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Abstract: Despite established efficacy in bipolar disorder patients, lithium (Li) therapy has serious
side effects, particularly chronic kidney disease. We examined the safety and behavioral effects of
combined chronic low-dose aspirin plus low-dose Li in rats to explore the toxicity and therapeutic
potential of this treatment. Rats were fed regular or Li-containing food (0.1% [low-dose, LLD-Li]
or 0.2% [standard-dose, STD-Li]) for six weeks. Low-dose aspirin (1 mg/kg) was administered
alone or together with Li. Renal function and gastric mucosal integrity were assessed. The effects of
the combination treatment were evaluated in depression-like and anxiety-like behavioral models.
Co-treatment with aspirin did not alter plasma Li levels. Chronic STD-Li treatment resulted in
significant polyuria and polydipsia, elevated blood levels of creatinine and cystatin C, and increased
levels of kidney nephrin and podocin—all suggestive of impaired renal function. Aspirin co-treatment
significantly damped STD-Li-induced impairments in kidney parameters. There were no gastric
ulcers or blood loss in any treatment group. Combined aspirin and LLD-Li resulted in a significant
increase in sucrose consumption, and in the time spent in the open arms of an elevated plus-maze
compared with the LLD-Li only group, suggestive of antidepressant-like and anxiolytic-like effects,
respectively. Thus, we demonstrate that low-dose aspirin mitigated the typical renal side effects of
STD-Li dose and enhanced the beneficial behavioral effects of LLD-Li therapy without aggravating
its toxicity.

Keywords: aspirin; bipolar disorder; inflammation; lithium; nephrotoxicity

1. Introduction

Bipolar disorder (BD) is a chronic psychiatric disorder characterized by repeated manic,
hypomanic, and depressive episodes [1–5]. It affects 1–2% of the general population [1,2,6]
and is recognized as one of the leading disability causes worldwide, associated with
significant impairment in work, family, and social life, beyond the acute phases of the
illness [2,7]. BD patients suffer from an increased incidence of comorbidities which further
aggravate their physical and functional status [4,8,9]. For example, bipolar patients have
significantly higher rates of myocardial infarction [10,11], stroke [10], atherosclerosis [12],
and hypertension [13] than the general population [9]. Cardiovascular disease is the leading
cause of death in BD [14], with patients having a two-fold increased risk of mortality from
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coronary artery disease as compared to matched control subjects [8]. Moreover, studies
indicate that amongst all psychiatric disorders, BD is associated with the highest rate of
suicide death [15,16].

Lithium (Li) salts are useful for the maintenance treatment of BD [3,5]. Li has estab-
lished efficacy preventing recurrence of manic as well as depressive episodes [3,5,17–21]
and an ability to reduce suicidal death among bipolar patients [15,22–24]. Nonetheless,
despite its proven therapeutic efficacy, the use of Li has several disadvantages [19,22,25–29]:
(1) The drug has a narrow therapeutic window requiring regular therapeutic drug monitor-
ing. The serum concentration range for Li maintenance treatment regarded as effective,
while retaining a reduced toxicity risk, is between 0.6 and 1.2 mEq/L; (2) the use of Li for
the treatment of acute manic and depressive episodes in BD patients is questionable given
the lag between commencement of Li intake and emergence of its therapeutic effects; (3) a
high percentage of patients do not respond to treatment and suffer recurrent manic and
depressive episodes; and, (4) Li treatment is associated with a wide range of adverse effects.

A particular concern has been the effect of Li on renal function [28,30–33]. The most
common renal side effect of Li is nephrogenic diabetes insipidus (NDI) characterized by
polyuria, polydipsia, and a decrease in urinary concentrating ability and unresponsiveness
to vasopressin [31]. Factors that contribute to the development of NDI are elevated blood
Li levels, long treatment duration, and high incidence of Li intoxication episodes [31].
Moreover, an unignorable body of data suggests that long-term use of Li increases the
risk of chronic kidney disease (CKD) [30–40]. For example, Rej et al. [32] found that
Li is independently associated with an almost two-fold increase in CKD risk in elderly
adults [32]. Nevertheless, it could still be argued that inconsistencies exist across the
literature, as some studies did not find a causative association between Li treatment and
CKD [30,41]. Importantly, it has been suggested that administration of low to medium Li
doses may reduce the incidence of CKD and enhance adherence to treatment [31,42–44].

Ample data points to the involvement of inflammation in the pathophysiology of
BD [45–52]. Epidemiologic studies identified elevated rates of BD among patients with
inflammation-associated comorbidities, including inflammatory bowel disease [53,54],
rheumatoid arthritis [53–55], systemic lupus erythematosus [56], psoriasis [53,57], multiple
sclerosis [53,58], obesity [54], and type 2 diabetes mellitus [54,59]. Examining the inflamma-
tory profile of bipolar patients revealed elevated blood levels of inflammatory mediators,
especially during acute mood episodes [47,48,51,52]. Moreover, levels of inflammatory
markers were found higher in postmortem brain [60,61] and cerebrospinal fluid of BD
patients as compared to matched control subjects [62–65]. Consistently, evidence indicates
that psychotropic drugs exert a variety of anti-inflammatory effects [17,49,66–74] which
may contribute to their therapeutic efficacy. Accordingly, anti-inflammatory drugs such as
corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to
reduce the severity of symptoms among psychiatric patients [45,47,48,75–83].

Aspirin (acetylsalicylic acid, ASA) is an NSAID that exerts dose-dependent [25,84]
antiplatelet, analgesic, antipyretic and anti-inflammatory effects. High aspirin doses
(>325 mg/day in adult humans) inhibit cyclooxygenase COX-1 and COX-2, resulting
in antipyretic and mild to moderate analgesic effects. On the other hand, low aspirin doses
(75–150 mg/day) preferentially and irreversibly inhibit COX-1, resulting in inhibition
of platelets aggregation and clot formation [25,84]. In patients with stable cardiovascu-
lar disease, low-dose aspirin therapy reduces the incidence of adverse cardiovascular
events and all-cause mortality [85–87] but, concomitantly, it increases the risk for bleeding
complications, including gastrointestinal bleeding and intracranial hemorrhage [85,88].
Nevertheless, discontinuation of aspirin in patients with coronary artery disease may
increase the risk for major adverse cardiovascular events [85,89]. Therefore, the American
College of Gastroenterology supports the use of aspirin when the beneficial cardiovascular
effects outweigh the gastrointestinal risks [90,91].

In mood disorders (including BD), reports support a possible beneficial therapeutic
effect of low-dose aspirin [92–95]. A Danish population-based study [95] found that
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continued use of low-dose aspirin was associated with significantly decreased incidence
and hazard risk of BD. Savitz et al. [94] reported a beneficial effect of low-dose aspirin as
a treatment for bipolar depression. Others reported beneficial effects of aspirin in major
(unipolar) depression [92,93].

In order to gain the exceptional therapeutic benefits of Li, it is crucial to search
for new strategies to cope with its nephrotoxicity. As mentioned, a large body of data
indicates that the use of low to medium Li doses (below those regarded as therapeutically
relevant) may reduce the incidence of CKD and increase adherence to treatment [31,42–44].
Circumstantial evidence suggested that co-administration of low-dose aspirin with Li
may enhance the therapeutic efficacy of Li [96]. In the present study, we investigated
the possible beneficial effect of low-dose aspirin as an add-on to low-dose Li treatment.
Towards this goal, we first probed the safety of chronic administration of combined low-
dose aspirin and Li in rats. In particular, determinants of renal function were measured
to establish whether or not the combination of low vs. standard Li dose plus low-dose
aspirin aggravates the renal side effects of Li. We then assessed whether co-administration
of low-dose aspirin with low-dose Li preserves the efficacy of therapeutically relevant Li
doses while reducing toxicity.

