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To excrete body nitrogen waste and regulate electrolyte and fluid balance, the kidney has 
developed into an energy factory with only second to the heart in mitochondrial content 
in the body to meet the high-energy demand and regulate homeostasis. Energy supply 
from the renal mitochondria majorly depends on lipid metabolism, with programed enzyme 
systems in fatty acid β-oxidation and Krebs cycle. Renal mitochondria integrate several 
metabolic pathways, including AMPK/PGC-1α, PPARs, and CD36 signaling to maintain 
energy homeostasis for dynamic and static requirements. The pathobiology of several 
kidney disorders, including diabetic nephropathy, acute and chronic kidney injuries, has 
been primarily linked to impaired mitochondrial bioenergetics. Such homeostatic disruption 
in turn stimulates a pathological adaptation, with mitochondrial enzyme system 
reprograming possibly leading to dyslipidemia. However, this alteration, while rescuing 
oncotic pressure deficit secondary to albuminuria and dissipating edematous disorder, 
also imposes an ominous lipotoxic consequence. Reprograming of lipid metabolism in 
kidney injury is essential to preserve the integrity of kidney mitochondria, thereby preventing 
massive collateral damage including excessive autophagy and chronic inflammation. Here, 
we review dyslipidemia in kidney disorders and the most recent advances on targeting 
mitochondrial energy metabolism as a therapeutic strategy to restrict renal lipotoxicity, 
achieve salutary anti-edematous effects, and restore mitochondrial homeostasis.

Keywords: fatty acid β-oxidation, energy metabolism, lipotoxicity, podocyte, proximal tubule cells, oxidative stress, 
homeostasis, fibrosis

INTRODUCTION

The kidney is characterized by a complex anatomy, with millions of nephrons as the functional 
unit to excrete nitrogen waste and secure fluid homeostasis. The kidney is composed of multiple 
specialized cell types ensuring vital homeostasis of acid-base and electrolyte balance, blood 
pressure regulation, nutrient reabsorption, and hormone secretion (Hoenig and Zeidel, 2014; 
Duann and Lin, 2017; Yu et  al., 2019). Therefore, it is one of the most metabolically active 
organs other than heart and skeletal muscle, with proximal tubules presenting a very high 
density of mitochondria required for energy consumption (Meyer et al., 1997; Wang et al., 2000). 
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For example, the human proximal convoluted tubules (S1 and 
S2 combined) contain abundant large mitochondria, which 
occupy about 16.3% cell volume (Møller and Skriver, 1985). 
Notably, the mature nephron comprises distinct segments, each 
utilizing metabolic pathways to varying degrees depending on 
the specific function (Cargill and Sims-Lucas, 2020).

Complete oxidation of fatty acids (FAs), which are high-
energy substrates, to CO2 and H2O gives rise to roughly 
9  Kcal/g fat, while only 4  Kcal/g are generated from 
carbohydrates or proteins. The heart possesses metabolic 
flexibility and powerful catabolic capacity to use various energy 
substrates, mainly FAs (40–60%) and glucose (20–40%), for 
ATP production (Karwi et  al., 2018). Instead, most proximal 
tubule epithelial cells (PTEC) have low metabolic flexibility 
toward glycolysis and rely on FAs as energy source at baseline 
(Bonventre and Yang, 2011). This was shown by early in vivo 
studies measuring ATP synthesis by tracking isotope-labeled 
FAs with NMR in rat kidney, which indicated that FAs are 
a preferred fuel (Freeman et  al., 1986). However, PTEC are 
able to shift to anaerobic glycolysis to produce ATP required 
for cellular regeneration after ischemic acute kidney injury 
(AKI; Lan et al., 2016). In mice, glomerular podocytes display 
much lower mitochondrial density than in PTECs and rely 
primarily on anaerobic glycolysis to maintain glomerular 
filtration barrier and are relatively insensitive to defect in 
mitochondrial biogenesis during ischemia damage (Brinkkoetter 
et  al., 2019). Instead, as lipid accumulation is commonly 
observed in patients with chronic kidney disease, podocytes 
are rather sensitive to cellular cholesterol-mediated glomerular 
injury (Merscher et  al., 2014).

Mitochondria are pivotal for maintaining the health and 
function of the metabolically active kidney by providing efficient 
energy support through the process of oxidative phosphorylation 
(OXPHOS) and aerobic glycolysis. Several factors such as 
mitochondria biogenesis, bioenergetics, dynamics, and autophagy 
regulate the mitochondrial physiology (Duann and Lin, 2017). 
In addition, mitochondria also contribute to production of 
reactive oxygen species (ROS) free radicals and transduction 
of metabolic and stress signals (Galvan et  al., 2017; Flemming 
et al., 2018). Persistent mitochondrial damage is a major source 
of oxidants. Consequently, mitochondrial fitness translates into 
body’s general health. Mitochondrial dysfunction is involved 
in various kidney diseases, such as acute kidney injury (AKI), 
chronic kidney disease (CKD), diabetic nephropathy (DN), and 
glomerulonephritis (GN; Duann and Lin, 2017; Eirin et al., 2017; 
Galvan et  al., 2017; Flemming et  al., 2018).

Dysregulated lipid metabolism with defective cholesterol/
free fatty acid (FFA) metabolism leading to dyslipidemia is 
common in patients of several kidney diseases, including acute 
kidney disease, CKD, diabetic kidney disease (DKD), nephrotic 
syndrome, and uremia (Agrawal et al., 2017; Hager et al., 2017; 
Gai et  al., 2019; Nishi et  al., 2019; Nishi and Nangaku, 2019; 
Jang et  al., 2020b), and may contribute to end-stage kidney 
disease. In this review, we  summarize the recent advances in 
understanding lipid metabolism in the function of kidney 
mitochondria and the molecular mechanisms related to 
dyslipidemia during kidney disease progression.

