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Purpose: To propose a novel deep-learning-based auto-segmentation model for CTV
delineation in cervical cancer and to evaluate whether it can perform comparably well to
manual delineation by a three-stage multicenter evaluation framework.

Methods: An adversarial deep-learning-based auto-segmentation model was trained
and configured for cervical cancer CTV contouring using CT data from 237 patients. Then
CT scans of additional 20 consecutive patients with locally advanced cervical cancer were
collected to perform a three-stage multicenter randomized controlled evaluation involving
nine oncologists from six medical centers. This evaluation system is a combination of
objective performance metrics, radiation oncologist assessment, and finally the head-to-
head Turing imitation test. Accuracy and effectiveness were evaluated step by step. The
intra-observer consistency of each oncologist was also tested.

Results: In stage-1 evaluation, the mean DSC and the 95HD value of the proposed model
were 0.88 and 3.46 mm, respectively. In stage-2, the oncologist grading evaluation
showed the majority of AI contours were comparable to the GT contours. The average
CTV scores for AI and GT were 2.68 vs. 2.71 in week 0 (P = .206), and 2.62 vs. 2.63 in
week 2 (P = .552), with no significant statistical differences. In stage-3, the Turing imitation
test showed that the percentage of AI contours, which were judged to be better than GT
contours by ≥5 oncologists, was 60.0% in week 0 and 42.5% in week 2. Most oncologists
demonstrated good consistency between the 2 weeks (P > 0.05).
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Conclusions: The tested AI model was demonstrated to be accurate and comparable to
the manual CTV segmentation in cervical cancer patients when assessed by our three-
stage evaluation framework.
Keywords: deep-learning, auto-segmentation, evaluation, cervical cancer, radiotherapy, clinical target volume
INTRODUCTION

Cervical cancer (CC) remains one of the leading causes of
cancer-related deaths in women worldwide (1). The majority
of cervical cancer cases are diagnosed at the locally advanced
stage in developing countries (2). External beam radiotherapy
(EBRT) with concurrent chemotherapy followed by brachytherapy,
also known as radical radiotherapy (RT), is the standard treatment
for locally advanced cervical cancer (3) and has been shown to be
effective in decreasing the risk of pelvic and vaginal vault
recurrence (4).

Accurate and individualized clinical target volume (CTV)
definition is vitally important for the definitive treatment of CC
(5). During the past few years, a few high-performance deep-
learning models based on convolutional neural networks
(CNNs) have made tremendous progress and shown promise
to serve as excellent assistance for target segmentation (6–12).

A recent study has first applied a deep-learning-based method
called DpnUNet to CTV segmentation in cervical cancer. The
authors’ previous experimental results demonstrated that 88.65%
of the contours generated by DpnUNet were acceptable for
clinical usage (13). The mean dice similarity coefficient (DSC)
and the 95th Hausdorff distance (95HD) were 0.86 and 5.34 for
the delineated CTVs. However, there are still some glaring
deficits. First, performance metrics such as mean DSC and
95HD are objective and offer good reproducibility (14–17), but
do not incorporate physician’s judgment and may not effectively
evaluate for accuracy and applicability in a practical clinical
context. Second, although the subjective oncologists’ assessments
showed that most predicted contours were acceptable for clinical
usage when a head-to-head comparison was conducted between
manual and AI-generated contours in the same CT slice, the
DpnUNet model performed inferiorly. Therefore, it indicated
that the currently proposed models did not perform exactly
comparably well to manual delineations in clinical practice.
Moreover, it seems that the current evaluation system for
automatic segmentation models remains limited and insufficient.

Given the aforementioned reasons, a novel adversarial deep-
learning-based auto-segmentation model is hence proposed for
CTV delineation in cervical cancer. Then a challenging three-stage
multicenter randomized controlled evaluation system is designed
to directly validate the model and tominimize the inter‐ and intra-
radiotherapy; EBRT, external beam
e; ROIs, regions of interest; CNNs,
al path network; GT, ground truth
e; DICOM, digital imaging and
ropean Society for Radiotherapy and
cology Group; DSC, Dice similarity
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observer variability. This evaluation system is a combination of
objective performance metrics, subjective radiation oncologist
assessment, and finally, the Turing imitation test. Accuracy and
effectiveness were evaluated step by step.
MATERIALS AND METHODS

Network Architecture
CTVs are challenged to be evaluated with mathematical indicators
due to fuzzy boundaries and large variations among different
centers and observers. Inspired by a previously described work
(18), an adversarial training approach based on the typical
segmentation model is proposed to achieve similar performance
between CTVs delineated by the proposed model and the
oncologists. The overall architecture is shown in Figure 1.