2. Materials and Methods
2.1. Animals

Male Sprague-Dawley rats weighing 220–250 g at the beginning of the experiments
were used in the study. The inclusion criteria of only male rats emanated from two main
considerations: (i) The ethical principle to use the minimal possible number (appropriate
for statistical analysis) of animals in a “proof-of-concept” study; and, (ii) the known gender-
related differences in lithium’s kinetics in male vs. female rats [97] which would have
complicated the statistical analysis of the results. Rats were maintained under controlled
environmental conditions (ambient temperature 22 ± 1 ◦C, relative humidity 45–55%,
photoperiod cycle 12 h light: 12 h dark), with food and water ad libitum unless otherwise
indicated. Upon arrival to the animal facility, rats were allowed to adapt to the new
environment for one week prior to the initiation of treatment and behavioral studies. All
experiments complied with the ARRIVE guidelines and were carried out in accordance
with the guidelines of the Committee for the Use and Care of Laboratory Animals in
Ben-Gurion University of the Negev, Israel (Approval # IL-45-08-2017).

2.2. Chronic Treatment with Li and Aspirin

Rats were fed 0.1% or 0.2% (w/w) Li-containing diet (in regular powdered rodent
chow) for 42 days. Control rats were fed an identical diet, but without added Li (regular
food). We modified previous Li treatment protocols [74,98] and established a protocol
through which we obtained two categories of Li-treated rats according to their plasma Li
concentrations. The categories were: (1) standard-dose Li (STD-Li, 0.2% Li in food) resulting
in therapeutically-relevant plasma Li concentrations between 0.6–1.2 mEq/liter [22,26],
and, (2) low-low-dose Li (LLD-Li, 0.1% Li in food) resulting in plasma Li concentrations
between 0.2–0.4 mEq/liter. Low-dose aspirin (1 mg/kg, intraperitoneally [ip] [99]), alone
or together with Li, was administered for 42 days. This duration in rats parallels nearly
4–10 years in humans [100,101]. In addition to food and tap water available ad libitum, all
groups had free access to an additional bottle of 0.9% NaCl solution to prevent electrolyte
imbalance and mitigate the risk for Li intoxication due to decreased renal clearance. This
practice is routinely done in chronic Li treatment studies in rodents [98,102–104] in order
to prevent polyuria-induced lithium intoxication due to hyponatremia (which induces
over-reabsorption of lithium) [105–107]. It is usually not associated with changes in plasma
sodium levels [108] due to regulatory-compensatory biological mechanisms which maintain
sodium levels at normal levels. Consistently, as presented in Section 3.3, plasma sodium
levels did not differ significantly between the groups.
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2.3. Toxicity Assessment

Toxicity was evaluated at two levels—renal function and gastric mucosal integrity
and bleeding. These determinants were assessed because chronic treatment with Li and
aspirin is associated with impairment of renal function and disruption of gastric mucosal
integrity (and ulceration), respectively. In two out of four independent “Toxicity Experi-
ments”, on treatment days 21 and 42, half of the animals in each group were euthanized by
decapitation. Then, stomachs and kidneys were rapidly excised, kidneys were weighed,
stomachs macroscopically inspected and immediately frozen at −80 ◦C for further analysis.
One kidney was frozen at −80 ◦C for later use in enzyme-linked immunosorbent assay
(ELISA) experiments and the second was preserved in formaldehyde for histopathological
examination. Determinants measured to evaluate renal function included water consump-
tion, urinary output, histopathological examination to detect the presence of tubular cysts
and tubulointerstitial damage, blood levels of creatinine, urea, and cystatin C, and levels of
the proteins nephrin and podocin in renal tissue. Cystatin C is a biomarker of early kidney
injury which helps detect early impairment in glomerular filtration [109,110]. Nephrin and
podocin are proteins that are crucial for podocyte function (podocytes form the glomerular
epithelium which plays a pivotal role in the blood-to-urine filtration barrier) [111]. Alter-
ations in activity/expression of nephrin and podocin lead to impairment in glomerular
function [112,113].

2.3.1. Assessment of Water Consumption

Bottles of water/saline were weighed before and after test sessions. The net amount
of consumed liquid spanning over 24 h was divided by the rats’ weight.

2.3.2. Determination of Urinary Output

At time zero (T 0 h), rats were placed in pre-weighed cages containing known amounts
of dry sawdust. After 24 h (T 24 h) the wet sawdust containing the urine was cleaned
of rats’ feces and cages were re-weighed. Urinary output was calculated as [T 24 h cage
weight—T 0 h cage weight]/rats’ body weight. Food was placed in specially designated
heavyweight bowls to avoid rats turning them upside down and avoid food dropping to
the sawdust. The urine volumes that we detected in the control and Li-treated rats using
the above-described method were similar to those reported in previous studies which used
a different methodology for measuring urine volume in control and chronically Li-treated
rats [114,115]. Of note, conduction conditions were meticulously designed to obviate the
phenomenon of urine evaporation (data not shown).

2.3.3. Determination of Plasma Li, Creatinine, Urea and Cystatin C Levels

Blood was withdrawn by tail vein puncture (1.0 mL into heparin-containing 1.5 mL
tubes, on day 0) or after decapitation (6–8 mL into heparin-containing 15 mL tubes, on day
21 or 42), centrifuged at 3500× g, 4 ◦C for 10 min. Plasma was separated by aspiration using
a narrow-necked pipette, inserted into heparin-containing tubes, and kept at −80 ◦C until
further assessment. Li, creatinine, and urea levels were detected in the Biochemistry lab of
Soroka University Medical Center (SUMC), Beer-Sheva, Israel. Li levels were measured
using an Ion-Selective Electrode (ISE) electrolyte analyzer (Cobas Integra 400, Roche
Diagnostics, Rotkreuz, Switzerland); creatinine and urea were measured using an Olympus
Beckman Coulter AU5800 apparatus (Brea, CA, USA). Cystatin C levels were determined
by a specific ELISA kit (Boster Bio, Pleasanton, CA, USA).

2.3.4. Determination of Nephrin and Podocin Levels

One half (longitudinal section) of the right kidney (arbitrarily chosen) of each rat was
weighed and homogenized on ice (by a Polytron PT 1200 E Hand Disperser, Kinematica,
Malters, Switzerland) in a buffer containing a protease/phosphatase inhibitor cocktail
(1:10 w/w Phosphatase Inhibitor Cocktail x 100 in ddH2O, APExBIO; Protease Inhibitor
Cocktail X 100 in DMSO, APExBIO). The homogenate was centrifuged at 12,750× g, 4 ◦C
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for 10 min, and then supernatant and pellet were separated and immediately frozen at
−80 ◦C. Nephrin and podocin levels were determined in the supernatant fraction using
specific ELISA kits (A&E Scientific, Mark, Belgium).

2.3.5. Determination of Renal Tubulointerstitial Damage

Histopathological examination to assess the existence of tubular cysts and tubuloin-
terstitial damage was performed under the guidance of a nephrologist (A.S.) as follows:
the left kidney of each rat was fixed in buffered formalin (paraformaldehyde solution
4% in phosphate-buffered saline [PBS], Santa Cruz Biotechnology, Dallas, TX, USA) and
embedded in paraffin. The kidney was then longitudinally sectioned in half, 2 µm sections
were cut, stained with hematoxylin and eosin and with Periodic acid–Schiff (PAS), exam-
ined in an Olympus Bx41 microscope (Tokyo, Japan), and photographed with a digital
camera (Olympus DP72, Tokyo, Japan). The assessment was performed independently by
a nephrologist (A.S.) and by a pathologist (K.M.) who were blind to the treatment.

2.3.6. Assessment of Gastric Mucosal Damage and Bleeding

The macroscopic presence of gastric erosions/ulcers was examined by a gastroenterol-
ogist (N.A.-F.) immediately after euthanizing the rats. Thereafter, stomachs were frozen
at −80 ◦C for further analysis. Upon defrosting, 100 mg of the gastric tissue (from the
same zone) were homogenized as described above for the kidney (2.3.4) and mucosal PGE2
levels were determined using a specific ELISA kit (R&D Systems, Minneapolis, Minnesota).
Possible blood loss (bleeding) was assessed by measuring blood hemoglobin levels and
red blood cell count in the Hematology lab in SUMC, and plasma thromboxane A2 (TXA2)
levels were determined using a dedicated ELISA kit (MyBioSource, San Diego, CA, USA).

2.4. Behavioral Studies

All behavioral studies were conducted during the light phase, at least 2 h after the
administration of aspirin. The following behavioral tests were performed in order to
determine the therapeutic potential of the combined treatment.