BASIC LIPID BIOLOGY

In biological systems, lipids include fats, sterols, phospholipids, 
and triacylglycerides (TAG). In the cell, lipids have numerous 
functions: they constitute the cell membrane as a protective barrier; 
form membranous compartments of intracellular organelles; provide 
energy source and storage; provide building blocks for hormones; 
and serve as secondary cellular messengers within body. FAs are 
carboxylic acids with a long aliphatic tail, which constitute building 
blocks for other lipids such as TAG and phospholipids.

Within the body, lipid metabolism comprises several inter-
dependent pathways for the generation, storage, and transport 
of lipids, which involves plasma lipoprotein particles 
[chylomicrons, high density lipoproteins (HDL), low density 
lipoproteins (LDL), intermediate density lipoproteins (IDL), 
and very low density lipoproteins (VLDL)] in circulation. Dietary 
lipids, mainly (95%) TAG, some FFAs, and cholesterol, carried 
by chylomicrons into circulation, are degraded into FFAs and 
glycerol by lipoprotein lipase (LPL) activity on the capillaries. 
These FFAs are taken up by muscle, heart, and adipose and 
peripheral tissues like kidney; remnants of chylomicrons are 
subsequently cleared in the liver (Florens et  al., 2016; Agrawal 
et al., 2017; Kronenberg, 2018). FFAs are transported by serum 
albumin to the liver and periphery and could be  stored as 
TAG in kidney capillaries. Additionally, esterified cholesterol 
could be  stored as a lipid droplet within the kidney.

TRANSPORT OF CELLULAR FFAs

Lipid Uptake by CD36 in the Kidney
FA uptake from the extracellular milieu is the first step in 
their utilization. Multiple cell surface lipid transport proteins, 
such as cluster of differentiation 36 (CD36), scavenger receptor 
B1 (SR-B1), tissue-specific fatty acid transport proteins (FATPs), 
and plasma membrane fatty acid-binding protein (FABPpm) 
facilitate cellular FFA uptake (Haunerland and Spener, 2004; 
Su and Abumrad, 2009; Figure  1).

Long-chain fatty acids (LCFAs, referring to FAs with 12 or 
longer carbons chains) primarily enter the cell via FA transporter 
CD36 [also known as Fatty acid translocase (FAT) or SR-B2]. 
CD36 is expressed in multiple cell types and mediates diverse 
functions, such as lipid uptake, inflammation, ROS production, 
molecular adhesion, and apoptosis. CD36 is a multifunctional 
receptor for many ligands, including collagen, native lipoproteins, 
LCFA, oxidized phospholipids, oxidized LDL, thrombospondin, 
and apoptotic cells (Yang et al., 2017; Wang and Li, 2019). Several 
post-translational modifications, including phosphorylation, 
palmitoylation, ubiquitylation, and glycosylation regulate CD36 
stability and dimerization, and correlate its function to myocellular 
FA uptake (Luiken et  al., 2016). In adipocytes, two palmitoyl-
acyltransferases (PATs), namely DHHC4/5, modulate CD36 
palmitoylation and target it to the plasma membrane lipid rafts, 
where it mediates FA adsorption and transport (Wang et  al., 
2019). Interestingly, in addition to the cell surface, CD36 also 
localizes to the ER, endosomes, and mitochondria (Bonen et al., 2000; 
Smith et  al., 2011). In response to diverse signaling transduction 
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pathways, rapid mobilization of the vesicular transport system 
mediates dynamic intracellular distribution of CD36 to reprogram 
energy utilization and control lipid metabolism (Georgiou et al., 2015; 
Glatz et  al., 2016).

In the kidney, CD36 mediates FA uptake and lipid metabolic 
reprograming and functions (Yang et  al., 2017). CD36 is highly 
expressed in mesangial cells (Ruan et  al., 1999), renal proximal 
(Susztak et  al., 2005) and distal tubular epithelial cells (Okamura 
et al., 2007), podocytes (Hua et al., 2015), microvascular endothelial 
cells, and interstitial macrophages (Rahman et al., 2008; Kennedy 
et  al., 2013). Transgenic mice with tubular overexpression of 
CD36 demonstrate tubular-specific accumulation of lipids, TAG, 
and LCFAs (Kang et  al., 2015). Other kidney CD36 substrates 
include oxidized phospholipids, advanced oxidation protein products 
(AOPPs; Li et  al., 2019), and advanced glycation end products 
(AGEs), which promote inflammation, ER stress, and renal cells 
apoptosis and contribute to renal fibrosis (Okamura et  al., 2009; 
Ruggiero et  al., 2014; Pennathur et  al., 2015).

Lipid Uptake by Other Transporters in the 
Kidney: FABPs and FATPs
FA-binding proteins (FABPs) are low molecular weight (14–15 kDa) 
proteins that transport LCFAs through cell membranes, transport 
FAs to mitochondria and peroxisomes, and function as chaperones 
to mediate intracellular transport. Two major FABP isoforms 
are expressed in human kidneys, the proximal tubule-enriched 

FABP1 (also known as liver type L-FABP) and the distal tubule-
enriched FABP3 (Maatman et  al., 1991). Urinary FABP1 level 
was proposed as a biomarker of acute tubulointerstitial damage 
(Yamamoto et  al., 2007; Pelsers, 2008).

Emerging data also support proximal tubular apical expression 
of FA transporter-2 (FATP2, encoded by Slc27a2) and its role 
in luminal non-esterified FA (NEFA) reabsorption from 
glomerular filtrate and NEFA metabolism in mice. Silencing 
of FATP2  in human renal PTEC in vitro leads to increased 
Oil Red O staining and subsequent apoptosis following FA 
exposure. Moreover, tubular lipoapoptosis in lipidated albumin-
injected mice decreases in Slc27a2-deficient mice. These data 
suggest that luminal NEFA uptake by FATP2 causes proximal 
tubule lipoapoptosis, which may contribute to tubular atrophy 
and CKD progression (Khan et  al., 2018).