The proposed model is based on DpnUNet (13), which
originated from the architecture of U-Net (19), but replaces all
the encoder and decoder components with DPN components.
Considering that the original DpnUNet is still underperforming
compared with manual delineation in clinical practice, an extra
convolutional layer is added at the end of DpnUNet, in which the
output channels are one and the kernel size is 1 × 1. A ResNet-10
with binary classification is used as the discriminator network (20).
Since the discriminator is trained to identify the input segmentation
generated by the model or delineated by oncologists, it will feedback
the results to the model to promote similarities between the
predicted CTVs and manual delineations.

The model was trained and tested using sets of CT data from
237 patients with locally advanced cervical cancer in our center
with a GTX 1080GPU. All data using oral and IV contrast were
constructed with a size of 512 × 512 pixels and acquired with a
Brilliance CT Big Bore (Philips Healthcare, Best, Netherlands).
The proposed model was trained over 50 circles to select the best
model according to the lowest validation loss score.

Data Acquisition
To perform the three-stage evaluation, CT scans of a separate set
of 20 new validation patients with locally advanced cervical
cancer undergoing intensity-modulated radiation therapy
(IMRT) were collected from November 2018 to December
2018 at the Peking Union Medical College Hospital. All
patients were diagnosed with FIGO stage IB1–IIIC1 and/or
node metastasis positive (N+) CC, treated with EBRT and
radical RT. The average age ± standard deviation of these
patients was 51.90 ± 12.63 years old.

CTV contours of 20 patients were redefined and re-delineated
manually by radiation oncologists following the updated
Radiation Therapy Oncology Group (RTOG) protocols
August 2021 | Volume 11 | Article 702270
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(21–23). The CTV contours included the whole cervix, uterus,
parametrium, vagina for 2 cm below GTV, and the elective nodal
volume. All the contours were first reviewed by two senior
radiation oncologists with more than 10 years of experience in
radiotherapy specialized in cervical cancer at the Peking Union
Medical College Hospital. To ensure the delineation quality
of the human-generated CTV, the delineated contours were
reviewed, modified, and approved collaboratively by a
radiation oncologist committee consisting of eight senior
oncologists at the Peking Union Medical College Hospital. The
dataset of CT scans of 20 patients was used as a testing set of the
proposed model to obtain artificial intelligence–generated
contouring (AI) for performance assessment, of which 10
patients were randomly selected by Fisher-Yates shuffle for
oncologist evaluation and the other 10 patients for the Turing-
like test.

The Three-Stage Multicenter Randomized
Controlled Evaluation
Stage 1: Performance Metrics
The flowchart of the three-level multicenter randomized
controlled evaluation is shown in Figure 2. During the first-
stage test, the Dice similarity coefficient (DSC) and the 95th
percentile Hausdorff distance (95HD) were used to quantify the
performance of the proposed model objectively.

The DSC was used to measure the spatial overlap between AI
and GT contours, which is defined in Eq. (1).

DSC (A,  B) =
2 A ∩ Bj j
Aj j + Bj j (1)
Frontiers in Oncology | www.frontiersin.org 3
Where A represents the volume of human-generated contour;
B is the volume of an AI contour; and A∩B is the intersection
volume that A and B have in common. The DSC value is between
0 and 1 (0 = no overlap, 1 = complete overlap).