2.4.1. Open Field Test (OFT)

OFT was used to assess the spontaneous activity of animals [116]. Rats were placed
for 10 min in the corner of an open field arena made of a black lusterless perspex box
(60 cm [W] × 80 cm [L] × 60 cm [H]). Sessions were videotaped by a camera placed
approximately 1 m above the center of the arena and subsequently assessed using a video-
tracking system (Ethovision, Noldus, Wageningen, Netherlands). A 5% ethanol in water
was used to clean the apparatus prior to the introduction of each animal. The parameters
analyzed were total distance traveled and time spent in the central zone and the peripheral
zone of the arena.

2.4.2. Sucrose Consumption Test (SCT)

SCT was used to assess anhedonia, a behavioral facet of depression. The test was
conducted as previously described [116]. Briefly, animals were exposed once to 1% sucrose
(Sigma, St. Lewis, MO, USA) solution to customize them to the procedure before conducting
the actual experiment. During test sessions, rats were supplied with a bottle of sucrose
solution in addition to the regularly supplied water bottle for 24 h. Food was freely
available. Sucrose consumption was calculated as the decrement between the weight of
the sucrose bottle at the beginning of the experiment and 24 h thereafter divided by the
bodyweight of all rats in the given cage. The test was conducted under similar conditions
at baseline, and at 3 and 5 weeks after the commencement of treatment.
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2.4.3. Elevated Plus-Maze Test (EPMT)

EPMT was used to measure anxiety-like behavior (associated with depression) and
risk-taking behavior (associated with mania) [117]. Naturally, rodents hide in dark places
during light time, to avoid the possibility of being seen by enemies (predators). Thus, the
choice to enter the open arms of the plus-maze represents a normal, non-anxious behavior
when the proportion of time spent in these arms is similar or not significantly higher than
in control animals. Alternatively, going to the open arms may also represent a risk-taking
behavior, because it suggests that the animal is not afraid to take the risk of being seen
by enemies [117]. Rats were placed for 5 min in an elevated maze consisting of two open
arms (50 cm × 10 cm) and two walled arms with an open roof (50 cm × 10 cm × 40 cm),
elevated to a height of 50 cm and arranged such that the two open arms are opposite to each
other. Rats were placed in the center of the maze, facing one of the open arms. Sessions
were videotaped by a camera placed 2 m above the center of the maze and subsequently
assessed using a video-tracking system (Ethovision, ibid). The following parameters were
evaluated: number of entries and time spent in the open and walled arms. An arm entry
was defined as the entry of all four limbs into the arm.

2.5. Statistical Analysis and Presentation of the Results

All quantitative results are expressed as mean ± SEM. Differences among the means
of multiple parameters were analyzed by two-way analysis of variance (ANOVA) and
Student’s t-test. After ANOVA, Fisher’s post hoc test was performed to compare each of the
groups to the others. Differences among non-parametric variables such as gastric mucosal
integrity were analyzed using the chi-square test. Values of p < 0.05 were considered
statistically significant. We performed four independent Toxicity Experiments and two
independent Behavioral Experiments. The original number of rats in the treatment groups
was as follows: Control = 9, LLD-Li = 12, STD-Li = 12, Aspirin = 9, LLD-Li + Aspirin = 12,
STD-Li + Aspirin = 12. Animals were excluded from the analysis only due to ethical
considerations (e.g., if they presented unusual or sickness behavior, or significant changes
in physiological parameters) or technical limitations (e.g., insufficient amount of blood for
hematological analysis at time “zero”). Thus, the number of animals per group was not
identical for all the tested parameters; the precise sample sizes are presented accordingly
in each figure.

3. Results
3.1. Study Groups

A typical experiment included the following six groups: (1) Control—fed regular food
and administered vehicle; (2) LLD-Li and vehicle; (3) STD-Li and vehicle; (4) Aspirin (only);
(5) Aspirin + LLD-Li; (6) Aspirin + STD-Li.

3.2. Plasma Li Levels following the Various Regimens of Chronic Aspirin + Li Co-Treatment

Following 42 days of treatment, plasma Li levels in the LLD-Li group were 0.34 ± 0.07 mEq/L,
and 0.72 ± 0.18 mEq/L in the STD-Li group (Figure 1). Co-treatment of Li with low-dose
aspirin did not alter plasma Li levels in all regimens (two-way ANOVA, aspirin effect
p = 0.669), indicating that the combined treatment is safe and does not increase the risk for
Li intoxication.
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Figure 1. Li blood levels in aspirin + Li-treated rats. Rats were fed regular food (control) or Li-
containing food [0.1% (LLD-Li), 0.2% (STD-Li)] for 42 days. Low-dose ASA (1 mg/kg, ip) was
administered alone or together with Li. Blood was collected on days 0 and 42 of treatment, plasma
separated, and Li levels determined as described in Materials and Methods. Li levels were unde-
tectable in all groups on Day 0 and thus are not presented in the Figure. Results are the means ± SEM
of a single representative experiment out of two demonstrating a similar pattern with 9–12 rats per
group in the depicted experiment. * p < 0.0001 vs. Control, # p < 0.0001 vs. LLD Li. Two-way ANOVA:
ASA effect: F1,59 = 0.1849, p = 0.6687; Li effect: F2,59 = 328.6, p < 0.0001; aspirin x Li interaction:
F2,59 = 0.1608, p = 0.8519. Post hoc Fisher’s LSD: Control vs. LLD-Li or STD-Li—p < 0.0001, LLD-Li
vs. STD-Li—p < 0.0001, LLD-Li vs. LLD-Li + ASA—p = 0.4687, STD-Li vs. STD-Li + ASA—p = 0.9644.
Abbreviations: ASA—acetylsalicylic acid, LLD—low-low dose, Li—lithium, STD—standard dose,
UD—undetectable.

3.3. Addition of Aspirin to Li Does Not Affect Water Consumption and Urinary Output

Li was administered alone or together with aspirin for 42 days and water consumption
and urinary output were determined on days 21 and 42. At baseline, water consumption
and urinary output did not differ between the groups (data not shown). As expected,
water consumption was significantly higher in Li groups at 21 and 42 days of treatment, as
compared to control (two-way ANOVA, lithium effect p < 0.0001) (Figure 2a,b, respectively).
Of note, water consumption was significantly higher in the STD-Li group as compared to
the LLD-Li group (p < 0.0001). Importantly, co-treatment with aspirin did not aggravate the
increase in water consumption; on the contrary, the addition of aspirin significantly reduced
water consumption of the STD-Li group at 21 days of treatment (p = 0.0001) (Figure 2a).
Similar results were obtained for urinary output (Figure 2c,d). Namely, the addition of
aspirin significantly decreased the elevation in the STD-Li group at 21 days of treatment
(p = 0.0009). These findings reinforce our hypothesis that add-on therapy of low-dose
aspirin to Li is safe and does not exacerbate the renal side effects of Li. Furthermore,
taking into account the prominent polyuria that occurs in Li-treated rats, we examined the
effect of Li on plasma sodium levels to exclude a condition of Li-induced hypernatremia.
Plasma sodium levels did not differ significantly between control and Li-treated rats after
six weeks of treatment (Control = 139.9 ± 6.8, LLD-Li = 139.5 ± 6.2, STD-Li = 137.6 ± 6.6,
ANOVA—p = 0.5019). Aspirin treatment also did not alter plasma sodium levels.
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Figure 2. Water consumption and urinary output in aspirin + Li-treated rats. Rats were fed regular food (control) or
lithium-containing food [0.1% (LLD) or 0.2% (STD)] for 42 days. Low-dose aspirin (1 mg/kg, ip) was administered alone or
together with Li. At indicated days, 24 h water consumption (a,b) and urinary output (c,d) were measured as described in
Materials and Methods. Results are means ± SEM of a single representative experiment out of two demonstrating a similar
pattern with 9–12 (day 21) or 6 (day 42) rats per group in the depicted experiment. (a) Water consumption day 21, two-way
ANOVA: ASA effect, F1,59 = 7.938, p = 0.007; Li effect, F2,59 = 635.4, p < 0.0001; aspirin x Li interaction, F2,59 = 4.091, p = 0.021.
Post hoc Fisher’s LSD test: Control vs. LLD-Li; Control vs. STD-Li, p < 0.0001; LLD-Li vs. STD-Li, p < 0.0001; LLD-Li vs.
LLD-Li + ASA, p = 0.34; STD-Li vs. STD-Li + ASA, p = 0.0001. (b) Water consumption day 42, two-way ANOVA: ASA effect,
F1,30 = 2.689 × 10−5, p = 0.9959; Li effect, F2,30 = 320.5, p < 0.0001; aspirin X Li interaction: F2,30 = 0.069, p = 0.9328. Post
hoc Fisher’s LSD test: Control vs. LLD-Li, p = 0.015; Control vs. STD-Li, p < 0.0001; LLD-Li vs. STD-Li, p < 0.0001; LLD-Li
vs. LLD-Li + ASA, p = 0.77; STD-Li vs. STD-Li + ASA, p = 0.83. (c) Urinary output day 21, two-way ANOVA: ASA effect,
F1,59 = 4.528, p = 0.037; Li effect: F2,59 = 729.5, p <0.0001; aspirin X Li interaction, F2,59 = 3.384, p = 0.04. Post hoc Fisher’s LSD
test: Control vs. LLD-Li, p = 0.0002; Control vs. STD-Li, p < 0.0001; LLD-Li vs. STD-Li, p < 0.0001; LLD-Li vs. LLD-Li + ASA,
p = 0.523; STD-Li vs. STD-Li + ASA, p = 0.0009. (d) Urinary output day 42, two-way ANOVA: ASA effect, F1,30 = 0.0044,
p = 0.9475; Li effect, F2,30 = 241.2, p < 0.0001; aspirin X Li interaction, F2,30 = 0.07569, p = 0.9273. Post hoc Fisher’s LSD test:
Control vs. LLD-Li, p < 0.0001; Control vs. STD-Li, p < 0.0001; LLD-Li vs. STD-Li, p < 0.0001; LLD-Li vs. LLD-Li + ASA,
p = 0.80; STD-Li vs. STD-Li + ASA, p = 0.895. Asterisks and symbols denote the following: *—p < 0.05 vs. control; #—p < 0.05
vs. LLD-Li; ˆ—p < 0.05 vs. STD-Li; $—p < 0.05 vs. LLD-Li + ASA. Abbreviations: ASA—acetylsalicylic acid, LLD—low-low
dose, Li—lithium, STD—standard dose.
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3.4. Effects of Chronic Aspirin plus Li Treatment on Kidney Parameters
3.4.1. Creatinine

