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Abstract
Study Objectives: Sleep spindles are defined based on expert observations of waveform features in the electroencephalogram (EEG) traces. 
This is a potentially limiting characterization, as transient oscillatory bursts like spindles are easily obscured in the time domain by 
higher amplitude activity at other frequencies or by noise. It is therefore highly plausible that many relevant events are missed by current 
approaches based on traditionally defined spindles. Given their oscillatory structure, we reexamine spindle activity from first principles, 
using time-frequency activity in comparison to scored spindles.
Methods: Using multitaper spectral analysis, we observe clear time-frequency peaks in the sigma (10–16 Hz) range (TFσ peaks). While nearly 
every scored spindle coincides with a TFσ peak, numerous similar TFσ peaks remain undetected. We therefore perform statistical analyses 
of spindles and TFσ peaks using manual and automated detection methods, comparing event cooccurrence, morphological similarities, and 
night-to-night consistency across multiple datasets.
Results: On average, TFσ peaks have more than three times the rate of spindles (mean rate: 9.8 vs. 3.1 events/minute). Moreover, spindles 
subsample the most prominent TFσ peaks with otherwise identical spectral morphology. We further demonstrate that detected TFσ peaks 
have stronger night-to-night rate stability (ρ = 0.98) than spindles (ρ = 0.67), while covarying with spindle rates across subjects (ρ = 0.72).
Conclusions: These results provide compelling evidence that traditionally defined spindles constitute a subset of a more generalized class of 
EEG events. TFσ peaks are therefore a more complete representation of the underlying phenomenon, providing a more consistent and robust 
basis for future experiments and analyses.
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Statement of Significance

In this paper, we demonstrate that the current definition of spindle activity, which is based on historical observations electroencephalo-
gram (EEG) waveforms, greatly undersamples from the oscillatory events underlying the phenomenon. This study is the first to systemat-
ically reexamine spindle activity from first principles using time-frequency events as the basis of observation, employing both manual and 
automatic detection methods. In doing so, we show that TFσ peaks, time-frequency peaks in the 10–16 Hz range, provide a more compre-
hensive, robust, and stable characterization of the spindle phenomenon. The high intra-individual stability and increased statistical power 
of TFσ peaks will likely enhance future studies associating spindle activity with memory, aging, and psychiatric and neurodegenerative 
disorders, as well as with large-scale epidemiological and genetic studies.
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Introduction

From its inception in the 1920s until the late 1960s, the elec-
troencephalogram (EEG) was almost exclusively presented as 
brainwave traces drawn by mechanical pen on paper [1–4]. 
Consequently, much of the way that brain state is currently 
characterized has its historical basis in those features of the 
EEG time domain trace easily observable by eye. In particular, 
sleep research heavily relies on the visual inspection of the 
EEG time trace within a polysomnogram (PSG). Current clin-
ical standards [5], which have remained virtually unchanged 
from the late 1960s [6], divide sleep into four stages: rapid eye 
movement (REM) and non-REM (NREM) Stages 1–3 (N1–N3). 
The different stages are defined by oscillatory activity across 
a set of canonical frequency ranges as well as specific wave-
form patterns.

One of the most prominent waveform patterns observed 
in the sleep EEG is the spindle, originally observed as waxing-
waning 14 Hz oscillatory bursts [2]. The presence of trains of 
spindle waveforms in the sleep EEG chiefly defines N2 sleep 
[6], during which spindles have been observed to occur at an 
average rate of ~2–3  events/minute [7, 8]. Spindles have gar-
nered substantial attention through numerous studies linking 
spindle activity to memory consolidation and neural plasticity 
during sleep [9, 10], as well as recent studies associating de-
viations in spindle activity and morphology with aging [11], 
Alzheimer’s disease [12], epilepsy [13], schizophrenia [14], and 
autism [15].

Spindles were first discovered in 1935 by Loomis, Harvey and 
Hobart through visual inspection of the EEG time domain traces 
on paper [2]. Nearly a century later, visual inspection of spindles 
by expert scorers is still the de facto “gold standard” in sleep 
research. The American Academy of Sleep Medicine (AASM) 
defines spindles as “A train of distinct waves with a frequency 
of 11–16 Hz (most commonly 12–14 Hz) with a duration of >0.5 
second, usually maximal in amplitude using central derivations” 
[5]. Given this broad definition, there is often large variability in 
spindle counts reported between different human scorers on 
the same data set [16]. While numerous quantitative methods 
have been developed to automatically detect spindles [17], these 
approaches typically use hand-scored spindles as the standard 
by which performance is measured and parameters are tuned. 
Therefore, these automated methods ultimately serve to repli-
cate imperfect human scoring rather than to identify objective 
markers of the neurophysiological phenomenon underlying 
spindles.

The fundamental problem in visual identification of spin-
dles is that transient oscillatory signals are exceptionally dif-
ficult to parse by eye. This is because the sleep EEG generally 
involves the superposition of many components across a wide 
range of frequencies. Thus, a strong low-frequency activity 
during NREM sleep could completely obscure a small amplitude 
signal at another frequency. This inherent obfuscation raises 
the question of whether only those spindles of the highest 
amplitude occurring during times of quiescent low-frequency 
activity are being detected, thus potentially subsampling from 
a larger class of event. If this is indeed the case, current under-
standing of spindles might be biased by these historical obser-
vations, which would implicitly undersample spindle activity. 
Consequently, numerous reservations about human scoring of 
spindles have been voiced [16, 18–21], advocating for more ob-
jective EEG analyses in clinical sleep medicine [22, 23].

Spectral analysis, which decomposes a signal into its dif-
ferent frequency components [24] has been a long-standing tool 
for EEG analysis [25]. Recent work has illustrated how aspects 
of the dynamic oscillatory structure of the sleep EEG, including 
spindles, not visible in the time domain, can be readily observed 
in the time-frequency domain visualized by the multitaper 
spectrogram [26]. Any transient oscillatory activity, by defin-
ition, will appear as a salient time-frequency peak on the spec-
trogram. Thus, the phenomenology of spindles might be better 
characterized through the lens of time-frequency analysis, 
which disambiguates the dynamics of simultaneously occurring 
time-varying oscillatory activity.

There have been several studies using time-frequency ana-
lysis for spindle detection and exploration of oscillatory phe-
nomena [27–32]. It is also common to analyze traditionally 
detected time domain spindles in the time-frequency domain. 
However, to our knowledge, no study has systematically char-
acterized spindle activity from first principles using time-
frequency phenomenology as the basis of observation with 
direct comparison to traditionally scored spindles. This line of 
inquiry is crucial to revealing any limitations inherent in the 
current time-domain definition of spindles, allowing us to move 
towards a more objective and evidence-based understanding of 
the underlying activity. In this study, we examine spindle activity 
with both hand-scoring and automated detection methods in 
both time and time-frequency domains using multiple datasets. 
We provide a comprehensive characterization of the properties 
of traditionally defined spindle waveforms in comparison to 
time-frequency activity observed in the sigma (10–16 Hz) range.

Methods

Datasets

We examined sleep recordings from three independent datasets: 
(1) patients in the DREAMS Sleep Spindle Database [33], (2) 
healthy control subjects in a previously published study [34], 
and (3) healthy young subjects in a high-density EEG study [35]. 
Details of each dataset are described below.

The DREAMS Sleep Spindle Database [33] is a public dataset 
consisted of 30 minutes excerpts taken from clinical PSG record-
ings in eight patients (age range: 31–53, sex: 4F/4M) with different 
sleep disorders (dyssomnia, restless legs syndrome, insomnia, 
apnea/hypopnea syndrome). Two trained experts blinded to the 
underlying sleep stages manually scored spindles on 30-second 
epochs according to the Rechtschaffen and Kales criteria [6]. 
One expert scored the full record for six patients; however, the 
other expert incompletely scored the records. We analyzed ex-
cerpts from the six patients with the complete expert scoring (2 
recordings from C3-A1, one at 50 Hz and one at 100 Hz sampling 
rates; 4 recordings from CZ-A1 at 200 Hz sampling rate). We used 
this dataset to compare hand-scoring of events in the time and 
time-frequency domains.