The 95HD is defined as follows:

95HD(A, B) = max (h(A, B),  h (B, A),  95th) (2)

HD(A, B) = max(h(A, B), h(B, A)) = max(maxminjja� bjj, maxminj
b� aj j )j  a ∈ Ab ∈ B        b ∈ Ba ∈ A

(3)

||•||means the Euclidean norm of the points of A and B. The HD
in mm depicts the maximum mismatch between A and B. When
the HD value decreases, the overlap between A and B increases.
The mean and standard deviation were calculated.
Stage 2: Oncologist Evaluation
Ten cases from the testing set were randomly collected for
oncologist evaluation. Twenty slices from each case were
randomly extracted by Fisher-Yates shuffle, of which 10 slices
were randomly selected to show GT contours, and the others
were overlaid with AI contours. In total, 200 slices were obtained
(AI: 10 × 10 = 100 slices vs. GT: 10 × 10 = 100 slices) and then
randomly assigned to nine experienced radiation oncologists
from six different cancer centers with more than 10 years of
clinical experience in cervical cancer. The dataset of 200
randomized slices was evaluated by each oncologist slice by
slice. The contours were graded in four scores: 3 points (No
revision), 2 points (Minor revision), 1 point (Major revision),
and 0 points (Rejection). The rubric is shown in Table 1.
FIGURE 1 | The overall architecture of the proposed model.
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The steps are outlined as follows:

1. Data acquisition: Twenty slices containing CTV from 10
patients’ planning CT scans were randomly selected to
generate a CT dataset consisting of 200 axial slices.
Frontiers in Oncology | www.frontiersin.org 4
2. Segmentation: Both machine AI and human GT contours were
generated for each dataset. Ten slices of each patient were randomly
selected and overlaid with AI contours, while the other 10 slices
were overlaid with GT contours. The contour color of the two
groups was intentionally made the same for the blind test.
FIGURE 2 | The flowchart of the three-stage multicenter randomized controlled evaluation.
TABLE 1 | Criteria for the radiation oncologist evaluation.

Score Grade Criteria

3 No revision The segmentation is perfect and completely acceptable for treatment.
2 Minor revision The segmentation needs a few minor edits but has no significant clinical impact without correction.
1 Major revision The segmentation needs significant revision. Treatment planning should not proceed without contour correction.
0 Rejection The segmentation is unacceptable and needs to be redrawn.
August 2021 | Volume 11 | Article 702270
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3. Randomization: The 200 CT slices were randomized by
Fisher-Yates shuffle with an assigned unique ID so that the
study authors could later distinguish whether each contour
was an AI or GT.

4. Blind evaluation: The dataset of 200 randomized slices were
distributed to the nine radiation oncologists. Each slice was
scored from 0 to 3 blindly.

5. Consistency evaluation: After 2 weeks, the same dataset
assigned in a new random order was distributed to the nine
radiation oncologists for a second grading.

6. Analysis: The mean scores and the percentage of clinical
acceptance of the AI and GT groups were calculated.
Stage 3: The Turing Imitation Test
The Turing imitation test is a subjective head-to-head
comparison between GT- and AI-generated contours. In this
test, the participant was presented with two contours overlaid
simultaneously in the same CT slice, one of which was generated
by the AI. The radiation oncologist was requested to choose
which contour was better for clinical application. The steps are
outlined as follows:

1. Data acquisition: We randomly extracted 20 CTV
containing axial CT slices from each of the remaining 10
test patients to generate a 200-slice dataset.

2. Segmentation: For each slice, the AI and GT contours of
CTV were generated randomly in a different color (red or
green). The structure colors were randomized on a per-slice
basis so as not to bias the Turing imitation test.

3. Randomization: AI- and GT-generated CTV slices were
randomized by Fisher-Yates shuffle and anonymized to
facilitate the blind evaluation. Each slice was assigned a
unique ID so images could be de-anonymized later to
analyze.

4. Turing test: The dataset was distributed to the test team,
consisting of nine radiation oncologists from six different
centers. Each radiation oncologist was requested to compare
the AI and GT delineations and select the one that was more
suitable for clinical application. The evaluation time for each
slice was limited to 30 s to prevent the observer from seeking
additional visual clues regarding the source of the contour.

5. Consistency evaluation: After 2 weeks, the same dataset
assigned in a new random order and color was distributed
to the radiation oncologists for a new comparison.