FATTY ACID METABOLISM IN KIDNEY 
MITOCHONDRIA

FA β-oxidation (FAO) may occur in both mitochondria and 
peroxisomes. While mitochondria majorly oxidize LCFAs, and 
medium-chain and short-chain FAs (MCFAs and SCFAs, 
referring to FAs with less than 12 carbons chains), peroxisomes 
oxidize specific carboxylic acids such as very long-chain FAs 
(VLCFAs), branched-chain FAs, fatty dicarboxylic acids, and 

FIGURE 1 | Fatty acid metabolism in renal proximal tubule epithelial cell. Fatty acids (FAs) are the preferred energy substrates for the kidney. Uptake of FAs from 
capillaries into kidney cells is facilitated by either FAT/CD36 or FABPs and FATPs. In the cytosol, FAs are activated to acyl-CoA, esterified with carnitine, and 
transported into the mitochondrial matrix through the carnitine shuttle, which is composed of CPT-1, CACT, and CPT-2. Medium-chain FAs and short-chain FAs can 
permeate the mitochondrial membranes. In the matrix, acyl-CoA undergoes FA β-oxidation (FAO), thereby generating acetyl-CoA to fuel the TCA cycle, as well as 
FADH2 and NADH that serve as electron donors to the five ETC complex for ATP production via oxidative phosphorylation. Acetyl-CoA can be shuttled out of 
mitochondria through carnitine acetyltransferase (CrAT), while it goes through integrated endogenous lipid conversion to form phospholipids, cholesterol, and 
triacylglycerol (TAG). Q, Coenzyme Q; Cyt C, cytochrome C.
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bile acid intermediates (in the liver; Cipolla and Lodhi, 2017). 
Interestingly, peroxisomal FAO provides alternative metabolism 
of LCFAs and MCFAs in case of mitochondrial long-chain 
FAO deficiencies (Violante et  al., 2019). Mitochondrial FAO 
is thus the major pathway for the degradation of FAs to sustain 
cellular energy homeostasis (Houten et al., 2016). This process 
includes six tightly-regulated steps: (i) FA esterification to 
acyl-CoA; (ii) mitochondrial CPT shuttle (or the carnitine 
shuttle); (iii) the FAO pathway; (iv) the OXPHOS pathway; 
(v) allosteric control of FAO; and (vi) integrated nutrient 
metabolism in the kidney (Figure  1).

Fatty Acid Esterification to acyl-CoA
FAs must be  converted to fatty acyl-CoA by cytosolic acyl-CoA 
synthetases in order to enter mitochondria. Once inside the cell, 
MCFAs or SCFAs can freely diffuse into mitochondria. However, 
LCFAs need to be activated to long-chain acyl-CoA (LC acyl-CoA) 
and esterified with carnitine into LC-acylcarnitine to permeate 
the outer mitochondrial membrane (OMM) and subsequently 
be  transported into the mitochondrial matrix (Bremer, 1983).

The Carnitine Shuttle
The carnitine shuttle, mediated by the rate-limiting enzyme carnitine 
palmitoyltransferase I  (CPT-1, on the OMM) and the two inner 
mitochondrial membrane (IMM) proteins carnitine-acylcarnitine 
translocase (CACT) and carnitine palmitoyltransferase II (CPT-2), 
serves to transport the FA moiety into mitochondria. CPT-2 
conducts a reverse reaction to convert LC-acylcarnitine back to 
LC acyl-CoA and carnitine. Carnitine is transported back to the 
cytoplasm by the same shuttle (Brivet et  al., 1999).

The FAO Pathway
FAO is the process of breaking down a LC acyl-CoA into 
acetyl-CoA molecules inside the mitochondrial matrix. The term 
β-oxidation refers to the position of the carbon group being 
oxidized. The number of acetyl-CoA molecules produced depends 
on the initial carbon length of the FA. When LC acyl-CoA 
enters FAO, two carbons are cleaved to generate an acetyl-CoA 
and an acyl-CoA that is two carbons shorter from each β-oxidation 
cycle. This process continues until all of the carbons in the 
FA are turned into acetyl-CoA to fuel the tricarboxylic acid 
(TCA) cycle and generate ATP. The two redox active coenzymes 
– the reduced form of nicotinamide adenine dinucleotide 
(NADH) and the hydroquinone form of flavin adenine 
dinucleotide (FADH2) – produced during each β-oxidation cycle, 
along with those generated from TCA cycle, are used as electron 
donors by the electron transport chain (ETC) complex, in the 
redox reaction that produces ATP (the OXPHOS pathway). 
LCFA oxidation yields high energy: for instance, 137 ATP are 
generated from palmitate as opposed to 38 obtained from 
glucose oxidation (Nsiah-Sefaa and McKenzie, 2016).

The OXPHOS Pathway
The mitochondrial ETC/OXPHOS respiratory chain contains five 
complexes. Complexes I–IV transfer electrons (e−) and protons 
(H+) across IMM to generate an electrochemical gradient for ATP 

synthesis in complex V (ATP synthase). Several critical steps regulate 
this process. The concentration of NAD constitutes the rate-limiting 
process (Canto et al., 2015; Verdin, 2015). Coenzyme Q10 (CoQ10) 
is a component of ETC, which shuttles electrons in the respiratory 
chain. Moreover, the reduced form of CoQ10 is also a potent 
antioxidant (Ernster and Dallner, 1995; Thomas et al., 1996). CoQ 
deficiency could cause nephropathies (Ozaltin, 2014) and mutation 
in ADCK4 (CoQ8B), a protein required for stabilizing CoQ complex 
in podocyte, is an etiology of steroid-resistant nephrotic syndrome 
(SRNS or FSGS; Ashraf et  al., 2013; Widmeier et  al., 2020). 
Cardiolipin, an IMM phospholipid, plays a central structural role 
in cristae formation, facilitates ETC supra-complex formation for 
optimal OXPHOS activity, and serves as a platform to initiate 
apoptosis (Birk et  al., 2014; O’Brien et  al., 2015).