The control subjects from Wamsley et al. [34] included 17 
healthy participants (age range: 26–45, sex: 3F/14M), screened 
to ensure no history of mental illness, family history of 
schizophrenia spectrum disorder, or psychoactive medica-
tion use. Two full-night PSG recordings were digitally acquired 
from each participant at a sampling rate of 100 Hz using an 
Embla N7000 system (Medcare Systems, Buffalo, New York). 
The recording montage included five to seven EEG channels 
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(F3, F4, C3, C4, Pz, O1, O2) referenced to the linked mastoids. 
Data from electrode C3 were used for all analyses in the pre-
sent study. A random subset (six subjects) of the second-night 
recordings was drawn to extend hand-scoring in the time-
frequency domain to the full-night length. We analyzed all re-
cordings with automated detection methods in both time and 
time-frequency domains.

The data from Prerau et  al. [35] contained a cohort of ten 
healthy right-handed subjects (age range: 19–32, sex: 5F/5M) 
with BMI <30, screened for sleep disorders and medication use. 
Full-night PSG were acquired at a sampling rate of 500 Hz with 
a 64-channel Brain Vision EEG cap. The data were downsampled 
to 200 Hz and offline rereferenced to common average and 
Laplacian referencing schemes. We analyzed the central channel 
4 as the proxy for C3 in the standard clinical montage. Two re-
cordings from this dataset were presented as examples of the 
abundant spindle-range activity on spectrograms in Figure 1.  

No spindle analysis was performed, as detailed discussion of 
referencing is out of the scope of the present study.

PSG data processing

We preprocessed recordings prior to hand-scoring in the time-
frequency domain and applying automated detection algo-
rithms. For recordings from the DREAMS Sleep Spindle Database, 
we omitted sleep staging and artifact rejection to best match the 
expert scoring procedure that was blinded to sleep stages and 
automatically flagged artifacts. The standard protocol for visual 
sleep stage scoring was followed by trained polysomnography 
technologists and standardized to AASM guidelines [5]. For de-
tails, see the associated studies [34, 35].

Artifact rejection was implemented with a custom MATLAB 
function performing an iterative detection of artifacts based on 
z-scored signal amplitudes. To detect high-frequency noise, raw 

Figure 1. Spindles appear to be a subset of a broader class of time-frequency peaks in the sigma range of the spectrogram (TFσ peaks). (a) Salient peaks were iden-

tified by hand-scoring in the time-frequency domain (dashed boxes). Traditionally scored time domain spindles (highlighted regions) directly align with a subset of 

TFσ peaks (magenta dashed boxes) in the spectrogram of a 30-second segment of C3 data during N2 sleep. (b) The observations of numerous TFσ peaks appear to be 

ubiquitous and are seen across several datasets and referencing schemes, as illustrated by 30-second N2 epochs from four different subjects. The sigma range (10–16 

Hz) is demarcated by horizontal dashed lines.



4 | SLEEPJ, 2021, Vol. 44, No. 9

EEG traces were first filtered to above 35 Hz with an 8th order 
IIR high pass filter. Hilbert transform was then applied to the 
filtered signal. The amplitudes of the instantaneous signal were 
converted to a logarithmic scale, smoothed with a 2-second run-
ning average window, and spline detrended with 300 knots. The 
resultant signal was z-transformed over time, and time points 
with absolute z-scores above 4 SDs were marked as artifacts. 
This procedure was repeated after each iteration by recomputing 
z-scores until no time point deviated from 0 by more than 4 
SDs. To detect artifacts with broadband energy, the original EEG 
traces were filtered to above 2 Hz with an 8th order IIR high pass 
filter. The same steps as described for high-frequency noise were 
followed, and time points beyond 4 SDs were iteratively marked 
as artifacts until convergence. Time points detected to contain 
either high-frequency noise or broadband noise (or both) were 
considered artifacts and removed from subsequent analyses.

EEG spectrograms were computed using the multitaper 
method [24, 26, 36] with the following parameters: 1 second 
window length, 0.05 second step size, time-half-bandwidth 
product (TW) of 2, 3 Slepian tapers, 210 minimum number of dis-
crete Fourier transform points (NFFT), and constant detrending 
within each window. For detailed explanations of the multitaper 
parameters for sleep analyses, see our previous publication [26] 
and tutorials on http://www.sleepEEG.org/multitaper.

Extraction of time-frequency event properties

In this study, we compare the morphological properties of the 
EEG activity underlying events detected by different methods. 
One challenge for this analysis is that can often be difficult to 
reconcile property values from methods that use different as-
sumptions or operate on different data transformations. For 
example, it is not meaningful to compare event duration or 
magnitude in time versus time-frequency methods, as the 
values are derived from separate domains and are not actually 
the same property. Furthermore, for hand-scored events, prop-
erties are highly contingent on crude manually selected regions 
in software (e.g. drawing boxes around events) or imposed fixed 
criteria (e.g. the fixed 1 second event duration in DREAMS hand-
scoring). To reconcile these differences, we developed a generic 
time-frequency procedure to extract properties of the most sa-
lient transient EEG event occurring during a given detected time 
periods. The goal of this approach is to provide a unified frame-
work for property estimation and comparison across detection 
procedures.

Our approach uses the time-frequency domain as the basis 
for event property estimation, since transient oscillatory activity 
will appear as salient time-frequency peaks in the spectrogram. 
This algorithm extracts time-frequency local maxima from the 
spectrogram by looking for regions with well-defined peak-like 
structure in both time and frequency dimensions. This is done 
in two steps, leveraging the concept of peak prominence, which 
describes the height of a peak relative to its local baseline. The 
first step is a “frequency step,” which detects peaks in the EEG 
power spectrum at each time and estimates the prominence of 
the largest peak in the spindle frequency range. The second step 
is a “time step,” which detects temporal peaks in the time trace 
of the prominence values obtained from the “frequency step.” 
Each temporal peak identified in the “time step” therefore cor-
responds to a well-defined local maximum on the spectrogram. 

To describe the morphology of these time-frequency peaks, we 
compute the following properties: prominence, duration, central 
frequency, and bandwidth.

We then use these identified peaks and properties for com-
parison between different hand or automated spindle detec-
tion methods. For a given detected event (from any method), we 
identify the most prominent peak occurring during that time 
period and assign the properties of that peak to that event. In 
doing so, we can use a common framework for event property 
comparison regardless of how the event was detected. Details 
of the prominence algorithm and property extraction are de-
scribed in the Supplementary Material.

Hand-scored and automated event detection

In the present study, we investigated “spindle-like” activity 
with both hand-scoring and automated detection methods in 
both time and time-frequency domains. To avoid confusion, we 
have introduced the following terminology used throughout 
the paper: Sleep spindles are reserved for the traditionally de-
fined EEG waveform events in the time domain, typically fol-
lowing the AASM manual description as distinct waves with 
frequency range 11–16 Hz and lasting at least 0.5 seconds [5]. 
A time-frequency peak (TF peak) is used to describe a distinct re-
gion of enhanced activity in the time-frequency domain, ob-
served as a local maximum in the spectrogram. While TF peaks 
can theoretically occur at any frequency, here we operationally 
define sigma-range time-frequency peaks (TFσ peaks) to refer to sa-
lient time-frequency peaks representing transient activity in the 
spindle frequency range (which we define as 10–16 Hz to keep 
consistent with the Wamsley detector described below), which 
can be easily visualized on spectrograms.