6. Analysis: If the AI contours received a better evaluation, the
result would be considered positive. The positive rates of the
entire test set and of each oncologist were calculated.
Following the original Turing proposal (24), the threshold
of the overall positive result rate was set to 30%. Above that,
the AI model is considered to have passed the Turing
imitation test.
Statistical Analysis
The mean and standard deviation of DSC and 95HD were
calculated. The Wilcoxon matched-pairs signed-rank test was
Frontiers in Oncology | www.frontiersin.org 5
used to compare the AI and GT contours in the oncologist
evaluation and the Turing imitation test. The score difference
between AI and GT contours evaluated by each oncologist was
performed by Mann-Whitney U test. The Wilcoxon paired
signed-rank test was used to compare the agreement of the
oncologist evaluation between 2 weeks for each oncologist.
The McNemar test was used to compare the consistency of the
Turing test between 2 weeks. Statistical significance was set at
two-tailed P <.05.
RESULTS

Stage 1: Quantitative Performance Metrics
All slices of the 20 testing patients were evaluated with the
quantitative performance metrics, which is shown and compared
with DpnUNet in Table 2. The DSC and 95HD values of the
proposed model were 0.88 ± 0.03 and 3.46 ± 1.88
mm, respectively.

Stage 2: Oncologist Evaluation
Table 3 shows oncologist evaluation results of CTV contours.
Score ≥2 was defined as suitable for clinical application. Using
these scoring criteria for contour evaluation, most CTV contours
were clinically acceptable by all the oncologists. For AI contours,
the percentage of clinically acceptable scores was 97.4%,
compared to the 98.3% of GT contours. We also compared AI
and GT scores with a separate Mann-Whitney test for each
oncologist and found that there was no significant difference
between the week 0 timepoint and the after-2-weeks timepoint.
Figure 3 shows the CTV scores for AI and GT contours. The
overall average scores for AI and GT were 2.68 vs. 2.71 in week 0
(P = .206) and 2.62 vs. 2.63 in week 2 (P = .552), respectively. The
intra-observer consistency analyses between 2 weeks were
performed by the Wilcoxon paired signed-rank test. It was
found that the consistency of two oncologists was poor, while
the others had good consistency between 2 weeks (P >.05).

Stage 3: The Turing Imitation Test
When considering physician selection of the AI contour as
preferred over the GT contour as a positive result, the overall
positive rate in week 0 was 54.17% compared with 45.83%
negative rate (P = .139), while in week 2 the positive rate was
54% vs. the negative rate of 46% (P = .128), which demonstrated
the proposed deep machine learning model performed equally
well or even better than human delineation. Furthermore, the
consistency evaluation was performed by repeating the same
dataset in different random order and colors to the test team after
2 weeks. The results are shown in Table 4. Subclass analysis was
performed to evaluate individual oncologists and CT slices. The
results showed that six slices (3.0% in week 0) of AI contours
were scored to be better than GT by all the oncologists. The
percentage of AI contours that were approved to be better by ≥5
oncologists was 60.0% in week 0 and 42.5% in week 2. The
distribution map is shown in Figure 4. Sample CTV delineations
are presented in Figure 5.
August 2021 | Volume 11 | Article 702270
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TABLE 2 | The comparison of DSC and 95HD value of our proposed model and DpnUNet.

DpnUNet

DSC 95HD (mm)

0.84 2.09
0.84 2.38
0.89 3.61
0.90 1.85
0.75 8,84
0.81 3.10
0.80 8.10
0.93 2.45
0.83 3.85
0.86 3.41
0.75 6.17
0.90 3.48
0.84 7.92
0.89 2.33
0.94 1.97
0.87 2.06
0.82 2.49
0.92 2.88
0.94 2.26
0.84 2.25

0.86 ± 0.06 3.67 ± 2.22

C G H I

GT GT AI GT AI GT

37% 94% 82% 77% 45% 37%
56% 6% 18% 23% 45% 57%
6% 0 0 0 10% 6%
1% 0 0 0 0 0%
2.29 2.94 2.82 2.77 2.35 2.31

0 0.382 0.494

37% 96% 33% 33% 50% 42&
54% 4% 62% 64% 39% 56%
9% 0 5% 3% 7% 2%
0 0 0 0 4% 0

2.28 2.96 2.28 2.3 2.35 2.40
9 0.846 0.728

0.90 0.491 0.000 0.170
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Test Patient (No.)

Stage 2 patient cohort :
Oncologist Evaluation

1
2
3
4
5
6
7
8
9
10

Stage 3 patient cohort :
The Turing Test

11
12
13
14
15
16
17
18
19
20

Mean ± STD

TABLE 3 | Graded oncologist evaluation for AI and GT contours.