No significant difference in creatinine blood levels was found between aspirin (only)-
treated rats and control rats on treatment days 21 (Figure 3a, p = 0.808) and 42 (Figure 3b,
p = 0.711). On the other hand, creatinine levels were significantly increased in the LLD-Li
and the STD-Li groups both on day 21 and 42 (p = 0.0002, p < 0.0001, respectively). In
comparison to the LLD-Li group, creatinine levels in the LLD-Li + aspirin group were
not significantly higher than those in the control group (Figure 3a,b). Once again, these
findings support our hypothesis that chronic co-administration of low-dose aspirin and Li
does not aggravate the renal side effects of Li.

Figure 3. Plasma creatinine levels in aspirin + Li-treated rats. Rats were fed regular food (control) or Li-containing food
(LLD-Li or STD-Li) for 42 days. Low-dose ASA (1 mg/kg, ip) was administered alone or as add-on to Li. On days
21 (a) and 42 (b) blood was collected, plasma separated, and creatinine levels determined as described in Materials and
Methods. Presented are creatinine levels adjusted to rat’s body weight. The figure summarizes the combined results
of two independent experiments demonstrating a similar pattern. Results are the means ± SEM of 9–12 rats per group.
(a) Two-way ANOVA: ASA effect, F1,64 = 0.6556, p = 0.6874; Li effect, F2,64 = 10, p = 0.0002; aspirin x Li interaction:
F2,64 = 0.3770, p = 0.6874. Post hoc Fisher’s LSD test: Control vs. LLD-Li, p = 0.0274; Control vs. STD-Li, p = 0.0005;
Control vs. STD-Li + ASA, p = 0.0064. (b) Two-way ANOVA: aspirin effect, F1,112 = 1.031, p = 0.312; Li effect, F2,112 = 14.79,
p < 0.0001; aspirin X Li interaction: F2,112 = 0.2559, p = 0.775. Post hoc Fisher’s LSD test: Control vs. LLD-Li, p = 0.045; Control
vs. STD-Li, p = 0.0003; Control vs. STD-Li + ASA, p = 0.0006; LLD-Li + ASA vs. STD-Li + ASA, p = 0.0095. Asterisks and
symbols denote the following: *—p < 0.05 vs. Control, $—p < 0.05 vs. LLD-Li + ASA. Abbreviations: ASA—acetylsalicylic
acid, LLD—low-low dose, Li—lithium, STD—standard dose.

3.4.2. Cystatin C

Chronic treatment with LLD-Li and STD-Li did not significantly increase cystatin C
levels, as compared to the control group (p = 0.115 and p = 0.217, respectively, Figure 4).
Cystatin C levels in the STD-Li group were significantly higher as compared to the LLD-Li
group (p = 0.008, Figure 4). Importantly, cystatin C levels in the aspirin + STD-Li group
were significantly lower (p < 0.04) than in the STD-Li group (Figure 4), indicating that
add-on of low-dose aspirin to Li may reduce the nephrotoxic effects of STD-Li.
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Figure 4. Plasma cystatin C levels in aspirin + Li-treated rats. Rats were fed regular food (control)
or lithium-containing food [LLD-Li or STD-Li] for 42 days. Low-dose aspirin (1 mg/kg, ip) was
given alone or together with Li. On day 42, rats were euthanized, blood collected, plasma separated,
and cystatin C levels determined by ELISA as described in Materials and Methods. Presented are
cystatin C levels adjusted to rat’s body weight. Results are the means ±SEM of a single represen-
tative experiment out of two demonstrating a similar pattern with 8 rats per group in the depicted
experiment. Two-way ANOVA: ASA effect, F1,40 = 5.801, p = 0.0207; Li effect, F2,40 = 3.616, p = 0.036;
aspirin x Li interaction: F2,40 = 1.679, p = 0.1995. Post hoc Fisher’s LSD test: Control vs. LLD-Li,
p = 0.0116; Control vs. STD-Li, p = 0.217; Control vs. LLD-Li + ASA, p = 0.0118; Control vs.
STD-Li + ASA, p = 0.413; STD-Li vs. LLD-Li, p = 0.008; STD-Li vs. STD-Li + ASA, p = 0.0436. Aster-
isks and symbols denote the following: #—p < 0.05 vs. LLD-Li, ˆ—p < 0.05 vs. STD-Li. Abbreviations:
ASA—acetylsalicylic acid, LLD—low-low dose, Li—lithium, STD—standard dose.

3.4.3. Nephrin and Podocin

LLD-Li and aspirin each by themselves did not alter nephrin and podocin levels as
compared to control but STD-Li treatment resulted in a significant increase in nephrin and
podocin levels in kidney homogenates (p < 0.01 and p < 0.004, respectively). Importantly,
aspirin add-on to STD-Li notably prevented the increase in nephrin and podocin levels
(Figure 5a,b, respectively).
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Figure 5. Nephrin and podocin levels in aspirin + Li-treated rats. Rats were fed regular food (control)
or lithium-containing food [LLD-Li or STD-Li] for 42 days. Low-dose aspirin (1 mg/kg, ip) was given
alone or together with lithium. On day 42 the rats were sacrificed, kidneys excised and homogenized,
and nephrin (a) and podocin (b) levels determined by ELISA as described in Materials and Methods.
Results are the means ± SEM of a single representative experiment out of two demonstrating a
similar pattern with 8 rats per group in the depicted experiment. * p < 0.05 vs. Control, # p < 0.05
vs. LLD-Li, ˆ p < 0.05 vs. STD-Li. (a) Nephrin—two-way ANOVA: ASA effect: F1,30 = 5.4, p = 0.027;
Li effect: F2,30 = 3.35, p < 0.05; Interaction: F2,30 = 2.62, p = 0.089. Post hoc LSD: Control vs. STD Li,
p ≤ 0.01; LLD Li vs. STD-Li, p ≤ 0.01; STD-Li + ASA vs. STD-Li, p = 0.003. (b) Podocin—two-way
ANOVA: ASA effect: F1,30 = 6.018, p = 0.02; Li effect: F2,30 = 4.449, p = 0.02; Interaction: F2,30 = 8.121,
p = 0.0015. Post hoc LSD: Control vs. STD Li, p ≤ 0.0004; LLD-Li + vs. STD-Li, p ≤ 0.0004; STD
Li + ASA vs. STD Li p < 0.0001. Abbreviations: ASA—acetylsalicylic acid, LLD—low-low dose,
Li—lithium, STD—standard dose.