Allosteric Control of FAO
Mitochondrial bioenergetic homeostasis is subjected to allosteric 
regulation by the ratios of the [Acetyl CoA/CoA], [NADH/
NAD+], and [FADH2/FAD+]. Therefore, FAO enzymatic activities 
are affected by the levels of the metabolic products of their own 
reactions, and a rise in [Acetyl-CoA/CoA] or [NADH/NAD+] 
leads to feedback inhibition of FAO (Karwi et  al., 2019). For 
example, mice with proximal tubule-specific deletion of carnitine 
acetyltransferase (CrAT), an enzyme that controls inter-conversion 
of Acetyl-CoA/CoA and shuttles excess FA products out of the 
mitochondria, develop mitochondrial dysfunction, cellular 
apoptosis, and tubular and glomerular fibrosis (Kruger et  al., 
2019). Interestingly, de novo synthesis of NAD+, a central metabolic 
coenzyme/co-substrate involved in cellular energy metabolism, 
profoundly affects mitochondrial fitness in organ health and 
injury, including kidney (Hershberger et al., 2017; Katsyuba et al., 
2018; Poyan Mehr et  al., 2018; Ralto et  al., 2020).

Integrated Nutrient Metabolism in the 
Kidney
Acetyl-CoA is a critical metabolite derived from catabolism of 
all major nutrient sources, such as glucose, FAs, and amino acids. 
Moreover, acetyl-CoA can be  diverted from the TCA cycle to 
synthesize cholesterol, phospholipids, and TAG in the cell (Pietrocola 
et  al., 2015; Shi and Tu, 2015). Proper integration and regulation 
of energy metabolism during ATP loss or excess are thus key 
to maintain mitochondrial health during injury and repair in 
renal pathophysiology (Vamecq et  al., 2012; Aon et  al., 2014; 
Fornoni et  al., 2014; Szeto, 2017; Jang et  al., 2020a).

TRANSCRIPTIONAL, EPIGENETIC, AND 
POST-TRANSLATIONAL REGULATION OF 
FAO AND MITOCHONDRIA BIOGENESIS

Several transcriptional, epigenetic, and post-translational 
regulators are involved in the crosstalk between peroxisomes, 
nucleus, and mitochondria to control the expression/functions 
of FAO enzymes, mitochondrial biogenesis, and energy 
reprograming in health and disease-stressed states (Stallons 
et  al., 2013; Bhargava and Schnellmann, 2017; Figure  2). 
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FIGURE 2 | Organelle crosstalk regulates fatty acids metabolism in renal PTEC under healthy or injury/disease states. Intracellular FA metabolism includes catabolic 
and anabolic pathways. FAs are oxidized either in mitochondria or peroxisome to generate ATP (catabolism), or are stored as global triglyceride pool (anabolism). 
PGC-1α is the mitochondrial master regulator, which drives mitochondrial biogenesis by co-activating transcriptional factors PPAR-α and RXR to regulate the 
expression of target genes affecting biogenesis, OXPHOS, and FAO. PGC-1α is also extensively regulated by post-translational modifications: PGC-1α is activated 
via phosphorylation by AMPK; its acetylation state is regulated by the counter-balance between SIRT deacetylase and GCN5L1 acetylase. GCN5L1 activation also 
negatively modulates FAO target genes. Translocation of PPARα between nucleus and IMM affects PPARα activity as a transcription factor. (A) In healthy condition. 
(B) Under injury/disease state, impaired PGC-1α leads to defective FAO and is associated with reduced FA catabolism, increased FA pool and TAG accumulation, 
increased cellular ROS production, and PPARα mitochondrial translocation, which induces PPARα interaction with CypD, mPTP opening, ETC disruption, 
cytochrome C release, and mitochondrial damage.
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These key molecules include the nuclear hormone receptor, 
peroxisome proliferator-activated receptors (PPARs, PPARα, 
and PPARγ as examples; Wu et al., 2009; Corrales et al., 2018); 
PPARγ coactivator 1α (PGC-1α; Weinberg, 2011; Li and Susztak, 
2018; Fontecha-Barriuso et  al., 2020); the NAD+-dependent 
deacetylases sirtuins (SIRTs; Wakino et  al., 2015; Hershberger 
et  al., 2017; Morigi et  al., 2018); AMP-activated protein kinase 
(AMPK); and nuclear respiratory factors 1 and 2 (NRF1 and 
NRF2; Akhtar and Siragy, 2019).

PGC-1α, the mitochondrial biogenesis master regulator, is 
predominantly expressed in proximal tubules and interacts 
directly with multiple transcription factors to integrate upstream 
signaling events with mitochondrial biogenesis and functional 
capacity. Downstream transcription factors control all aspects 
of mitochondrial function, including biogenesis, energy 
production, dynamics, and protein homeostasis. PGC-1α regulates 
the expression of NRF1 and NRF2 to increase NAD+ biosynthesis 
(Tran et al., 2016) and activates genes coding for the OXPHOS 
system (Zoja et al., 2014). In obesity-related nephropathy models, 
reduced NRF2 along with suppressed expression of the key 
FAO enzyme long-chain acyl-CoA synthetase-1 (ACSL1) are 
associated with elevated renal lipid deposition, further supporting 
the importance of mitochondria in lipid metabolism and energy 
homeostasis (Chen et  al., 2019).

As the PGC-1α/PPARα axis governs transcriptional regulation 
of FAO, it was proposed as therapeutic target in AKI and 
CKD (Simon and Hertig, 2015; Stadler et  al., 2015). Defects 
in the FAO pathway, such as reduced expression of CPT-1 
(Kang et  al., 2015), CrAT (Kruger et  al., 2019), and PPARα 
(Chung et al., 2018) are associated with CKD and renal fibrosis. 
PPARα heterodimerizes with its obligate partner, the retinoid-
X-receptor (RXR), to regulate FAO and energy metabolism. 
FAs are natural activators of PPARα, and one of PPARα target 
genes is CD36 (which increases FA uptake; Portilla, 2003). 
Moreover, impaired expression of PPARα and specific proteins 
in FAO pathway are associated with lipid accumulation and 
fibrosis in renal tubular epithelial cells in aging rats (Chung 
et al., 2018). Interestingly, Jang et al. demonstrated that proximal 
tubular mitochondrial interaction of PPARα with cyclophilin 
D (CypD), a component of the IMM structural protein complex 
mitochondrial permeability transition pore (mPTP), could 
repress nuclear PPARα activity and negatively modulate FAO 
in cisplatin-induced AKI (Jang et  al., 2020a). Several PPARα 
agonists have been shown to enhance FAO activity in kidney 
(Konig et  al., 2008; Lakhia et  al., 2018).