Hand-scoring of spindles
 Expert hand-scoring is provided as part of the DREAMS Sleep 
Spindle Database. We used the scoring results from the second 
expert to identify spindles in the time domain on the first six ex-
cerpts. The expert scoring marked 1-second-long intervals that 
were subjectively judged to contain spindles. Per the convention 
of clinical sleep spindle scoring, time traces with hand-scored 
spindles are displayed after filtering to 0.3–35 Hz. This filter is 
only applied for visualization.

Automated detection of spindles
Recently, Warby et al. examined six published sleep spindle de-
tection algorithms and found the Wamsley spindle detector [34] 
to best agree with the hand-scoring gold standard [17]. Based on 
this result, we employed the Wamsley detector as implemented 
in Warby et al. for automated detection of spindles in the time 
domain. The Wamsley detector transforms a single-channel EEG 
signal using an 8-parameter complex Morlet wavelet with scale 
parameters corresponding to the 10–16 Hz frequency range. 
The wavelet transform signal is then smoothed with a 100 ms 
moving average window. A detection threshold is set to be 4.5 
times the mean of a wavelet magnitude statistic, the square of 
the real component of the squared wavelet coefficient, during 
N2 sleep. A  sleep spindle event is detected when the wavelet 
signal exceeds this threshold for at least 0.3 second.

The Warby implementation of the Wamsley detector differs 
from the original Wamsley implementation by adding an upper 

http://www.sleepEEG.org/multitaper
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab099#supplementary-data
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limit of spindle duration at 3 seconds and imposing a 1-second 
minimal separation between two consecutive spindle onset 
times. We found these two changes to have negligible impacts 
on detection results. We kept them in the Wamsley detector 
to follow the exact same algorithm provided by Warby et al. It 
should be noted that spindle events specified by the Wamsley 
detector (10–16 Hz, durations of 0.3–3 seconds) differ slightly 
from the AASM definition of spindles as 11–16 Hz waves with 
durations above 0.5 second. Nevertheless, we still use spindles 
to refer to these detected spindle events, as the algorithm was 
developed to mimic and validated by hand-scoring of spindles 
in the time domain [17, 34].

Hand-scoring of TFσ peaks
 Salient TFσ peaks were visually identified from the multitaper 
spectrograms on 30-second epochs by a trained scorer (T.D.) 
and manually marked with enclosing boxes using a customized 
MATLAB toolbox, which we have made publicly available. As TFσ 
peaks appear on the spectrograms as regions with increased ac-
tivity, hand-scoring of TFσ peaks followed a set of rules: an event 
was visually scored as a TFσ peak if it was distinguishable from 
the background activity as a salient region of increased spec-
tral power with sharp boundaries, well-contained along both 
time and frequency dimensions, and if the region bounds fell 
within the 9–17 Hz frequency range. We add ±1 Hz to the range 
to conservatively account for the main lobe bandwidth of the 
TFσ peak in the time-frequency domain. After scoring, we used 
the detected central oscillation frequency of each event (com-
puted using the property extraction method described above), to 
restrict analysis to only those events falling within 10–16 Hz. No 
specific cutoff was adopted for event durations.

Automated detection of TF peaks
 We developed a data-driven clustering method to automat-
ically identify TFσ peaks in the time-frequency domain based 
on prominence values of local maxima on the multitaper spec-
trograms. There are abundant local maxima in the spindle 
frequency range throughout the night. Yet spindles and more 
generally spindle-like activity should be (1) well-formed TF 
peaks (2) robustly prominent relative to the background activity. 
Together, these factors help separate identifiable TFσ peaks from 
noise. We therefore looked at the prominence of all detected 
well-formed TF peaks extracted using the property extraction 
algorithm outlined above. The peak prominence quantifies the 
extent to which a local maximum stands out from the back-
ground activity, giving a numerical value for the distinctive-
ness of a peak in the time-frequency domain. We converted the 
prominence values of all local maxima to the logarithmic scale 
due to observed log-normal distributions. In order to derive a 
principled separation of events from noise unique to each in-
dividual, we applied a two-class k-means clustering algorithm 
[37] on the prominence values for each subject. The cluster with 
higher mean prominence was labeled as TFσ peaks of interest, 
and the other cluster with lower prominence was labeled as 
noise peaks. This choice was motivated by the observation of 
bimodal or skewed peaks within the prominence distributions. 
Prior to k-means clustering, we excluded peaks with durations 
shorter than 0.3 second to match consensus [17]. We further ex-
cluded peaks with frequency bandwidths less than half of the 
spectral resolution of the multitaper spectrograms (4 Hz/2 = 2 

Hz), as peaks of this bandwidth are not resolvable by the spectral 
estimator. After k-means clustering, we exclude any detected 
events outside the 10–16 Hz range, to match with the method 
described in Wamsley et al.

F1-optimization of spindle detector thresholds
 The Wamsley detection threshold at 4.5 times the mean coeffi-
cient magnitude is the default value optimized to match hand-
scored time-domain spindles. To assess the performance of 
the Wamsley detector with varying thresholds, we reduced the 
threshold scalar from 4.5 in order to relax the rarity assump-
tion on event rates. For the six DREAMS control subjects with 
hand-scoring in the time-frequency domain, we optimized the 
Wamsley threshold for the best agreement with hand-scored 
TFσ peaks based on F1 scores. We elaborate on the details of F1 
computation below. To determine the F1-optimized threshold 
for each subject, we varied the Wamsley threshold from 0.01 
to 4.5 in steps of 0.01 and selected the threshold producing the 
maximal F1 score. This produced individualized F1-optimized 
thresholds for each subject. We also computed a single group 
F1-optimized threshold that maximized the mean F1 across all 
subjects (Supplementary Material).

Statistical analysis

Having detected spindles and TFσ peaks, we aimed to compare 
them systematically through various metrics. Here we describe 
all analyses conducted to compare detected events in the order 
of increasing levels of processing and use of statistical tests. 
The different analysis techniques complement each other and 
address distinct aspects of detected events. Taken together, these 
analyses provide a comprehensive comparison of spindles in 
the time domain and TFσ peaks in the time-frequency domain.

Event selection
 With the exception of the DREAMS data, which was blinded 
to sleep staging, all analysis was confined to events occurring 
NREM Stage 2 (N2) sleep, in order to match the design specifica-
tions of the Wamsley detector, which is optimized for N2 ana-
lyses. Events within 3 seconds of a detected artifact or non-N2 
stage were removed from analysis to avoid partial events due 
to clipping. Events detected with central frequency falling out-
side the 10–16 Hz range were removed from analysis to facili-
tate direct comparisons across the time and time-frequency 
domains.

Aggregate event spectrograms
 To compute the aggregate event spectrograms, events were 
aligned based on the troughs of the filtered time-domain signals. 
For each detected event, the central trough time was defined as 
the minimum of the 10–16 Hz bandpassed time-domain signal 
during the event duration. For each event, the segment ±1.5 
seconds around the trough was extracted from the multitaper 
spectrogram. Aggregate event spectrograms were computed 
using the element-wise median of all events across subjects, 
converted to the dB scale for visualization.