3.4.4. Kidney Weight

To exclude renal fibrosis (as seldom reported following long-term Li treatment [39,44,118]),
we examined the effect of Li treatment on kidney weight. Kidney weight did not signifi-
cantly differ between control, Li-treated and aspirin-treated rats following 42 days of treat-
ment: Control = 1.32 ± 0.06 (mean ± SEM, g), LLD-Li = 1.21 ± 0.03, STD-Li = 1.18 ± 0.03,
aspirin = 1.36 ± 0.05; t-test p > 0.05 control vs. other groups.

3.4.5. Renal Histopathology

Kidney specimens of the various treatment groups were assessed for histopathological
changes, focusing on STD-Li-treated animals (in comparison to control). No tubular atro-
phy, interstitial fibrosis, tubular cysts or dilatations, or glomerular changes were detected
in both Li-treated groups (LLD-Li and STD-Li) as compared to control (Figure 6). Similarly,
aspirin (alone or together with Li) did not induce pathological changes in kidney structure.
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Figure 6. Kidney histopathology in aspirin + Li-treated rats. Rats were fed regular food (control) or
lithium-containing food [LLD-Li or STD-Li] for 42 days. Low-dose aspirin (1 mg/kg, ip) was given
alone or together with lithium. On day 42, rats were euthanized, kidneys excised, and longitudinally
sectioned in half. Then, 2 µm sections were cut, stained with hematoxylin and eosin, and with
Periodic acid–Schiff (PAS) and examined as described in Materials and Methods. Hematoxylin
and eosin (A1–F1) and PAS stain (A2–F2) × 100 magnifications. Six samples from each group were
randomly chosen for assessment. A1,2—Control, B1,2—LLD-Li, C1,2—STD-Li, D1,2—Aspirin, E1,2—
LLD-Li + aspirin, F1,2—STD-Li + aspirin. Abbreviations: ASA—acetylsalicylic acid, LLD—low-low
dose, Li—lithium, STD—standard dose. No discernible differences were found among the groups.

3.5. Effects of Chronic Aspirin plus Li Treatment on Determinants of Gastric Mucosal Integrity
3.5.1. Macroscopic Examination of Stomachs

Stomachs were examined macroscopically for possible gastric side effects including
ulceration and bleeding following chronic treatment with aspirin and/or Li. No gastric
ulcers/erosions or active bleeding were detected in either of the treatment groups (Table 1).
The chi-square test revealed no significant differences between the groups in the rate of
mild gastritis (p = 0.1049). Few cases of severe gastritis were detected in the STD-Li group
(one), aspirin + STD-Li group (one), and in the aspirin-only group (two).
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Table 1. Gastric mucosal integrity in aspirin + Li-treated rats.

Title 1 Control LLD-Li STD-Li Aspirin LLD-Li + Aspirin STD-Li + Aspirin
N 23 25 27 24 27 27

Mild gastritis, n (%) 11 (48) 12 (48) 18 (67) 10 (42) 16 (59) 19 (70)
Severe gastritis, n (%) 0 0 1 (3.7) 2 (8.3) 0 1 (3.7)

Gastric bleeding 0 0 0 0 0 0

Gastric ulcer 0 0 0 0 0 0

Rats were fed regular food (control) or lithium-containing food [LLD-Li or STD-Li]
for 42 days. Low-dose aspirin (1 mg/kg, ip) was given alone or together with lithium. On
day 42 rats were sacrificed, stomachs excised, and macroscopic presence of gastric ero-
sions/ulcers was examined by a gastroenterologist as described in Materials and Methods.
N = 23–27 rats (stomachs) per group. The table presents the cumulative results of two
independent experiments demonstrating a similar pattern. Abbreviations: LLD, low-low
dose (Li); STD, standard dose (Li).

3.5.2. Gastric Mucosal PGE2 Levels

PGE2 acts as a protective mediator in the stomach by inhibiting the secretion of
hydrochloric acid and enhancing the secretion of bicarbonate and mucus, all of which
decrease the risk of ulceration and bleeding. Mucosal PGE2 was determined to eluci-
date whether aspirin and/or Li treatment induce a decrease in PGE2 levels and, thus,
increase the risk for gastric ulceration and bleeding. As seen in Figure 7, treatment with
aspirin alone led to a significant decrease in mucosal PGE2 levels as compared to control
(p = 0.0018), whereas LLD-Li and STD-Li did not cause a significant decrease. Aspirin add-
on to each of the Li groups (LLD-Li and STD-Li) did not further significantly reduce PGE2
levels beyond those of the aspirin (only) group, suggesting that the prominent decrease in
PGE2 levels in these groups derived mainly from the effect of aspirin.

Figure 7. Gastric mucosal PGE2 levels in aspirin + Li-treated rats. Rats were fed regular food (control)
or lithium-containing food [LLD-Li or STD-Li] for 42 days. Low-dose ASA (1 mg/kg, ip) was
administered alone or together with Li. On day 42 rats were euthanized, stomachs excised, 100 mg
of the gastric tissue homogenized and mucosal PGE2 levels determined by ELISA as described in
Materials and Methods. Results are the means ± SEM of 18 rats per group. The figure summarizes
the combined results of two independent experiments demonstrating a similar pattern. Two-way
ANOVA: ASA effect, F1,101 = 7.83, p < 0.0001; Li effect, F2,101 = 1.926, p = 0.151; aspirin x Li interaction:
F2,30 = 0.1592, p = 0.8531. Post hoc Fisher’s LSD test: Control vs. LLD-Li, p = 0.419; Control vs.
STD-Li, p = 0.14; Control vs. ASA, p = 0.018; Control vs. LLD-Li + ASA, p = 0.0004; Control vs.
STD-Li + ASA, p = 0.0007; ASA vs. LLD-Li + ASA, p = 0.2037; ASA vs. STD-Li + ASA, p = 0.2576;
LLD-Li vs. LLD-Li + ASA, p = 0.005; STD-Li vs. STD-Li + ASA, p = 0.044. Asterisks and symbols
denote the following: *—p < 0.05 vs. Control, #—p < 0.05 vs. LLD-Li, ˆ—p < 0.05 vs. STD-Li.
Abbreviations: ASA—acetylsalicylic acid, LLD—low-low dose, Li—lithium, STD—standard dose.
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3.5.3. Gastrointestinal Bleeding

Aspirin and/or Li treatment was not associated with a significant change in red blood
cell count and hemoglobin levels as compared to the control (Figure 8).

Figure 8. Blood hemoglobin and red blood cell levels in aspirin + Li-treated rats. Rats were fed regular food (control)
or lithium-containing food [LLD-Li or STD-Li] for 42 days. Low-dose ASA (1 mg/kg, ip) was administered alone or
together with Li. On the indicated days, blood was collected, and hemoglobin levels and red blood cell count were
measured as described in Materials and Methods. Results are the means ± SEM of a single representative experiment
out of two demonstrating a similar pattern with 6–8 rats per group in the depicted experiment. (a) Hemoglobin—One-
way ANOVA: Day 0—p = 0.547; day 21—p = 0.07; day 42—p = 0.29. (b) RBC—One-way ANOVA: Day 0—p = 0.547;
day 21—p = 0.07; day 42—p = 0.294. Abbreviations: ASA—acetylsalicylic acid, LLD—low-low dose, Li—lithium, STD—
standard dose.