PGC-1α is extensively regulated by post-translational 
modifications. AMPK and SIRT positively regulate PGC-1α 
through phosphorylation or deacetylation, respectively (Jager 
et al., 2007; Canto and Auwerx, 2009). Interestingly, liver histone 
demethylase JMJD3 was identified as a gene-specific 
transcriptional partner of SIRT1 that epigenetically activates 
mitochondrial β-oxidation during fasting (Seok et  al., 2018). 
The counterpart of JMJD3  in kidney remains to be  uncovered. 
General control of amino acid synthesis-5-like 1 (GCN5L1), 
a protein acetylase counteracting the function of SIRT3, 
was  recently shown to negatively modulate hepatic FAO 
enzyme  activities via acetylation (Thapa et  al., 2018). 

Similarly, GCN5L1-mediated hyper-acetylation and impairment 
of FAO enzymes might be  a key pathogenic event underlying 
lipid overload-induced kidney injury (Lv et  al., 2019).

In summary, the integrated regulation of FA metabolism 
at the genetic, epigenetic, and protein level is tightly associated 
with mitochondrial homeostasis. Under injury or disease state, 
deficiency in PGC-1α and associated transcription factors leads 
to defective FAO, enlarged FA pool and TAG accumulation, 
massive ROS production, increased PPARα mitochondrial 
translocation inducing mPTP opening and loss of mitochondrial 
membrane potential, cytochrome C release, and mitochondrial 
damage (Figure  2).

DYSLIPIDEMIA AND CELLULAR 
LIPOTOXICITY-MEDIATED KIDNEY 
INJURY

Dyslipidemia is an abnormal amount of lipids (e.g., TAG, 
cholesterol or phospholipids) in the blood. Lipids in excess, 
which is delivered to organs beyond their energy demands, 
can be  stored mainly as TAG in intracellular lipid 
droplets (LDs), an ubiquitous organelle that serves as energy 
stores, dynamic membrane synthesis, and as a hub for further 
metabolic regulation (Walther et  al., 2017). Accumulation 
of such lipid intermediates or final products in non-adipose 
tissues, along with the subsequent multi-factorial disturbance 
of intracellular homeostasis, could result in lipotoxicity of 
target tissues. Lipotoxicity thus represents a pathologic 
phenomenon with hallmarks of aberrant lipid accumulation, 
causing metabolic, inflammatory, oxidative stress in 
intracellular organelles, and further triggering cell damages 
(Su et  al., 2017; Opazo-Ríos et  al., 2020).

Moorhead et  al. first hypothesized “lipid nephrotoxicity” 
in 1982, proposing that dyslipidemia may contribute to the 
progression of renal dysfunction (Moorhead et al., 1982). This 
hypothesis had gained supportive evidence in several contexts. 
For examples, renal lipid accumulation has been shown with 
high clinical prevalence in patients with CKD, including the 
insulin resistant obese subjects with diabetic nephropathy 
(Herman-Edelstein et  al., 2014; Escasany et  al., 2019; Opazo-
Ríos et al., 2020), in nephrotic syndrome (Vaziri, 2016; Agrawal 
et al., 2017), focal segmental glomerulosclerosis (FSGS; Sasaki 
et  al., 2018), and also as a consequence of acute ischemic 
renal injury (Zager et  al., 2011). Significant alterations in 
renal lipid metabolism are typified as high TAG, variation 
in the composition of apolipoproteins and lipids, the 
accumulation of atherogenic particles VLDL and IDL, and 
decreased HDL cholesterol (Vaziri, 2006; Stadler et  al., 2015; 
Florens et  al., 2016; Kronenberg, 2018; Du and Ruan, 2019; 
Gai et  al., 2019; Thongnak et  al., 2020; Jang et  al., 2020b). 
As discussed earlier, systematic lipid metabolism involves 
multi-organ crosstalk, ultimately also affecting kidney function. 
Therefore, dyslipidemia and lipid nephrotoxicity could be  not 
only a consequence but also a cause of kidney disease (Florens 
et  al., 2016; Agrawal et  al., 2017; Kronenberg, 2018; 
Czumaj et  al., 2019; Nishi et  al., 2019).
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Excess fat could be  derived from either dysfunctional 
capacity of adipose lipid storage, or from diet-induced 
hyperlipidemia (high plasma albumin-bound FFAs and 
cholesterol), or in the condition of renal dysfunction (as 
commonly exemplified by renal mass reduction in animal 
model) and defective insulin signaling. Excess kidney ectopic 
fat deposition and lipid overload in intracellular organelles 
could lead to ER stress (Zhao et  al., 2008), mitochondria 
dysfunction (Vamecq et  al., 2012; Szeto et  al., 2016), and 
lysosomal stress (Yamamoto et al., 2017, 2020). These alterations 
could change cellular protective mechanisms such as autophagy, 
mitophagy, lipophagy and contribute to apoptosis and cell 
damage. These observations thus support the notion of 
dyslipidemia contributes to the progression of renal injury, 
and lipid-lowering therapies or shielding mitochondria could 
provide beneficial effects on lipotoxicity-mediated kidney injury 
(Izquierdo-Lahuerta et  al., 2016; Su et  al., 2017).