Confusion matrix statistics
Detection of spindle-like activity is a classification problem, 
of which confusion matrices can be used to assess detection 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab099#supplementary-data
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performance of different methods [17]. We treated hand-scoring 
of TFσ peaks as the “ground truth” for defining true positive and 
false positive events. However, we do not assume hand-scored 
TFσ peaks as the best representation of the true underlying 
neurophysiological activity. Rather, we constructed the confu-
sion matrices this way because TFσ peak hand-scoring can be 
used as the invariant method across comparisons (Tables 1–3). 
Using this fixed “ground truth” facilitates comparing spindle-
like activity across time and time-frequency domains by pro-
viding a common reference for confusion matrix statistics. 
Specifically, we define true positive, false positive, and false 
negative events as:

 

true positive (TP) = an event hand-scored as a TFσ peak and

also detected by the other method
 

 

false positive (FP) = an event not hand-scored as a TFσ peak but

detected by the other method
 

 

false negative (FN) = an event hand-scored as a TFσ peak but

missed by the other method  

Confusion matrix statistics (precision, recall, F1) were calculated 
individually for each subject (Tables 1 and 3). We define precision 
and recall as:

 

precision = TP/(TP+ FP) = fraction of events detected by the other

method hand-scored as TFσ peaks
 

 

recall = TP/(TP+ FN) = fraction of hand-scored TFσ peaks

detected by the other method
 

F1 score [38] takes the harmonic mean of precision and recall, 
and it gives a more balanced measure of the agreement with TFσ 
peak hand-scoring and is often used in the absence of the ability 
to define a true negative:

 
F1 = 2× precision× recall/( precision+ recall) 

For all confusion matrices, we used an event-based analysis to 
determine TPs. When a hand-scored TFσ peak overlapped in time 
with an event detected by the other method, it was treated as a 
TP event without a minimal overlap requirement. In rare cases, 

multiple events detected by the other method overlapped in time 
with a single TFσ peak marked by hand-scoring. Then multiple TP 
events were counted. On the contrary, if a single event overlapped 
with multiple TFσ peaks, it was counted as one TP event.

To complement this event-based analysis without an overlap 
threshold, we measured the extent of overlap during TP events. 
An overlap percentage is defined as the fraction of intersection 
over union, i.e. the percentage of the number of sample points 
jointly marked by hand-scoring of TFσ peaks and the other 
method over the total number of sample points detected by ei-
ther or both methods. This overlap percentage was calculated 
separately for each TP event, and the average percentage across 
TP events is reported for each subject (Tables 1 and 3). It should 
be noted that this metric uses the event time as defined by the 
detection methods and does not use the procedure for general 
event property extraction defined above.

Statistical tests on event properties
 We first conducted paired-sample t-tests on the property me-
dians of detected events. For any two methods being compared, 
we computed the median values for each subject of the four 
properties (prominence, duration, central frequency, and band-
width), respectively. As results of different detection methods 
are inherently related to the same subject-specific neurophysio-
logical activity, paired-sample t-tests assess the systematic dif-
ferences on properties of detected events. Median is chosen over 
mean due to observed tailed distributions on all properties and 
being less sensitive to rare outlier events.

A consistent pattern observed throughout the analyses 
is that there are many more TFσ peaks detected in the time-
frequency domain than spindles detected in the time domain. 
We therefore would like to understand the regions of different 
properties on which more TFσ peaks were detected than spin-
dles. Practical challenges associated with this question arise 
from (1) individual-subject differences on event properties and 
(2) skewed distributions of properties of events detected by time 
and time-frequency methods. To address these issues, we con-
ducted statistical tests on individually z-scored and binned 
properties.

For each subject, we computed the median and SD of a prop-
erty based on detected spindle events. We then performed a 
modified z-score (for outlier robustness) on the properties of both 
TFσ peaks and spindles (Z =  (X-median)/SD). When comparing 

Table 1. DREAMS Sleep Spindle Database: hand-scored TFσ peaks and spindles

TFσ peak hand Spindle hand

Subject Rate (events/minute) Rate (events/minute) Precision Recall F1 Overlap %

1 9.5 4.6 0.89 0.43 0.58 73
2 7.0 2.0 0.85 0.26 0.40 70
3 4.5 1.6 0.89 0.32 0.47 68
4 8.5 1.2 0.64 0.09 0.16 68
5 7.4 3.2 0.90 0.39 0.54 80
6 6.4 3.2 0.92 0.48 0.63 77
Mean ± SD 7.2 ± 1.7 2.6 ± 1.3 0.85 ± 0.10 0.33 ± 0.14 0.46 ± 0.17 73 ± 5.1

This table shows the event detection comparisons of time-domain hand-scored spindles and TFσ peaks in the segments of DREAMS Sleep Spindle Database. TFσ 

peaks have about 2–3 times of the event rates (number of hand-scored events per minute during NREM2 Stage 2 sleep) of sleep spindles. Confusion matrix statistics 

(described in Methods) show that the vast majority of sleep spindle events are also detected as TFσ peaks, as reflected by the high precision scores. However, the 

reverse is not true as the low recall scores indicate only about one-third of TFσ peaks are scored as sleep spindles. F1 scores, which give a more balanced measure of 

the agreement between the two methods, indicate a moderate match between the two class of hand-scored events. Nevertheless, when an EEG event is jointly de-

tected both as a TFσ peak and a sleep spindle, there is substantial overlap between the two methods.
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hand-scoring and automated detection of TFσ peaks, we 
z-scored (modified)  based on the auto-detected events. In all 
cases, we then divided the z-scored property values into seven 
bins. The bins have width of 1 SD and the center values of the 
middle five bins are –2, –1, 0, 1, –2 SD. The first bin ends at –2.5 
SD and is extended to include negative infinity. Similarly, the 
last bin starts at 2.5 SD and is extended to include positive in-
finity. The counts of events falling in the seven bins were cal-
culated for both methods being compared and divided by the 

total N2 sleep duration to obtain rate measures for each subject. 
A Wilcoxon signed-rank test was then applied across subjects 
to compare the rates of TFσ peaks with the rates of spindles 
in each bin. We used the nonparametric signed-rank test over 
paired t-tests due to the lack of normality in event rates (unlike 
the median statistic that can be assumed to be normally distrib-
uted). Two-sided statistics were used to examine the seven bins 
of each property in all comparisons shown in Figure 2. We show 
the z-scored event property histograms as well as bin-wise test 

Figure 2. Spindles are a morphologically similar subset of TFσ peaks. We compare the average event spectrograms and morphological property distributions of spin-

dles (“Sp”) and TFσ peaks (“TF”) detected by hand-scoring (“Hand”) and auto-detection (“Auto”). In (a)–(d), the top row shows the average spectrograms from all unique 

events detected by both methods (“Both”) or uniquely identified by a given method (“Only”). The bottom four subpanels show the histograms of event counts for the 

given methods corresponding to different morphological properties: prominence, duration, central frequency, and bandwidth. The results in (a), (b), and (d) show that 

the morphological properties of spindles nest within those of TFσ peaks, and that spindle detection has an implicit bias towards sampling TFσ peaks with higher prom-

inence. Thus, spindles do not exhibit characteristics consistent with a class of EEG events distinct from TFσ peaks. The results in (c) show that TFσ peaks identified by 

the auto-detection method agrees strongly with hand-scored TFσ peaks.
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boxplots in the Supplementary Material. In summary, these bin-
wise tests provide details on the separation of distributions ob-
served on property histograms (also see Supplementary Material 
for Kolmogorov-Smirnov distributional tests). The results of 
median-based and bin-wise statistical testing together help de-
scribe the phenomenology of TFσ peaks, in reference to spindle 
properties already known and described in the time domain.

Correlation of event rates and night-to-night consistency 
analysis
 We conducted correlative and linear regression analyses on the 
automated detection results in the time and time-frequency do-
mains for control subjects from the Wamsley study [34]. Full-
night recordings from two consecutive nights were analyzed for 
all 17 control subjects. We computed the correlation coefficient 
(ρ) between the rates (events/minute during N2 sleep) of spindles 
detected by the Wamsley detector and the rates of auto-detected 
TFσ peaks, as well as of event rates across the two consecutive 
nights for both auto-detected TFσ peaks and spindles. We also 
fitted linear regressions to all correlations using the robust least-
squares fitting method with bisquared weights. Robust linear re-
gression was used over standard least-squares to mitigate the 
influence of potential outliers. We report the fitted coefficients 
and 95% confidence bounds for the regressions.