3.5.4. Plasma TXA2 Levels

TXA2 is a metabolite of arachidonic acid that stimulates platelet aggregation and
causes vasoconstriction. Inhibition of TXA2 synthesis by aspirin is the major mechanism
underlying its antiplatelet effect. We, therefore, tested the effects of aspirin/Li treatment
on plasma TXA2 levels to determine whether the experimental conditions used lead to
a reduction in TXA2 levels, consistent with the therapeutic antiplatelet effect of aspirin.
As seen in Figure 9, aspirin by itself indeed significantly decreased plasma TXA2 levels.
However, co-administration of aspirin together with LLD-Li did not result in a significant
reduction in TXA2 levels but aspirin and STD-Li co-administration did significantly aug-
ment the effect of aspirin. Namely, aspirin + STD-Li treatment resulted in significantly
lower TXA2 levels than treatment with aspirin alone, suggestive of a possible synergistic
effect of the combined treatment. Nonetheless, these results seem clinically insignificant
because there were no significant differences in signs of bleeding between aspirin or/and
lithium-treated rats, as compared to the control.
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Figure 9. Plasma TXA2 in aspirin + lithium-treated rats. Rats were fed regular food (control)
or lithium-containing food [LLD-Li or STD-Li] for 42 days. Low-dose ASA (1 mg/kg, ip) was
administered alone or together with Li. On day 42 rats were sacrificed, blood collected, serum
separated, and TXA2 levels determined by ELISA as described in Materials and Methods. Results are
the means ± SEM of a single representative experiment out of two demonstrating a similar pattern
with 6–8 rats per group in the depicted experiment. Two-way ANOVA: ASA effect, F1,40 = 4.204,
p = 0.046; Li effect, F2,40 = 5.071, p = 0.01; aspirin x Li interaction: F2,40 = 3.312, p = 0.046. Post hoc
Fisher’s LSD test: Control vs. LLD-Li, p = 0.107; Control vs. STD-Li, p = 0.077; Control vs. ASA,
p = 0.048; Control vs. LLD-Li + ASA, p = 0.426; STD-Li vs. STD-Li + ASA, p = 0.0135; ASA vs.
STD-Li + ASA, p = 0.0233; STD-Li vs. STD-Li + ASA, p = 0.044. Asterisks and symbols denote the
following: *—p < 0.05 vs. Control, ˆ—p < 0.05 vs. STD-Li, §—p < 0.05 vs. ASA. Abbreviations:
ASA—acetylsalicylic acid, LLD—low-low dose, Li—lithium, STD—standard dose.

3.6. Behavioral Effects of Chronic Low-Dose Aspirin Plus Li Treatment—Proof of Concept
Experiments

These experiments were conducted to test the hypothesis that the administration of
low-dose aspirin will enhance the therapeutic effects of low-dose Li. We tested the effects
of the combinatory treatment on several behavioral phenotypes characteristic of mood
disorders, using accepted behavioral models.

3.6.1. Anxiety-Like Behaviors

Anxiety-like and risk-taking (opposite of anxiety) behaviors were assessed by measur-
ing (1) the time spent in the closed vs. open arms in the EPMT (Figure 10a), (2) the time
spent in the peripheral vs. central zone in the OFT (Figure 10b). Fourteen days of treatment
with LLD-Li and STD-Li did not significantly increase the time spent in the open arms
(Figure 10a). In contrast, co-administration of aspirin together with Li significantly in-
creased the time spent in the open arms, suggestive of an anxiolytic-like effect of the
combined treatments (Figure 10a). In the OFT, treatment with LLD-Li, or STD-Li, or
aspirin, each by itself, did not significantly increase the time spent in the center of the
arena, as compared to control (Figure 10b). In contrast, treatment with aspirin add-on to
LLD-Li, as compared to control, significantly increased the time spent in the center of the
arena, suggestive of an anxiolytic-like effect of the combined treatment. Unexpectedly,
aspirin + STD-Li treatment did not alter the measures of this test (Figure 10b). Together
with the results of the EPMT (Figure 10a), these findings support the notion that low-dose
aspirin + low-dose Li induce an anxiolytic-like effect.
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Figure 10. Anxiety-like behavioral facets in aspirin + Li-treated rats. Rats were fed regular food (control) or Li-containing
food [LLD-Li or STD-Li] for 42 days. Low-dose ASA (1 mg/kg, ip) was administered alone or together with Li. (a) On
treatment day 14, rats were subjected to an EPMT for five minutes. (b) On day 35, rats were placed in an open field arena
for 20 min and their locomotor activity was monitored. In both tests, rats’ behavior was videotaped and subsequently
analyzed by a video-tracking system as described in Materials and Methods. (a) Results are the means ± SEM of a single
representative experiment out of two demonstrating a similar pattern with 9–12 rats per group in the depicted experiment.
Two-way ANOVA: ASA effect, F1,60 = 13.38, p = 0.0005; Li effect, F2,60 = 406, p = 0.016; aspirin x Li interaction: F2,60 = 1.295,
p = 0.2813. Post hoc Fisher’s LSD test: Control vs. LLD-Li, p = 0.1797; Control vs. STD-Li, p = 0.1491; Control vs. ASA,
p = 0.0739; Control vs. LLD-Li + ASA, p = 0.0182; Control vs. STD-Li + ASA, p < 0.0001; STD-Li vs. STD-Li + ASA,
p = 0.0011; LLD-Li + ASA vs. STD-Li + ASA, p = 0.0205. Asterisks and symbols denote the following: *—p < 0.05 vs. control,
ˆ—p < 0.05 vs. STD-Li, $—p < 0.05 vs. LLD-Li + ASA. (b) Results are means ± SEM of a single representative experiment out
of two demonstrating a similar pattern with 9–12 rats per group in the depicted experiment. Two-way ANOVA: ASA effect,
F1,60 = 1.069, p = 0.3052; One-tailed Li effect, F2,60 = 2.804, p = 0.0329; aspirin x Li interaction: F2,60 = 0.2523, p = 0.7778. Post
hoc Fisher’s LSD test: Control vs. LLD-Li, p = 0.2228; Control vs. STD-Li, p = 0.7405; Control vs. ASA, p = 0.5316; Control vs.
LLD-Li + ASA, p = 0.0296; Control vs. STD-Li + ASA, p = 0.6827. Asterisk denotes the following: *—p < 0.05 vs. Control.
Abbreviations: ASA—acetylsalicylic acid, LLD—low-low dose, Li—lithium, STD—standard dose.

3.6.2. Depressive-Like Behavior

Anhedonia is one of the prominent features of depression. Hedonic-like behavior
was assessed using the SCT. At baseline, there was no difference in sucrose solution
consumption between the groups (data not shown). Figure 11 demonstrates that on
day 21, sucrose consumption was significantly higher in the two Li-treated groups as
compared to the control group (p < 0.0001), and significantly higher in the STD-Li than in
the LLD-Li group (p < 0.0001). Aspirin by itself did not affect sucrose consumption but
its co-administration with LLD-Li significantly augmented the hedonic-like behavior of
LLD-Li- treated rats (p = 0.0254).



Pharmaceutics 2021, 13, 1827 17 of 28

Figure 11. Rats were fed regular food (control) or lithium-containing food [LLD-Li or STD-Li].
On day 21 of the treatment rats were offered two bottles, one containing sucrose solution and
one—regular drinking water as described in Materials and Methods. Sucrose consumption in each
cage was calculated according to the body weight of the rats (three) in the cage. Results are the
means ± SEM of a single representative experiment out of two demonstrating a similar pattern
with 9–12 rats per group in the depicted experiment. Two-way ANOVA: ASA effect, F1,48 = 1.711,
p = 0.1738; Li effect, F2,48 = 278.7, p < 0.0001; aspirin x Li interaction, F2,48 = 1.711, p = 0.1915. Post hoc
Fisher’s LSD test: Control vs. LLD-Li, p < 0.0001; Control vs. STD-Li, p < 0.0001; Control vs. ASA,
p = 0.9362; Control vs. LLD-Li + ASA, p < 0.0001; Control vs. STD-Li + ASA, p < 0.0001; LLD-Li vs.
STD-Li; LLD-Li vs. LLD-Li + ASA, p = 0.0254; STD-Li vs. STD-Li + ASA, p = 0.997; LLD-Li + ASA
vs. STD-Li +ASA, p = 0.0019. Asterisks and symbols denote the following: *—p < 0.05 vs. Control,
#—p < 0.05 vs. LLD-Li, $—p <, 0.05 vs. LLD-Li + ASA. Abbreviations: ASA—acetylsalicylic acid,
LLD—low-low dose, Li—lithium, STD—standard dose.