Dyslipidemia could appear in various forms with different 
causes and consequences. In lipid-mediated podocyte damage, 
FFAs and their metabolism affect function and survival of 
podocytes (Sieber and Jehle, 2014). Dyslipidemia is also a 
common feature, rather than a complication, of nephrotic syndrome. 
Excessive urinal protein loss results in hypoproteinemia, in 
turn leading to low serum oncotic pressure, and even edematous 
change in severe cases. To rescue the oncotic pressure deficit, 
the body initiates a reactive hepatic protein synthesis, including 
lipoproteins (Attman and Alaupovic, 1990; Merscher et  al., 
2014; Vaziri, 2016; Agrawal et  al., 2017). Additionally, reduced 
plasma levels of lipoprotein lipase results in decreased lipid 
catabolism. Elevated serum levels of LDL and IDL are filtered 
through glomeruli and lead to lipiduria, which manifests with 
fatty casts containing oval fat bodies in the urine sediment 
(Cavanaugh and Perazella, 2019).

Mutations affecting cholesterol metabolism in the process 
of lipid trafficking, storage, influx, or efflux, could mediate 
glomerular injury (Merscher et  al., 2014). For example, 
Tangier disease (OMIM #205400) or DKD caused by mutations 
in ATP-binding cassette A1 (ABCA1) gene result in reduced 
HDL in circulation, albuminuria, podocyte phenotype with 
esterified cholesterol accumulation and dysfunctional 
mitochondria due to cardiolipin hyperoxidation (Ducasa 
et  al., 2019a,b). For the topics on glomerular diseases-
related renal lipotoxicity and mitochondrial dysfunction, 
please refer to the comprehensive review in the same special 
issue (Ge et  al., 2020).

Furthermore, excess of FFAs leads to TAG accumulation 
and renal tubular toxicity (Johnson et al., 2005; Scerbo et al., 
2017). Increased LCFA-bound albumin induces altered redox 
balance, high tubular cell apoptosis, and kidney fibrosis 
(Ruggiero et  al., 2014). As lipoprotein abnormalities also 
correlate with high risk of both cardiovascular and kidney 
diseases, these modified lipoproteins could be  accounted as 
actual mediators of uremic toxicity (Florens et  al., 2016). 
LDL and oxidized (ox)-LDL uptake by mesangial cells lead 
to cell proliferation and glomerular matrix expansion, while 
uptake by PTE results in tubulointerstitial lesions with 
remarks of heightened expression of extracellular matrix 

proteins (Nosadini and Tonolo, 2011). HDL is a key player 
in reverse cholesterol transport to shuttle cholesterol from 
peripheral cells, such as macrophages, to the liver, therefore 
relieving the cholesterol burden of these cells. HDL thus 
exerts its anti-oxidant function through preventing LDL 
oxidation by ROS and protecting against the adverse effects 
of ox-LDL on the endothelium. Reduced levels and dysfunction 
of HDL, which could be  due to perturbed HDL proteome 
composition, are common in CKD patients (Vaziri, 2006; 
Yamamoto et  al., 2012; Agrawal et  al., 2017; Kronenberg, 
2018; Rysz et  al., 2020).

Deficiency of FA metabolism and lipid overload are the 
main drivers in the progression of both glomerular and tubular 
kidney diseases. Lipid accumulation, particularly in ischemic 
proximal tubules, may result in persistent energy depletion 
with FFA-induced mitochondrial dysfunction, which could play 
an important role in the AKI to CKD transition (Szeto, 2017). 
Conversely, mitochondrial protection prevents high-fat diet-
induced glomerular and tubular lesions (Szeto et  al., 2016).

The pathophysiological changes underlying hyperlipidemia 
may involve energy shortage from impaired mitochondrial 
biogenesis or ATP energetics, and systemic oxidative stress due 
to excessive ROS production accompanied by ER stress and 
influx of inflammatory cytokines. Without timely intervention, 
these changes could eventually lead to apoptosis and kidney 
fibrosis (Agrawal et  al., 2017; Du and Ruan, 2019). Less is 
known about the molecular mechanism of some toxic lipid 
intermediates (“metabolic poison”) derived from deficiency or 
decreased expression of FAO-related enzymes in kidney disease 
development (Stadler et  al., 2015; Su et  al., 2017); and future 
research may elucidate this process.

TARGETING MITOCHONDRIAL ENERGY 
METABOLISM AND LIPOTOXICITY IN 
KIDNEY DISEASES

Lipid-lowering therapies in kidney diseases have been studied 
for many years, although statins is still the first choice of 
conventional hypolipidemia strategies for its effect on HMGCoA 
inhibition to block cholesterol synthesis. Cumulative 
pharmacological efforts have advanced the field to develop 
classic and novel lipid modifying therapies in kidney diseases, 
as extensively reviewed recently (Ferro et al., 2018; Sudhakaran 
et  al., 2018; Filippatos et  al., 2019; Rosenson et  al., 2019; 
Heine et  al., 2020; Opazo-Ríos et  al., 2020). These include 
effective and well-tolerated drugs targeting various lipid synthesis, 
uptake, trafficking and metabolism pathways. Recent years, 
compounds that specifically target mitochondria have emerged 
as promising therapeutic options for patients with renal disease. 
Here, we  discuss molecules targeting mitochondrial lipid 
metabolism and mitochondrial dysfunction pathways, including 
pharmacological agents promoting mitochondrial FAO, 
mitochondrial biogenesis, and ATP synthesis, as well as 
mitochondrial antioxidants (regulating ROS metabolism) and 
cardiolipin stabilizers.
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Mitochondrial FAO-Promoting Agents
Carnitine and acetyl-l-carnitine are nonessential nutrients, as 
kidney of healthy subjects normally produce sufficient carnitine 
from daily food intake/metabolism and preserve its excretion 
well. However, carnitine could be  used as dietary supplements 
to help with carnitine shuttle of FAO in conditions of “primary 
carnitine deficiency” (children with genetic disorder of carnitine 
transporter OCTN2 encoded by the SLC22A5 gene; Frigeni 
et  al., 2017) or adults with secondary carnitine deficiencies 
due to chronic renal failure (Ames, 2010).