Oncologist A B

Score AI GT AI GT AI

3 89% 97% 93% 95% 30%
2 11% 3% 7% 5% 61%
1 0 0 0 0 9%
0 0 0 0 0 0
Mean Score 2.89 2.96 2.93 2.95 2.21
P value 0.061 0.553 0.282

3 93% 92% 88% 93% 29%
2 7% 8% 12% 7% 63%
1 0 0 0 0 8%
0 0 0 0 0 0
Mean Score 2.93 2.92 2.88 2.93 2.21
P value 0.789 0.229 0.352
Consistency (P value) 0.782 0.108

P < 0.05, the results are statistically significant.
Proposed Model

DSC 95HD (mm)

0.9 1.95
0.91 2.34
0.9 3.68
0.9 1.95
0.83 7.68
0.88 2.98
0.84 7.07
0.9 2.55
0.89 2.83
0.88 3.35
0.85 5.1
0.91 2.83
0.81 7.76
0.91 2.24
0.91 2.21
0.89 2.24
0.9 2.83
0.89 2.45
0.93 2.25
0.85 2.93

0.88 ± 0.03 3.46 ± 1.88

Week 0

D E F

AI GT AI GT AI GT AI

71% 74% 54% 57% 75% 85% 94%
28% 25% 46% 42% 25% 15% 6%
1% 1% 0 1% 0 0 0
0 0 0 0 0 0 0

2.70 2.73 2.54 2.56 2.75 2.85 2.9
0.640 0.719 0.078 1.00

Week 2
78% 77% 42% 50% 78% 69% 94%
22% 21% 57% 50% 22% 31% 5%
0 1% 1% 0 0 0 1%
0 0 0 0 0 0 0

2.78 2.74 2.41 2.5 2.78 2.69 2.9
0.940 0.230 0.150 0.50

0.064 0.007 0.118
7
4

3
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DISCUSSION
Segmentation of CTV is an essential step for successful radiotherapy
delivery (16). However, manual delineation is time-consuming and
Frontiers in Oncology | www.frontiersin.org 7
subjective, with considerable inter- and intra-observer variability
(25–28). Therefore, accurate and consistent automated
segmentation methods are highly desirable and useful for
pretreatment radiotherapy planning. Automatic segmentation
techniques especially based on CNN models have made
significant progress with increasing reliability and accuracy in
recent years, thus potentially relieving radiation oncologists from
the time-cost of contouring. To the authors’ knowledge, very few
studies were reported on the automatic delineation of the CTV (29–
32) due to the ambiguous and blurred boundaries between the CTV
and normal tissues, the potential for tumor spread or subclinical
diseases in the CT images, and the inter-observer variability in
recognition of anatomical structures. The current most common
approach to evaluate automatic delineation of the CTV is to
compare with GT contours using quantitative measures such as
DSC and HD (33, 34). However, this mathematical evaluation is
basic and depends only on the geometrical properties of the organ
being delineated. This approach does not incorporate clinical
judgment and may not adequately extract the main characteristics
and the core elements of the image.

Given the clinical application, an authors’ previous study
added subjective oncologist evaluation to the proposed model,
A B

FIGURE 3 | Average scores for AI and GT by the nine oncologists. (A) Week 0. (B) Week 2.
TABLE 4 | The results of the Turing-like imitation test.

Oncologist Week 0 Week 2 Consistency (P value)