4. Discussion

A two-fold rationale inspired the present study of add-on low-dose aspirin to Li
treatment. First, among its beneficial characteristics Li has been shown to exert anti-neuro-
inflammatory/anti-inflammatory effects [70,73]. Given that low-dose aspirin has also
been reported to exert anti-inflammatory effects [119,120] along with the well-established
involvement of inflammation in the pathophysiology of BD [45–49], we hypothesized that
co-administration of low-dose aspirin and Li could enable reduction in the required Li dose
to gain mood stabilization. Second, prior to the above, given the devastating renal side
effects of Li treatment in BD—NDI, and even CKD following long-term use, we first probed
the safety of chronic administration of aspirin plus Li. In this context, it is worth noting that
people with CKD face between two to five times higher risk than the general population
of enduring cardiovascular events and stroke [121,122]. In an ongoing study funded by
the National Institute of Health Research and the British Heart Foundation, a group of
scientists from the University of Southampton are currently testing the hypothesis that
taking a low-dose aspirin tablet once daily reduces the risk of acute cardiovascular events
and strokes in people with CKD who do not have pre-existing cardiovascular disease (Trial
Registration: NCT03796156). To the best of our knowledge, the present study is the first
to address in a systematic manner in rodents both the safety and the efficacy of low-dose
aspirin added on to Li treatment.

Here we show that co-treatment of low-dose aspirin and low-dose Li is as safe as low-
dose Li only, and that co-treatment with low-dose aspirin and STD-Li is probably safer than
STD-Li by itself, as it attenuated some aspects of STD-Li-induced nephrotoxicity. Namely,
co-treatment with low-dose aspirin and Li did not alter plasma Li levels in all regimens of
Li administration, indicating that the combined treatment is safe and does not increase the
risk for lithium intoxication. In the 1980s, of the previous century, some inconsistent reports
of murine and human studies [123–125] argued whether or not co-administration of aspirin
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and Li affects serum Li levels. The use of a German drug combination, an over-the-counter
analgesic titled ‘Togal,’ containing the active ingredients of aspirin, Li-citrate, and quinine,
sold from the early 20th century till 2011, was also reported [126,127], but we were not able
to locate reports of its mood-related or systemic side effects. Later on, in the last years of
the 20th century, the debate over whether NSAIDs, in general, and aspirin, in particular,
interact with Li in a toxic-synergistic manner, was raised again [128,129]. More recent
studies suggested that concomitant use of low-dose aspirin with Li is safe and does not
increase Li toxicity [130,131]. For instance, in a randomized, double-blind controlled study
of patients with BD maintained on Li and aspirin (240 mg/day) vs. Li and placebo, plasma
Li concentrations in the aspirin plus Li group did not differ significantly from those of the
Li plus placebo group at the end of the study [131]. Beyond providing a clear-cut answer
to the above inconsistency, our finding is important in view of the fact that COX inhibitors
may decrease PG synthesis and attenuate renal blood flow and glomerular filtration rate,
thus leading to a reduction in lithium clearance and elevation in plasma concentrations of
the drug [31,106,123,130–132].

Our findings that chronic STD-Li treatment resulted in significant polyuria and poly-
dipsia (characteristic features of NDI) (Figure 2), and in elevated blood levels of creatinine
and cystatin C (markers of abnormal renal function; Figures 3 and 4) are in agreement
with the strong evidence that long-term Li treatment is associated with renal function
abnormalities [30,31,33]. Low-dose aspirin significantly decreased the STD-Li-induced
increase in water consumption and urinary output at 21 and 42 days of treatment as
compared to STD-Li only (Figure 2). If confirmed in humans, this finding suggests that
co-administration of low-dose aspirin together with Li may reduce the polydipsia and
polyuria in Li-treated BD patients.

The progressive increase (0.85 mmol/L on day 21 and 0.95 mmol/L on day 42) in
blood creatinine levels in the STD-Li group is compatible with the reports of the correlation
between treatment duration and CKD [31,35]. Chronic co-administration of low-dose
aspirin and Li did not aggravate the renal side effects of Li. Serum creatinine levels in the
aspirin plus STD-Li treated group were similar to those in the STD-Li (only) group at 21 and
42 days of treatment (Figure 3). Importantly, co-treatment with low-dose aspirin prevented
a significant elevation in creatinine levels in LLD-Li-treated rats (Figure 3), suggestive of a
protective effect of aspirin treatment.

Cystatin C has been suggested as a biomarker that may help in detecting early im-
pairment in glomerular filtration [109,110]. However, it is important to bear in mind that
many factors affect the blood levels of cystatin C [133] and may bias the results of a given
intervention. Interestingly, a study in BD patients revealed that long-term Li treatment
did not alter serum cystatin C levels [134]. In the present study, STD-Li treatment was
associated with a significant increase in plasma cystatin C levels (Figure 4), attenuated by
co-treatment with low-dose aspirin. This is consistent with the protective effect of aspirin
against Li-induced nephrotoxicity.

Nephrin and podocin play a crucial role in podocyte function [111] and regulation of
glomerular function [112,113]. Studies that tested the effects of Li on nephrin and podocin
expression revealed inconsistent results. An in vivo study in mice showed that a single
injection of Li caused a decrease in nephrin expression in kidney lysate [135]. On the other
hand, a study in obese mice demonstrated that chronic Li treatment which resulted in
plasma concentrations between ~0.25–0.5 mM did not alter nephrin and podocin mRNA
levels [136]. In the present study, chronic STD-Li treatment resulted in a significant in-
crease in nephrin and podocin levels in kidney homogenates (Figure 5). Currently, the
mechanism underlying this observation is unknown and it is also unclear whether it rep-
resents a positive or negative pathophysiological outcome. It is also unknown whether
the increase is a time-dependent phenomenon and whether a longer treatment duration
would diminish or intensify its manifestation. Since nephrin and podocin are essential
proteins for normal glomerular function [111–113], an increase in their levels, to a certain
extent, may theoretically represent a positive outcome of Li treatment. Consistent with
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this assumption, and in contrast with the prevailing view, several experimental studies in
animals have shown that Li may exert positive effects on renal function through inhibition
of the enzyme glycogen synthase kinase (GSK)-3β [137–141]. For example, in a mouse
model of doxorubicin-induced nephropathy, a single dose of Li improved glomerular
function and attenuated the proteinuria and glomerulosclerosis associated with this condi-
tion [140]. Similarly, pretreatment with Li significantly reduced proteinuria and improved
glomerular function in a mouse model of doxorubicin- or lipopolysaccharide-induced
podocyte injury in mice [141]. Consistent with these findings, selective pharmacological or
genetic inhibition of GSK-3β was shown to improve renal function in various models of
kidney disorders in animals [142–144]. Support for these experimental data comes from
clinical evidence indicating that chronic Li treatment leads to a slight (if any) decrease in
glomerular function and a negligible incidence of CKD that are of questionable clinical sig-
nificance [30,31,41,42,145]. Interestingly, in the present study, low-dose aspirin co-treatment
totally reversed the effects of STD-Li on nephrin and podocin levels (Figure 5).

It has been suggested that administration of low to medium Li doses may reduce
the incidence of CKD [31,41–43,146]. In our study, LLD-Li administration led to a less
severe impairment in renal function as compared to STD-Li treatment. Coadministration
of aspirin with LLD-Li did not aggravate this effect. Furthermore, while creatinine levels
in the LLD-Li-treated animals were significantly increased, they did not differ significantly
from those in control animals throughout the whole treatment duration in the aspirin plus
LLD-Li group, suggestive of a protective effect.

Long-term administration of Li has been reported to induce chronic tubulointerstitial
damage in humans [35,39] and rats [118,147,148]. These studies reported renal biopsies
presenting tubular atrophy, microcystic changes of the distal tubule, cortical and medullary
tubular cysts, and interstitial fibrosis [35,39,118,147,148]. The degree of interstitial fibrosis
in the biopsy was related to the duration of treatment and Li’s cumulative dose modeling.
However, contradicting findings were reported as well, namely, no difference between
Li-treated patients and those who did not receive the drug [149]. Furthermore, it is difficult
to determine whether or not there is an association between long-term Li treatment and
tubulo-interstitial damage as very few patients on Li therapy undergo a renal biopsy and
only a relatively small percentage of patients present with advanced renal disease [31,35]. In
an attempt to replicate the slowly progressive chronic interstitial fibrosis, Walker et al. [148]
developed an animal model of Li-induced chronic interstitial fibrosis. In this model,
progressive development of renal fibrosis was detected in rats treated with a therapeutically
relevant dose (0.8–1.3 mEq/L) of Li over 6 months. In the present study, renal histology did
not demonstrate the development of fibrosis following 42 days of Li treatment. Importantly,
no tubulo-interstitial damage was detected in either aspirin (only) or aspirin and Li-
treated rats. Taking into account that long-term Li treatment duration is a risk factor for
CKD [30–39], one possible explanation for the discrepancy between our results and those
of Walker et al. [148] could be the longer treatment duration in the Walker study (6 weeks
vs. 24 weeks, respectively).