To explicitly test whether there is greater intra-individual 
stability of TFσ peaks than spindles, we conducted a permuta-
tion test on the difference in Pearson correlation coefficients. 
Specifically, the event rates were first z-scored within each 
method, and the cross-night correlation coefficients were com-
puted. The difference in correlation coefficients for the two 
methods provided an observed correlation difference. We then 
randomly permuted the method tag of all z-scored event rates 
and recomputed the correlation difference for the shuffled 
methods. This process was repeated 10 000 times to form a null 
distribution of correlation difference. The probability of the null 
distribution exceeding the observed difference was taken as the 
permutation-corrected probability for the observed correlation 
difference being statistically significant.

Results
Following the current clinical definition [5], we henceforth 
use the term spindles to refer to the class of time-domain EEG 
waveform events identified by or verified against expert hand-
scoring. We use time-frequency peaks (TF peaks) to refer to the 
class of salient peaks (local maxima) in the spectrogram, typ-
ical of the time-frequency transform of a transient oscillatory 
waveform. It should be noted that we use both terms to refer 
exclusively to waveform events within the EEG signal, with no 
presumption of the underlying physiological origin. Given the 
plurality of definitions of the sigma/spindle range [39], we use 
10–16 Hz for maximum agreement between the manual and 
automated methods analyzed herein.

Spindles appear to be a subset of a broader class of 
time-frequency events

In order to first probe the underlying time-frequency phe-
nomenology, we followed the footsteps of Loomis, Harvey, and 
Hobart, but this time in terms of activity within the sleep EEG 

spectrogram. Figure 1a shows a typical 30-second epoch of N2 
sleep recorded from a central electrode (C3) from the DREAMS 
Sleep Spindle database, along with expert hand-scored spin-
dles highlighted on the corresponding time trace. The spindles 
directly correspond to well-circumscribed and salient time-
frequency peaks (TF peaks) in the spectrogram, which appear 
as blob-like regions of increased activity in the 2D image (Figure 
1a). This is not surprising, as transient oscillations in the time 
domain, by definition, will appear as salient TF peaks in the 
spectrogram [24, 26]. It is also apparent, however, that there are 
other TF peaks within the sigma range that seem morphologic-
ally similar but not scored as spindles. We henceforth refer to all 
observed sigma-range time-frequency peaks as TFσ peaks.

Using several data sets (see Methods), we confirmed that TFσ 
peaks are abundant and ubiquitous in PSG recordings (Figure 1b, 
between dashed lines), typically occurring at rates several times 
higher than the reported 2.5–3  events/minute rate of traditional 
spindles, regardless of referencing scheme. Furthermore, TFσ peaks 
not scored as spindles appeared to have strong morphological 
similarity to those occurring during spindle times, but with a wider 
range of power.

These observations beg the question: Are classically identi-
fied spindles a subset of a broader class of EEG events? We sys-
tematically address this question in the following sections.

Hand-scored spindles form a subset of hand-scored 
TFσ peaks

Hand-scored spindles coincide with hand-scored TFσ peaks
 In order to characterize the relationship between spindles and 
TFσ peaks, we first compared the gold standard time domain 
hand-scored spindles against hand-scored TFσ peaks. We exam-
ined six 30-minute recordings of central channel (C3) EEG during 
NREM from the DREAMS Sleep Spindle Database [33], which uses 
contralateral mastoid referencing. To do so, we visually scored 
TFσ peaks on sleep EEG multitaper spectrograms using a custom 
program created in MATLAB [40]. Figure 1a illustrates the hand-
scored TFσ peaks (dashed boxes) identified on a spectrogram in 
relation to spindles during one 30-second epoch. We then com-
pared the TFσ peaks with hand-scored spindle times provided 
by the database, computing event rates and confusion matrix 
statistics for each record, which are summarized in Table 1.

Overall, the results in Table 1 confirm our initial observa-
tions regarding rates, showing that for the same recordings 
there are often three times as many hand-scored TFσ peaks 
than hand-scored spindles. The reasonably high precision 
values (mean 0.85) and temporal overlap percentages (73% 
average) suggest that most hand-scored spindles coincide 
with TFσ peaks. Therefore, TFσ peaks capture the majority of 
the same neurophysiological activity scored as spindles. The 
greater prevalence of TFσ peaks, unsurprisingly, results in low 
recall. The F1-scores take the harmonic mean between preci-
sion and recall, and therefore they are expectedly moderate for 
these events.

When we break down all unique hand-scored events, 31.6% 
(353/1116) are identified as both spindles and TFσ peaks. While 
63.9% (713/1116) events are detected exclusively as TFσ peaks, 
only 4.5% (50/1116) events are identified only as spindles. These 
fractions agree with the confusion matrix statistics, and they 
suggest that most spindles can be visualized as distinguishable 
TFσ peaks and hence manually identified in the time-frequency 
domain.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab099#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab099#supplementary-data
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Hand-scored spindles and TFσ peaks have similar morphology
 While the precision scores suggest that the vast majority of 
hand-scored spindles coincide with hand-scored TFσ peaks, 
it remains to be shown that the two classes of events reflect 
similar EEG activity. We therefore compared morphological fea-
tures of both types of events. To do so, we first visualized the 
average event spectrograms in Figure 2a (top row of the panel) 
for the different types of events aggregated across subjects. 
Mutually detected events exhibit strong transient activity in the 
spindle frequency range. The events detected only as TFσ peaks 
are also well-circumscribed TF peaks, but of lesser magnitude 
and with some bleeding into lower frequencies. In contrast, the 
events only detected as spindles have diffuse activity in lower 
frequencies, likely reflecting noisy segments or mis-scoring on 
time traces. This effect is even more pronounced at the indi-
vidual subject level (Supplementary Figure S1).

To quantify these observations, we developed a generic 
procedure to extract features from the most prominent time-
frequency local maximum falling within a given hand-scored time 
segment (see Methods). We characterized the morphology of an 
event using four properties: prominence (peak power relative to 
local spectral baseline), duration, central frequency, and bandwidth 
for each event. As prominence was found to be log-normal distrib-
uted, all prominence values are reported in the logarithmic scale.

We compared the feature distributions of the hand-scored 
spindles and TFσ peaks, which are shown in Figure 2a (bottom 
panel). There is a marked similarity between the morphological 
properties of event duration, central frequency, and bandwidth. 
No significant difference in median was found for central fre-
quency or bandwidth. While median duration differed signifi-
cantly (paired t-test, p  <  0.05), the effect size was negligibly 
small at 0.05 second, which is below the temporal resolution of 
the method. The prominence distributions, on the other hand, 
varied in structure, with medians differing significantly (paired 
t-test, p < 0.001) and an effect size of 2.4 dB higher for spindles 
than TFσ peaks. Upon further inspection, however, the counts 
were nearly identical for the most prominent events, diverging 
in count as prominence decreases, consistent with a biased sub-
sampling rather than a shift. Additional bin-wise tests on the 
z-scored properties (Supplementary Figure S3a) verified that 
TFσ peaks significantly outnumber spindles primarily for lower 
prominence events, while more TFσ peaks are identified across 
the range for central frequency, duration, and bandwidth.

Together, the above analyses strongly suggest that hand-
scored spindles are a morphologically similar subset of hand-
scored TFσ peaks in all observed aspects except for prominence. 
Critically, even though the prominence of hand-scored spindles 
tends to be higher, the associated prominence distribution is 
completely nested within the shape of distribution of TFσ peaks, 
converging with increasing prominence, suggesting a poten-
tial sampling bias rather than an intrinsic difference. Thus, we 
found no evidence to suggest that hand-scored spindles consti-
tute a distinct cluster of events from TFσ peaks.