Positive Negative Positive Negative

A 130 (65%) 70 (35%) 137 (68.5%) 63 (31.5%) 0.296
B 92 (46%) 108 (54%) 100 (50%) 100 (50%) 0.461
C 106 (53%) 94 (47%) 116 (58%) 84 (42%) 0.134
D 107 (53.5%) 93 (46.5%) 100 (50%) 100 (50%) 0.510
E 98 (49%) 102 (51%) 114 (57%) 86 (43%) 0.034
F 111 (55.5%) 89 (44.5%) 102 (51%) 98 (49%) 0.508
G 122 (61%) 78 (39%) 117 (58.5%) 83 (41.5%) 0.712
H 119 (59.5%) 81 (40.5%) 95 (47.5%) 105 (52.5%) 0.101
I 90 (45%) 110 (55%) 89 (44.5%) 111(55.5%) 0.815
P value 0.139 0.128
August 2021 | Volu
P < 0.05, results are statistically significant.
FIGURE 4 | The distribution map of the positive results.
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and the result showed that more than 88% of the slices predicted
from DpnUNet were evaluated as “No revision” or “Minor
revision” (13). However, when radiation oncologists were
presented with AI and GT contours overlaid simultaneously in
the same CT slice, the GT contour was always the one chosen to
be better. Therefore, a novel auto-segmentation model that
indeed performs comparably well or even better to manual
delineation for CTV delineation is desirable. Moreover, the
current evaluating performance of segmentation, particularly
CTV segmentation, can be challenging due to the large
variations among different centers and observers (35, 36).
Therefore, a three-stage randomized controlled evaluation
framework was proposed, combining the three elements of
traditional performance metrics, oncologist evaluation, and the
Turing imitation test, for a comprehensive assessment of the
proposed model in cervical cancer CTV segmentation.

During stage-1 evaluation, the mean DSC value of CTV of the
proposed model was 0.88, which was higher compared with the
acceptable threshold of 0.80 to 0.86 used in other studies (13, 37–
39). The average 95HD value was 3.46 mm compared to 5.34 mm
by the DpnUNet model (13). The results indicated a strong
concordance between the proposed automatic model and human
experts for CTV contouring.

In stage-2 evaluation, a multicenter randomized controlled
evaluation involving nine radiation oncologists from six different
centers was designed to examine the model’s clinical utility and
generalization. The anonymized CT slices were randomly
distributed with AI or GT contours to experienced radiation
oncologists for assessment. The choice of a random design
instead of using entire connected slices is mainly because AI
sometimes has obvious characteristics at certain levels, especially
at the beginning and the end, which do not affect the accuracy of
target delineation but make it more easy to be distinguished.
Moreover, the evaluation is more clinically relevant and
minimizes assessment bias as oncologists are blinded to the
source of the contours. The results showed that our proposed
Frontiers in Oncology | www.frontiersin.org 8
model was highly acceptable for clinical application and
treatment. There was no significant difference in physician
acceptability ratings between scores of AI and GT contours,
which means our model can provide consistent segmentation
and performed well with good agreement to the manual
contours. However, there were still 2.6% of cases where the AI
contours were judged by some oncologists to require major
revision. We retrospectively analyzed these outlier cases and
found that most of them were in the middle level of the pelvic
cavity; thus, the ROIs had very unclear boundaries and massive
diversity of sizes, shapes with low contrast to the rectum, bladder,
and small intestines. The circumstances mentioned above limit
the generalizability of the AI model, and therefore more caution
is warranted.

In 1950, Alan Turing proposed an influential test for how to
evaluate artificial intelligence: an imitation is successful when we
cannot distinguish it from the real thing (24). Here, this
analogous logic was applied to the artificial segmentation
technology, and a similar Turing imitation test was proposed.
The variant of the Turing imitation test used in this study is a
randomized blinded evaluation. In contrast with the stage-2 task,
in which evaluators viewed individual stimuli and made
categorical judgments, the radiation oncologists were presented
with AI and GT contour masks on the same slice and were
requested to choose which was better. If the positive rate of AI is
more than 30%, then the AI model was considered to have passed
the test. It is a straightforward head-to-head comparison, which
compares two contours in the exact same condition to minimize
the interference factors such as scanning conditions, anatomical
variations, and severity of disease in different patients. As shown
in Table 4, the segmentation model passed the Turing test with
overall positive rates much higher than 30%. The overall positive
rate was 54.17% in week 0 and 54% in week 2, which
demonstrated that the AI segmentation model performed
equally well as humans (P = .139, P = .128). Moreover,
correlations were observed between the objective and subjective
FIGURE 5 | (A) Sample CTV where the AI contour was approved by all the oncologists. AI contours in green line. GT contours in red line. (B) Sample CTV where
the GT contour was approved by all the oncologists. AI contours in green line. GT contours in red line.
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measures. Those with lower DSC and 95HD values were also
more likely to be flagged as requiring revision or inferior
performance during the subjective evaluation.