The parameter of gastric mucosal PGE2 levels was used to evaluate whether aspirin
and/or Li treatment results in an increased risk for gastric ulceration and bleeding. Com-
patible with the general knowledge that most patients who take aspirin develop acute
mucosal lesions while Li treatment is not associated with digestive tract maladies, chronic
administration of aspirin indeed led to a significant decrease in gastric mucosal PGE2 levels
as compared to control (Figure 7), whereas the decrease induced by Li-only treatment did
not reach statistical significance. In any event, the decrease in gastric PGE2 levels did not
lead to prominent mucosal damage, as no ulcers were detected in any treatment group after
42 days of treatment (Table 1). Furthermore, all treatment groups demonstrated stable red
blood cell count and hemoglobin levels throughout the study, and chronic low-dose aspirin
plus Li treatment was not associated with a significant increase in gastrointestinal bleeding.

In humans, chronic low-dose aspirin is mostly prescribed for the prevention of adverse
cardiovascular events, due to its potent antiplatelet effect [85–87] obtained mainly through
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inhibition of platelet TXA2 synthesis [25,84]. To examine whether our treatment protocol
leads to a desired therapeutic effect of low-dose aspirin, we determined the effect of the var-
ious treatment regimens on plasma TXA2 levels (Figure 9). As predicted, aspirin treatment
significantly decreased plasma TXA2 levels as compared to control (Figure 9), confirming
its antiplatelet effect under the experimental conditions of the study. Furthermore, aspirin
and STD-Li co-administration significantly augmented the effect of aspirin. Therefore, our
results suggest a potential for the combined low-dose aspirin plus low-dose Li to reduce
the risk of major adverse cardiovascular events in BD patients.

The behavioral experiments of the present study aimed to test the hypothesis that
the addition of low-dose aspirin to low-dose Li would preserve the therapeutic efficacy of
Li. In humans, the therapeutic window of Li for maintenance treatment of BD patients is
between 0.6 and 1.2 mEq/liter [25,26], while lower concentrations (0.4–0.8 mEq/liter) are
recommended for geriatric patients [150]. In the present study, chronic LLD-Li (plasma
levels ~0.4 mEq/liter) treatment significantly increased sucrose consumption (Figure 11),
interpretable as an antidepressant-like effect. As expected, STD-Li treatment also caused
a significant increase in sucrose consumption (Figure 11). Importantly, aspirin add-on
to LLD-Li significantly augmented the antidepressant-like effect of LLD-Li. As for the
anxiety-like behavior, LLD-Li led to a non-significant increase in the time spent in the open
arms of the elevated plus-maze and in the central zone of the open field (Figure 10a,b,
respectively), but add-on of low-dose aspirin to LLD-Li resulted in a significant increase in
the time spent in the open arms of the elevated plus-maze and in the central zone of the
open field as compared with the LLD-Li only group, suggestive of an anxiolytic-like effect
of the combined treatment. These findings support the use of low-dose aspirin with low-
dose Li to augment positive Li-induced mood-modulating effects while minimizing the
drug’s toxicity. Surprisingly, STD-Li treatment was not associated with a significant effect
on these anxiety-related tests, neither by itself nor in combination with low-dose aspirin.
This finding corroborates with a study in adolescent rats which showed that chronic Li
treatment lacked an anxiolytic-like effect and even induced anxiety-like behavior [151].

The biological basis of Li-induced NDI is very complex and seems to involve a variety
of mechanisms (for review see [152]). The severity and reversibility of Li-induced NDI
differ among patients and seem to be affected by the duration of Li treatment and the
stage of tubulointerstitial damage [31]. Initially, Li treatment may induce only functional
tubulointerstitial damage which may be reversible upon Li cessation. However, if long-
term Li treatment causes irreversible morphological tubulointerstitial damage (fibrosis),
discontinuation of the drug most probably will not resolve the problem [31]. In the present
study, we found that low-dose aspirin significantly mitigated the STD-Li-induced increase
in urinary output (Figure 2). The mechanism underlying this protective effect is not fully
understood. In the kidneys, Li enters the principal cells of the collecting duct through
epithelial sodium channels in the luminal membrane [152–154]. It then accumulates in
these cells and interferes with the ability of the antidiuretic hormone to increase water
permeability. Li inhibits GSK-3β leading to increased expression of COX-2 and over-
production of PGE2, which suppresses the antidiuretic effect of vasopressin resulting in
increased urination [152]. PGE2 acts on principal cells to induce lysosomal degradation of
AQP2 water channels and a decline in urine concentrating ability. It is possible that low-
dose aspirin attenuates the polyuria-inducing effect of Li by counteracting its effect on the
GSK-3β-COX-2-PGE2-vasopressin cascade by inhibiting PGE2 production and restoring
the antidiuretic effect of vasopressin. Of note, GSK-3β activity is crucial for optimal renal
physiology, in general [152] and essential for podocyte function in particular [155]. Aberrant
kidney GSK-3 β activity leads to severe albuminuria and renal failure [155]. Inhibition
of GSK-3β has been associated with potent antiapoptotic effects and accumulation of
β-catenin (among other down-stream targets) [156–158]. Alterations in the Wnt/β-catenin
signaling pathway are associated with various pathophysiological features including
cancer promotion [159] and impairment of kidney function [135,136,152,155]. Interestingly,
it was found that aspirin dose-dependently inhibits the activity of the Wnt/β-catenin
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pathway [160,161]. Therefore, it is possible that in addition to other modes by which
aspirin reduces Li-induced nephrotoxicity, it also neutralizes the effects of Li on the
β-catenin pathway.

The mechanism by which low-dose aspirin add-on therapy to Li may enhance the
therapeutic efficacy of Li is yet to be unraveled. It is generally accepted that when aspirin is
given at a low dose for platelet inhibition, it exerts weak anti-inflammatory effects because
it preferentially inhibits COX-1 [25]. In this regard, Fritz et al. [162] demonstrated that
inhibition of brain COX-1 (but not COX-2) mitigated inflammation-induced depressive-like
behavior in mice through inhibition of PGE2 production/activity in the striatum. In our
study, chronic treatment with low-dose aspirin in rats reduced PGE2 levels in the frontal
cortex but not in the hypothalamus or hippocampus (data not shown). Thus, the fact that
low-dose aspirin preferentially inhibits COX-1 [25,161] does not necessarily mean that it
entirely lacks an anti-inflammatory effect. It is also possible that COX-independent anti-
inflammatory and non-inflammatory-associated mechanisms contribute to the beneficial
behavioral effects of low-dose aspirin. For example, some [163,164] (but not all [165,166])
studies report that, similarly to Li, aspirin confers autophagy-augmenting effects raising
the possibility that autophagy enhancement is a common mood-stabilizing mechanism of
Li and aspirin.

There are additional potential benefits of adding aspirin to the treatment of BD pa-
tients. First, as mentioned above, considering that BD patients have an increased risk
of mortality from cardiovascular disease [8,10,14], the antithrombotic effect of aspirin
may reduce mortality among these patients. However, it is worth emphasizing that the
efficacy and safety of aspirin for primary prevention of adverse cardiovascular events
in the general population—subjects without known cardiovascular diseases—remains
controversial [167–169] and necessitates further research. Second, aspirin was shown to
effectively improve Li-related sexual dysfunction in men with stable BD [131]. Third,
long-term use of aspirin has been associated with a reduced incidence of various types of
cancer [74,170–176].

5. Conclusions

In summary, we demonstrate that co-administration of low-dose aspirin with low-
dose Li mitigates typical renal side-effects of standard-dose Li while retaining the beneficial
behavioral effects of this enigmatic cation.
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