorithm 1 Nonnegative Matrix Factorization (Least Squares Error)
Input: X, iter % In this paper, the iteration number iter is set to 100.
Output: W, H.

For t 5 1: iter

Wik : ~Wik
XHTð Þik

WHHTð Þik

Hik : ~Hik
WT Xð Þik

WT WHð Þik

end

Spectral clustering. Spectral clustering is another powerful tool for unsupervised
learning. The standard algorithm can be summarized in Algorithm 213.

Algorithm 2 Spectral Clustering
Input: B[Rn|n

Output: Community Label Y[Rn|1 of the n nodes.
L 5 D1/2BD1/2, where D is the diagonal matrix with the element Dii~

X
j
Bij .

Forming the matrix X~ x1,x2, � � � ,xk½ �[Rn|k , where xi, i~1,2, � � � ,k are the top k
eigenvectors of L.

Normalizing X so that rows of X have the same L2 norm: Xij~Xij

� X
j
X2

ij

� �1=2
.

Clustering rows of X into k clusters by K-means.
Yi 5 j if the ith row is assigned to cluster j.

InfoMap14. This model grows out of information theory, and tries to detect the
communities by minimizing the expected description length of random walks on the
network. The model is among the most recommended approaches especially when
there is no prior information on the network15.
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Figure 6 | An illustrative example to show the ideas behind our framework.

Figure 7 | An illustrative example to show the effectiveness of
information enhancement. p is the percentage of pairs constrained. For the
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