Auto-detected spindles show stronger agreement 
with hand-scored TFσ peaks

To enhance the generalizability of the above results, which may 
be limited due to the short 30-minute recordings in the DREAMS 
database, and to reduce the subjectivity due to human scoring, 
we performed the same analyses in a separate data set, using 
automated scoring of spindles. For automated scoring, we 
chose the well-established detector from Wamsley et  al. [34], 
which was rigorously shown to be the most faithful surrogate 
for human hand-scoring in a large-scale comparison study of 
numerous methods [17]. We analyzed full-night central channel 
(C3) EEG recordings from 6 subjects randomly sampled from the 
original Wamsley study [34], which uses linked-mastoid refer-
encing. For each record, we performed automated spindle de-
tection as well as hand-scored TFσ peaks during all N2 epochs, 
expanding the number of events analyzed by more than 10-fold 
(~15.5k events) over the previous analyses. We then repeated 
the confusion matrix and morphological analyses on this inde-
pendent and differently referenced dataset.

The results replicate nearly every pattern observed with 
hand-scored spindles. The event rates in Table 2 again show that 
hand-scored TFσ peaks are, on average, approximately three 
times more prevalent than auto-detected spindles (mean rate: 
10.4 vs. 3.4 events/minute). Confusion matrix statistics shown 
in Table 3, 3A recapitulate those for hand-scored spindles, 
now with an almost perfect precision in some subjects (mean: 
0.96), strengthening the claim that traditional spindles are in-
deed manifested as TFσ peaks in the time-frequency domain. 
Morphological analyses confirm the results of hand-scored spin-
dles, with the increased sample size clarifying the event similar-
ities (Figure 2b, top panel) and enhancing the clear distributional 

Table 2. Event rates in the six subjects analyzed for comparisons of automated methods

TFσ peak hand Spindle auto Spindle auto F1-optimized TFσ peak auto

Subject Rate (events/minute) Rate (events/minute) Rate (events/minute) Rate (events/minute)

1 8.4 3.6 8.6 11.5
2 10.9 3.1 10.2 11.5
3 12.2 3.7 12.0 11.6
4 9.2 2.9 8.5 10.4
5 8.9 3.4 9.1 10.4
6 12.7 3.8 12.9 11.8
Mean ± SD 10.4 ± 1.8 3.4 ± 0.3 10.2 ± 1.9 11.2 ± 0.6

This table shows comparisons of event rates (number of hand-scored events per minute during NREM2 Stage 2 sleep) across various spindle detection methods. 

These methods are analyzed in six subjects from the control subject cohort with full-night recordings and hand-scored TFσ peaks and different from the six 

segments in DREAMS database shown in Table 1. Auto-detected spindles, similar to hand-scored spindles, have one-third of the rate of hand-scored TFσ peaks. 

F1-optimized thresholds were selected individually for each subject based on the threshold scalar value producing the maximal F1 score when comparing against 

hand-scored TFσ peaks. As expected, both auto-detected spindles with optimized thresholds and automated detection of TFσ peaks achieve similar rates to those of 

hand-scored TFσ peaks.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab099#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab099#supplementary-data
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nesting of features (Figure 2b, bottom panel). As before, there is a 
significant difference (paired t-test p < 0.001) and large effect size 
(3.1 dB) in the medians of prominence, with a markedly skewed 
distribution for auto-detected spindles matching TFσ peaks al-
most identically at higher values. Medians of duration, central 
frequency, and bandwidth showed significant but negligible 
effect sizes of 0.02 second (paired t-test p < 0.01), 0.2 Hz (paired 
t-test p < 0.01), and 0.01 Hz (paired t-test p < 0.05), respectively—
all well below the temporal and frequency resolutions of the 
feature extraction method. Bin-wise tests on z-scored proper-
ties replicated the same pattern previously observed for hand-
scored spindles (Supplementary Figure S3b).

Overall, these results confirm that both hand-scored and 
auto-detected spindles are subsets of TFσ peaks, with consistent 
patterns observed across independent datasets and with dif-
ferent referencing schemes. This continues to show that there is 

no evidence to suggest that spindles constitute a distinct class 
of events from TFσ peaks.

Auto-detected spindles converge towards TFσ peaks 
with relaxed rarity assumption

If there is nothing intrinsic in the data to distinguish spin-
dles from TFσ peaks, then it follows that standard automated 
methods should identify many of the same events. Why then, 
do the spindle rates of automated detectors vary so much 
from TFσ peaks? The majority of automated detectors work by 
selecting time segments in which some metric of EEG magni-
tude (e.g. amplitude, spectral power, spectral coefficients, etc.) 
within a selected frequency range exceeds a fixed threshold. 
Crucially, the value chosen for the threshold places an implicit 
rarity assumption on the events detected. For example, placing a 
threshold at the 95th percentile assumes that only 5% of the ob-
served data are valid detectable events. When this threshold is 
optimized for concordance with human scorers, this value may 
be set artificially high to produce rates similar to those observed 
in hand-scoring.

To explore the degree to which the imposed rarity assump-
tion is driving the observed difference between spindles and TFσ 
peaks, we examined the effect of stepping down the amplitude 
threshold of the automated detector. Figure 3 demonstrates 
that as the threshold is lowered, more events are detected. For 
this segment, when the threshold scalar is reduced to 0.25, all 
of the hand-scored TFσ peaks are also identified by the auto-
mated detector. This suggests that TFσ peaks could potentially 
be detected using traditional methods through a relaxation of 
the rarity assumption.

To explicitly test this hypothesis, we adjusted the detector 
threshold for each subject to maximize the F1 score, which 
balances precision and recall, against the hand-scored TFσ peaks. 
This approach directly mirrors the analyses in Warby et al., in 
which the thresholds were optimized with respect to expert 
hand-scored spindles. The event rates in Table 2 and confusion 
matrix statistics in Table 3, 3B verify that threshold reduction on 
the automated detector can well approximate hand-scoring of 
TFσ peaks. Interestingly, the F1 scores were high (mean: 0.84), 
exceeding the optimized F1 value (0.68) reported when com-
paring the same detector to hand-scored spindles [17]. Similar 
results were achieved using a single group-optimized threshold 
across all subjects (Supplementary Table 4). These results sug-
gest not only that the automated detector converges towards 
TFσ peaks with a relaxed rarity assumption, but also that it is 
better at finding TFσ peaks than hand-scored spindles.

Thus, we show that spindles differ from TFσ peaks during 
detection only by an arbitrary rarity assumption inherited from 
the history of hand-scoring spindles. There is a seamless con-
tinuum between spindles and TFσ peaks on the wavelet signal 
used for automated detection, which is consistent with the 
completely nested distributions of prominence observed before 
(Figure 2, a and b).