PPARα is crucially involved in energy and metabolic 
homeostasis. Fibrates (fibric acid derivatives, including fenofibrate 
and the enhanced medication-pemafibrate) are a class of PPARα 
agonists that lowers blood TAG through decreasing VLDL 
production by liver and promoting the removal of TAG from 
blood. Fibrates also moderately increase blood HDL cholesterol. 
Mechanistically, the PPARα agonists activate PPARα, promote 
peroxisomal and mitochondrial FAO, initiate cellular cascade 
to upregulate lipoprotein lipase, and ultimately cause more 
efficient catabolism of VLDL and TAG (Lakhia et  al., 2018; 
Cheng et  al., 2019; Yamashita et  al., 2020).

CD36 mediates the internalization of lipids such as LCFAs, 
oxLDL, and oxidized phospholipid in both proximal tubule 
cells and podocytes. CD36 signaling is involved in FA-induced 
glomerular injury (Hua et  al., 2015). The ApoA-I mimetic 5A 
peptide is a CD36 antagonist, which was shown to reduce 
glomerular injury and tubulointerstitial fibrosis in mouse CKD 
models of subtotal nephrectomy with angiotensin II infusion 
or unilateral ureteral obstruction (Souza et al., 2016). 5A peptide 
was shown to form HDL-like particles  to  promote ABCA1-
dependent cholesterol efflux (Islam et  al., 2018) and thus may 
effectively treat patients with cardiovascular disease.

The herbal alkaloid Berberine (BBR) is used as a supplemental 
medicine and has shown clinical benefit in reduction of LDL 
and TAG in diabetic and hypertensive patients (Koppen et al., 
2017). BBR has wide spectrum pharmacological effects through 
its various action of mechanisms such as increasing LDL-receptor 
mediated hepatic clearance of LDL cholesterol (Wang et  al., 
2014), protection of lipid-induced apoptosis by promoting FAO 
in PTEC (Sun et  al., 2018), supporting PGC1α-regulated 
mitochondrial energy homeostasis in CKD model of db/db 
mice and cultured podocytes (Qin et  al., 2019a), and 
podocyte  protection via inhibition of mitochondrial fission 
and dysfunction (Qin et  al., 2019b).

Mitochondrial Bioenergetics and 
Biogenesis-Promoting Agents
Niacin (vitamin B-3) was the first identified lipid-lowering 
drug in patients at late 1950s and currently used as an adjunct 
therapy to help the control of cholesterol. Niacin, at 
pharmacological dose, increases circulating HDL level to improve 
cholesterol clearance in peripheral tissues and also changes 
the composition and metabolism of ApoA-I and ApoA-II 
(Shepherd et  al., 1979). The HDL boost effect of niacin is 
through different molecular mechanisms. First, niacin 
stabilizes  surface ABCA1 expression and ApoA-I lipidation.  

Second, niacin inhibits surface expression of the hepatic HDL 
receptor β-ATP synthase, and thus increases HDL blood 
availability (Zhang et  al., 2008). Third, niacin inhibits the 
hepatic TAG biosynthesis enzyme “diacylglycerol acyltransferase-2 
(DGAT2)” to reduce TAG synthesis and leads to the subsequent 
VLDL/LDL destabilization (Ganji et al., 2004). The mechanisms 
of DGAT inhibition and TAG metabolism are active research 
area as more pharmacological drugs designs centering on the 
two DGAT enzymes (DGAT1 and DGAT2), which apparently 
have distinct and overlapping functions (Chitraju et  al., 2019). 
Niacin was later found to be an important precursor of cofactor 
NAD+, which promotes SIRT/PGC-1α activity and thus modulates 
mitochondrial energy homeostasis, biogenesis, and lipid 
metabolism (Kirkland and Meyer-Ficca, 2018; Romani et  al., 
2019). Moreover, niacin provides vascular benefits through 
NAD+/SIRT mediated mechanism during endothelial lipotoxicity 
(Hughes-Large et  al., 2014).

The AMPK/SIRT/PGC-1α axis is crucial for mitochondrial 
biogenesis (Duann and Lin, 2017). Agents modulating this 
process include metformin. Metformin, the most commonly 
prescribed drug for the treatment of type 2 diabetes as a 
glucose-lowering and insulin-sensitizing agent, is a biguanide 
drug that also actives the energy sensor AMPK. In animal 
nephropathy models, several pathologies were observed including 
reduced phosphorylation of acetyl-CoA carboxylase (ACC), a 
target of AMPK and the major enzyme in the control of 
FAO  rate; decreased expressions of CPT1 and enzymes in 
mitochondrial biogenesis; and increased lipid accumulation and 
expression of pro-inflammatory cytokines and tubulointerstitial 
fibrosis. Metformin reduces renal fibrosis by improving AMPK-
mediated phosphorylation of ACC and FA energy metabolism 
(Lee et  al., 2018).

Mitochondria-Targeted Anti-oxidants
Lipid-mediated mitochondrial oxidative stress is common in 
many kidney diseases. The selective mitochondria-targeted 
antioxidants, such as MitoQ and MitoTEMPO, have been 
developed to mitigate mitochondrial oxidative stress. These small 
molecule agents could be  delivered and concentrated at 
mitochondria matrix to function as ROS scavenger (Kezic et al., 
2016). They are chimeric molecules of a lipophilic cation 
triphenylphosphonium (TPP+) conjugated with an antioxidant 
moiety such as ubiquinone (MitoQ; Kelso et  al., 2001) or 
piperidine nitroxides (TEMPOL and TEMPO; Trnka et al., 2008).

MitoTEMPO could be uptaken and accumulated in energized 
mitochondria matrix several 100-fold to modulate coenzyme Q 
(CoQ) pool within mitochondria (Trnka et  al., 2008). In a 
diabetic db/db mouse model, 7-week of CoQ10 (0.1% in food) 
oral administration significantly reduced the levels of serum 
creatinine and blood glucose and albumin-to-creatinine ratio, 
in accordance with renal morphological restoration (Sun et  al., 
2019). CoQ10 ameliorates DN-induced mitochondrial dysfunction 
and oxidative stress through its activation of mitophagy-mediated 
glomerular mitochondria homeostasis both in vivo and in vitro. 
In this study, MitoTEMPO (3  mg/kg/day) restored mitophagy 
and alleviated kidney dysfunction in glomeruli of db/db mice 
in a similar manner as CoQ10 treatment (Sun et  al., 2019). 
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In a mouse sub-total nephrectomy-induced renal fibrosis CKD 
model, MitoTEMPO rescued impaired renal function and 
alleviated renal fibrosis by reducing inflammation cytokines, 
mitochondrial dysfunction, ER stress, and profibrotic factors 
(Liu et  al., 2018).

Additionally, in a clinically relevant murine model of 
abdominal sepsis (cecal ligation and puncture, CLP), a single 
delayed high dose of MitoTEMPO (10  mg/kg, given at 6  h 
post-CLP) could reverse renal mitochondrial dysfunction and 
attenuated sepsis-induced AKI by 18 h. MitoTEMPO decreased 
mitochondrial superoxide level, protected ETC respiration, 
improved renal microcirculation and glomerular filtration rate. 
Importantly, MitoTEMPO treatment significantly increased 96-h 
survival rate from 40% in untreated mice to 80% (Patil et  al., 
2014). The beneficial effect of MitoTEMPO is still under debate 
as it failed to exert long-term benefits in a later CLP-AKI 
study (Rademann et  al., 2017). However, in a rat puromycin 
aminonucleoside (PAN)-induced glomerular damage model, a 
model mimicking children minimal-change nephrotic syndrome 
(MCNS), a 10-day MitoTEMPO treatment (1  day prior to 
PAN-injury and continued for 9 additional days) reduced the 
level of urinary protein, urinary lipid peroxidation and the 
expression of oxidative stress markers in glomeruli and plasma; 
although the overall renal function seemed not significantly 
improved as measure of creatinine clearance (Fujii et al., 2020). 
In summary, more research is warranted to validate renoprotective 
effects of MitoTEMPO.

MitoQ is a mitochondria targeted antioxidant of CoQ 
analogue, which could be  accumulated in mitochondria up 
to 1,000-fold. In a type 1 monogenic diabetes of the young 
[MODY, the Ins2Akita (Akita)] mouse model, oral 
administration of MitoQ over a 12-week period prevented 
diabetic nephropathy (Chacko et al., 2010). MitoQ treatment 
did not alter the glycaemic status of diabetic animals. However, 
MitoQ significantly decreased urinary albumin levels in 
diabetic mice. MitoQ offered benefits in prevention of diabetes-
induced tubular dysfunction and protection of glomerular 
function as measured by radioactive tracer clearance capacity. 
Moreover, MitoQ decreased pathogenic glomerular GBM 
thickening and reduced interstitial fibrosis through prevention 
of EMT (epithelial-to-mesenchymal transition) process in 
Akita mice (Chacko et  al., 2010). Recently, in a diabetic 
db/db mouse model, Ward et al. confirmed the renoprotective 
effects of MitoQ treatment through daily intragastric gavage 
over a period of 12-week. MitoQ improved renal function, 
decreased glomerular hyperfiltration, albuminuria, and 
prevented interstitial fibrosis (Ward et  al., 2017). In a mouse 
ischemia-reperfusion induced AKI (IRI) model, administration 
of MitoQ prior to the onset of ischemia was shown to 
reduce oxidative damage and severity of renal IRI (Dare 
et  al., 2015). Despite the great success of mitochondria-
targeting antioxidants in preclinical studies, their clinical 
effects on CKD patients remain to be  verified. However, 
MitoQ supplementation was linked to restoration of endothelial 
function and reduces aortic arterial stiffness in aging humans, 
thus offers potential promise in vascular treatment in CKD 
patients (Rossman et  al., 2018).

Cardiolipin-Targeting Peptides
In mice, a long-term (28  weeks) high fat diet (HFD) caused 
mitochondrial dysfunction and structural alterations, such as 
reduction in size and loss of matrix density and IMM cristae, 
in renal cells including proximal tubular cells, podocytes and 
glomerular endothelial cells. The mitochondrial injury led to 
ER stress, lipid droplets accumulation, autophagy, apoptosis, 
and subsequent inflammation, proteinuria, and fibrosis 
(Szeto et  al., 2016). The mitochondrial injury could be  due 
to loss and/or peroxidation of cardiolipin, the major structural 
and functional regulator of IMM cristae. Such mitochondrial 
injury could be  prevented with cardiolipin-stabilizing 
tetrapeptide SS31 (namely, Elamipretide, MTP-13, or Bendavia), 
which reduces HFD-induced lipid accumulation, toxic ROS 
production, regulates cytochrome C activity, and restores 
AMPK signaling (Szeto et  al., 2016; Szeto, 2017). The 
mitochondria protective effect of SS31 after ischemia-AKI 
prevents prolonged inflammation and arrests CKD transition 
(Szeto et  al., 2017). Elamipretide is on a phase 2a clinical 
trial in patients with atherosclerotic renal artery stenosis during 
stent revascularization, with promising results (NCT01755858; 
Saad et  al., 2017) and was shown to improve mitochondria 
function in the human failing heart (Chatfield et  al., 2019). 
The clinical effects of Elamipretide on kidney disease, however, 
require further investigations.

CONCLUDING REMARKS

Mitochondria are the “powerhouse” of the high-energy 
demanding kidney cells. Crosstalk between mitochondria, 
nucleus, endoplasmic reticulum, and peroxisomes impacts 
numerous cellular functions. Mitochondrial bioenergetics, 
adaptation of energy metabolism, and mitochondrial biogenesis 
during physiology or stress conditions are tightly linked to 
body lipid homeostasis, as well as health and disease states 
of kidney. Dysfunctional mitochondria could lead to dyslipidemia, 
microvasculature damage, inflammation, kidney fibrosis, or even 
kidney failure. The evolving knowledge of the molecular 
mechanisms modulating mitochondrial energy homeostasis and 
lipid metabolism suggest that normalizing renal cell mitochondrial 
function and energy balance could be an important preventative 
strategy against dyslipidemia and could provide new drug 
targets in kidney diseases.
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