Unsupervised clustering reliably detects TFσ peaks

Just as hand-scoring introduces human subjectivity for spindles, 
the ability to automatically detect TFσ peaks is necessary for ap-
plications to larger datasets and for improved analyses of gener-
alizability. To address this need, we developed an unsupervised 

Table 3. Confusion matrix statistics in the six subjects analyzed for 
comparisons of automated methods

A. Spindle Auto

Subject Precision Recall F1 Overlap %  

1 0.86 0.37 0.52 49  
2 0.99 0.28 0.44 50  
3 0.99 0.30 0.47 36  
4 0.98 0.33 0.49 39  
5 0.96 0.37 0.53 39  
6 0.97 0.30 0.46 36  
Mean ± SD 0.96 ± 0.05 0.33 ± 0.04 0.48 ± 0.04 41 ± 6.3  

B. Spindle Auto F1-optimized

Subject Precision Recall Max F1 Overlap %
Threshold 
at Max

1 0.74 0.76 0.75 62 0.93
2 0.85 0.79 0.82 61 0.45
3 0.91 0.90 0.90 56 0.19
4 0.85 0.82 0.83 48 0.67
5 0.87 0.88 0.88 58 0.56
6 0.86 0.89 0.88 57 0.24
Mean ± SD 0.85 ± 0.06 0.84 ± 0.06 0.84 ± 0.05 57 ± 5.1 0.51 ± 0.28

C. TFσ peak Auto

Subject Precision Recall F1 Overlap%  

1 0.68 0.95 0.79 76  
2 0.86 0.92 0.89 74  
3 0.93 0.91 0.92 62  
4 0.79 0.95 0.86 73  
5 0.81 0.96 0.88 73  
6 0.90 0.88 0.89 64  
Mean ± SD 0.83 ± 0.09 0.93 ± 0.03 0.87 ± 0.04 70 ± 5.8  

This table presents the confusion matrix statistics (described in Methods) when com-

paring various automated detection methods against hand-scored TFσ peaks. These 

methods are analyzed in six subjects from the control subject cohort with full-night 

recordings and hand-scored TFσ peaks and different from the six segments in DREAMS 

database shown in Table 1. (A) Results for auto-detected spindles recapitulate the 

patterns observed in Table 1 of hand-scored spindles, except precisions scores are now 

close to 1 due to more reliable scoring of spindles by the automated algorithm. (B) 

Automated spindle detection using F1-optimized thresholds show both high precision 

and recall scores, as the optimization goal was to maximize the F1 scores. However, 

varying thresholds are needed to achieve maximal F1 score in different subjects, 

highlighting the challenge of pre-selecting a single uniform threshold for all subjects. 

(C) The automated detection algorithm of TFσ peaks also achieves high precision and 

recall scores in comparison to hand-scored TFσ peaks. Importantly, the F1-scores are 

numerically higher in all subjects relative to the best possible F1-score using spindle 

detection algorithms with adjusted thresholds. This result demonstrates the benefit 

of detecting TFσ peaks directly from the time-frequency domain and the robustness of 

the automated detection algorithm to emulate the process of hand-scoring TFσ peaks.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab099#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab099#supplementary-data
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clustering approach to automatically detect TFσ peaks. To do so, 
we performed two-class k-means clustering on the prominence 
values from all time-frequency local maxima in the sigma range 
as extracted using our generalized method from the morph-
ology analyses (see Methods). This method determines the 
difference between noise maxima in the spectrogram and sa-
lient TFσ peaks using the data alone, without the need of hand-
scored events for training. Figure 4 illustrates that the proposed 
algorithm can reliably detect TFσ peaks with objective localiza-
tion of 2D local maxima bounds.

We verified the performance of this automated algorithm in 
the 6 subjects with available hand-scored TFσ peaks. Comparable 
event rates to TFσ peak hand-scoring were obtained (Table 2) but 
with a reduced variability in the automated method at SDs of 0.6 
vs. 1.8. Confusion matrix statistics confirm a good performance 
of the algorithm (Table 3c), with high precision (mean: 0.83) and 
recall (mean: 0.93) values. The average spectrograms (Figure 2c) 
show the expected morphology of TFσ peak activity. Analyses 
of event properties shown in Figure 2c found no major pattern 
of difference, verifying the equivalence of the automated al-
gorithm to hand-scoring TFσ peaks. Most notably, without any 
use of scored events, every subject’s F1 score was higher than 
those derived from the optimized spindle detector. That is, the 
unsupervised TFσ peak detector produced better matches to 
hand-scored TFσ peaks than the best possible spindle detector 

threshold, using the structure of the data alone to separate 
signal from noise.

Automated detection of both spindles and TFσ peaks 
in a larger dataset confirms findings

Equipped with automated detection methods in both time 
and time-frequency domains, we analyzed recordings from 
two consecutive nights in 17 subjects (34 total nights). We 
present the results from the second night. Event rates were 
comparable with the previous analyses, with mean rates 
of 9.8 and 3.1 events/minute for TFσ peaks and spindles, re-
spectively. A breakdown of event features for the two methods 
and average spectrograms repeats the same patterns ob-
served before in this fully automated dataset (Figure 2d) Now 
with greatly increased numbers of events (~39.0k events), the 
morphology analysis shows the nesting of features even more 
clearly. Spindles form a subset of TFσ peaks with high prom-
inence values (paired t-test p < 0.001, 3.3 dB effect size), while 
being similar to TFσ peaks on the other three properties with 
statistically significant but small effect sizes (duration me-
dians differ by 0.02 second; central frequency medians differ 
by 0.3 Hz; bandwidth medians differ by 0.03 Hz, all p < 0.001). 
Similar results were obtained from all analyses applied to data 
from the first night (Supplementary Figures S5 and S6).

Figure 3. Events identified by the spindle auto-detector (“Sp Auto”) converge towards hand-scored TFσ peaks (“TF Hand”) when the rarity assumption (auto-detector 

threshold) is relaxed. For an example 60-second segment of C3 data during N2 sleep, we show (a) the EEG time trace filtered to 10–16 Hz, (b) the wavelet magnitude stat-

istic (black curve) computed by the auto-detector, and (d) the EEG spectrogram. When the detection threshold was lowered, more events with lower wavelet magnitude 

were detected. Colored bands in (b) and (c) indicate time intervals over which individual spindles would be detected by the detector with thresholds set to 0.25 (red), 

1.5 (orange) and 4.5 (purple) times the mean amplitude. (c) As the threshold is decreased, the time intervals selected by the spindle auto-detector converge towards the 

intervals of hand-scored TFσ peaks (blue). (d) Salient TFσ peaks can be easily observed in the spectrogram, which were hand-scored in the time-frequency domain and 

matched by auto-detected spindles with a threshold of 0.25 as shown in (b) and (c).

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab099#supplementary-data
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For central frequency, we observed that auto-detected TFσ 
peaks have a second peak just above 10 Hz, which likely cor-
responds to lower-frequency “slow” spindles [39, 41]. While the 
discussion of the distinction between fast and slow spindles 
is beyond the scope of this study, these results highlight that 
the Wamsley detector has a preference for events closer to the 
center of the frequency range, due to the attenuation of power 
at the frequency boundaries of 10–16 Hz, which were the same 
for both methods (see Methods). Regardless, lower-frequency 
events were not observed in all subjects, comprised a minority 
of detected events, and did not show up as a secondary peak 
on z-scored distributions (Supplementary Figure S3d). In add-
ition, bin-wise tests provide strong evidence that these events 
are not the driving source of the rate differences observed 
(Supplementary Figure S3d), but rather reveal another facet of 
sampling bias inherent in standard methods.

Taken together, fully automated TFσ peak and spindle de-
tection in this larger dataset further confirmed our previous 
findings. In fact, we observe that the distributional properties 
from hand-scored TFσ peaks and spindles are replicated and 
enhanced in the auto-detected TFσ peaks and spindles, which 
come from different subjects, datasets, and were recorded under 
different referencing schemes—thereby verifying the robust-
ness of TFσ peaks.

TFσ peak and spindle rates are correlated across 
subjects

To explore the relationship of spindles and TFσ peaks within 
subjects, we performed a cross-subject correlation analysis, 

which is shown in Figure 5 (top row). Moderate-to-strong correl-
ation coefficients were obtained for both nights (night 1: ρ = 0.78

, p < 0.01, night 2: ρ = 0.66, p < 0.01), suggesting the underlying 
processes captured by the two types of events covary within 
individuals. We also conducted linear regressions across 
subjects and nights in order to quantify the relationship be-
tween the rates produced by both methods. For both nights, 
slope parameters were ~3 (night 1: 3.6  ± 1.1, night 2: 3.3  ± 
1.8) with non-significant intercepts, confirming the ratio of 
TFσ peaks over spindle counts observed before. Taken together, 
these patterns provide evidence for a common neurophysio-
logical process underlying TFσ peaks and spindles.

TFσ peaks exhibit stronger night-to-night stability 
than spindles

Given that TFσ peaks appear to be a verifiable superset of spin-
dles, do they provide a more robust characterization of subject-
specific activity? Spindle rates are known to be a trait-like 
characteristic [39], which suggests that spindle rates should be 
similar for separate nights from the same subject. In Figure 5 
(bottom row), we show the cross-night correlations of spindles 
as well as TFσ peaks for the 17 subjects. While the night-to-
night rates of spindles have medium-high correlation (ρ = 0.67

, p < 0.01), the rates of TFσ peaks have near-perfect agreement 
across the nights (ρ = 0.98, p < .001), showing a significant im-
provement (permutation test: p  <  0.05) over spindles. Linear 
regressions reveal the same pattern when comparing night-
to-night rates across methods. While the slope for sleep spin-
dles is 0.76 ± 0.22 (r2 = 0.72), for TFσ peaks the slope improves to 

Figure 4. Automated detection of TFσ peaks using unsupervised clustering achieves comparable performance as human hand-scoring. (Top) Auto-detected TFσ peaks 

(“TF Auto”) marked in solid black boxes reliably extract salient TFσ peaks as can be seen in the spectrogram on a 5-minute segment of C3 data of N2 sleep. (Bottom) 

Zoomed-in view with hand-scoring of TFσ peaks (“TF Hand”) overlaid in dotted gray boxes demonstrates the close resemblance of the proposed automated detection 

algorithm to hand-scoring. This example, along with the morphological similarities shown in Figure 2c, illustrates the feasibility of reliably auto-detecting TFσ peaks 

without the need of an a priori defined fixed threshold.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab099#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab099#supplementary-data
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0.92 ± 0.09 (r2 = 0.96) and is not significantly different from the 
y = x line. These findings suggest that TFσ peak rates have much 
stronger intra-individual stability than spindle rates.

Discussion
Overall, these results provide compelling evidence across mul-
tiple data sets and subjects that TFσ peaks constitute a mor-
phologically similar superset of spindles. Moreover, we find no 
evidence to suggest that TFσ peaks are intrinsically distinct from 
spindles, which appear to simply be a biased subsampling of 
TFσ peaks. Thus, we can find, at present, no empirical justifica-
tion for viewing spindles and TFσ peaks as two separate classes. 
Moreover, TFσ peaks occur at a greater rate, covary with spin-
dles across subjects, and have improved night-to-night stability. 
Thus, we conclude that TFσ peaks represent a more robust and 
comprehensive representation of the observed neurophysio-
logical activity than traditionally defined spindles.

Our results tie together many threads from previous ap-
proaches and studies. From a methodological perspective [2, 
4], it follows that time domain hand-scoring is necessarily 
biased towards more easily detected visible events, which has 
established a precedent for event rarity that was built into 
automated detectors. Moreover, there do exist automated 
scorers with more inclusive detection methods [11, 17, 42, 
43], which produce rates comparable with those found for TFσ 
peaks in this study. Additionally, others have sought to ex-
plicitly characterize transient oscillatory events more gener-
ally [27, 28, 30, 31, 39], expanding the concept of spindles to 
a larger class. From an empirical perspective, there is direct 
evidence of spindle events occurring in both humans and ro-
dents at the rate of TFσ peaks. In particular, average neocor-
tical spindle densities of 6.8 (slow spindle) and 10 (fast spindle) 
events/minute were reported in human intracranial studies 
[44]. Additionally, there is evidence that optogenetic stimula-
tion of the rodent thalamic reticular nucleus (TRN) can evoke 
neocortical spindles within ~2.5 seconds of a spontaneous 

Figure 5. Correlations of auto-detected TFσ peak (“TF Auto”) and spindle (“Sp Auto”) event rates show greater night-to-night stability in TFσ peaks. Using data from 

two nights in 17 subjects, (top row) significant correlations were found between Night 1 spindles vs. Night 1 TFσ peaks (left) and Night 2 spindles vs. Night 2 TFσ peaks 

(right). (Bottom row) Significant correlations were also found for intra-individual rates comparing Nights 1 and 2 for spindles (left) and TFσ peaks (right). Correlation 

was significantly higher (permutation test, p < 0.05) for TFσ peaks compared to spindles. Red lines indicate linear regressions using robust fitting procedures (bisquared). 

Dashed lines (bottom row) indicate perfect correlation (y = x line). These results suggest that TFσ peaks provide a more reliable characterization of an underlying process 

that is highly stable within an individual across the two nights.
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spindle, suggesting no intrinsic mechanistic limitation or re-
fractory period preventing rates of up to ~25  events/minute 
[45]. Thus, the rates observed for TFσ peaks are physiologically 
plausible and consistent with activity that could be generated 
by known neurophysiological processes. Additionally, the 
strong night-to-night consistency in TFσ peak rate extends 
the trait-like individual differences observed within average 
power spectra of sleep EEG [46, 47] to discrete events, as well 
as reflects the demonstrated heritability of spindle morpho-
logical features  and the broader concept that information 
content can be found in “low-amplitude” spindles [48].

What then could be the mechanistic basis for the “spindle-
like” activity driving the production of TFσ peaks? As the ana-
lyses herein compare EEG events, it remains to be proven that 
the neuronal processes underlying TFσ peak activity share the 
same thalamic origin and the involvement of both the thal-
amic reticular nucleus and thalamocortical loops as described 
for spindles [49]. Nevertheless, there are several candidate ex-
planations that could account for the abundant spindle-like 
events observed through TFσ peaks. The simplest possibility is 
that TFσ peaks are generated by the exact same mechanism as 
spindles and that any differences are purely a consequence of 
selection bias. Spindle power measured at the scalp can vary 
with the degree with which a spindle is local or global [50, 51]. 
Alternatively, high-powered spindles emanating from cortical 
locations more distant from the recording electrode might ap-
pear to be weaker when propagated via volume conduction [52, 
53]. Mechanistically, a distinction between “core” and “matrix” 
spindles has been proposed to account for the difference be-
tween EEG spindles and MEG spindles [54, 55], which are less 
prominent but otherwise morphologically identical [56]. Further 
study is therefore required to clarify the source of the spindle-
like activity underlying TFσ peaks.

Likewise, the functional significance of an expanded defin-
ition of spindle-like activity over spindles needs active explor-
ation. Our results showing improved intra-individual stability 
suggest instances in which the superset of TFσ peaks can pro-
vide added information and greater statistical power relative to 
spindles. It will be vital to characterize the relationship between 
TFσ peaks and other known correlates of spindle activity, such as 
memory consolidation, aged-related changes in sleep, and thal-
amocortical networks in diseases such as Alzheimer’s disease 
and schizophrenia. Additionally, studies of large populations [48] 
will further assess the generalizability of these results, as well 
as connections to epidemiological and demographic variability.

In this article, we have provided evidence of an expanded no-
tion of the spindle phenomenon in the time-frequency domain. 
In doing so, it is abundantly clear that the current gold standard 
falls short of accurately capturing the EEG activity underlying 
the spindle phenomenon. The construct of TFσ peaks offers a 
far more principled starting point for a comprehensive charac-
terization of spindle-like and related neuronal activity within 
the existing PSG recording paradigm. Future research should 
consider this broader view and previous findings on sleep spin-
dles should be reexamined within this context. Ultimately, this 
work constitutes a beginning, rather than an end point for an 
improved characterization of spindle activity, as there are many 
more dimensions of observation to explore. More generally, this 
work serves to highlight the need to reevaluate long-standing 
notions in the sleep field in the light of new approaches, with a 
goal of rooting our understanding in as objective and principled 
an analysis of the data as possible.
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