Subjective assessment still has drawbacks. Oncologists
involved in this study stated that they might change their
opinion of the grading score if they viewed it at a later point,
and may not be able to definitively decide between two contours
if they showed a high degree of overlap. Therefore, the intra-
observer consistency analyses between 2 weeks were performed
during stage-2 and stage-3 evaluation. Most oncologists were
found to maintain good consistency between 2 weeks without
significant difference. Considering that good scores or positive
rates could have resulted from a range of factors affecting how the
contours were evaluated, a distribution map across all images
involved in the Turing imitation test was additionally generated,
to evaluate the number of oncologists who consistently thought
AI contours were better. The results showed that the percentage
of AI contours to be better than GT by ≥5 oncologists was 60.0%
in week 0 and 42.5% in week 2, which further demonstrated the
excellent performance of the proposed segmentation model.
CONCLUSION

In this study, a novel deep-learning-based CNN model for fully
automatic and accurate CTV segmentation in cervical cancer was
proposed. Then a comprehensive three-stage randomized
controlled evaluation framework was performed to validate the
model. This evaluation system is a combination of objective and
subjective evaluation and can diminish the risk of bias and
enhance real-world clinical relevance compared to the most
commonly used evaluation method of applying performance
metrics alone. The tested AI model was demonstrated to be
accurate and comparable to the manual CTV segmentation in
cervical cancer patients. Furthermore, this study provided
guidelines for each step, which can be referred to by other
centers according to their sample size limitation. While this
study focuses only on cervical cancer, the methodology and
general learnings may translate to other tumor sites. Moreover,
this comprehensive assessment of contouring performance may
also be referenced as a base framework for evaluating the clinical
utility of automatic segmentation methods in the future.
Frontiers in Oncology | www.frontiersin.org 9
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.
ETHICS STATEMENT

The evaluation was reviewed and approved by the Peking Union
Medical College Hospital Institutional Review board. The
patients/participants provided their written informed consent
to participate in this study. Written informed consent was
obtained from the individual(s) for the publication of any
potentially identifiable images or data included in this article.
AUTHOR CONTRIBUTIONS

FZ and JQ had full access to all of the data in the study and take
responsibility for the integrity of the data and the accuracy of the
data analysis. Concept and design: FZ, JQ, ZKL, WC. Acquisition,
analysis, or interpretation of data: HG, HZ, JS, XL, JG, JY, WW,
ZYL, YZ, YYC, JD. AI model design: SW, QC, YC. Drafting of the
manuscript: WC, ZKL. Critical revision of the manuscript for
important intellectual content: AL, RL. All authors contributed to
the article and approved the submitted version.
FUNDING

This work was funded by the following grants from the Non-profit
Central Research Institute Fund of Chinese Academy of Medical
Sciences (grant number 2019XK320014). FZ takes responsibility for
the integrity of the data and the accuracy of the data analysis.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fonc.2021.702270/
full#supplementary-material
REFERENCES
1. Koh WJ, Abu-Rustum NR, Bean S, Bradley K, Campos SM, Cho KR, et al.

Cervical Cancer, Version 3.2019, NCCN Clinical Practice Guidelines in
Oncology. J Natl Compr Cancer Network (2019) 17:64–84. doi: 10.6004/
jnccn.2019.0001

2. Chibwesha CJ, Stringer JSA. Cervical Cancer as a Global Concern:
Contributions of the Dual Epidemics of HPV and HIV. Jama (2019)
322:1558–60. doi: 10.1001/jama.2019.16176

3. Peters WA, Liu PY, Barrett RJ, Stock RJ, Monk BJ, Berek JS, et al. Concurrent
Chemotherapy and Pelvic Radiation Therapy Compared With Pelvic
Radiation Therapy Alone as Adjuvant Therapy After Radical Surgery in
High-Risk Early-Stage Cancer of the Cervix. J Clin Oncol (2000) 18:1606–13.
doi: 10.1200/JCO.2000.18.8.1606
4. Han K, Milosevic M, Fyles A, Pintilie M, Viswanathan AN. Trends in the
Utilization of Brachytherapy in Cervical Cancer in the United States. Int J
Radiat Oncol Biol Phys (2013) 87:111–9. doi: 10.1016/j.ijrobp.2013.05.033

5. Monk BJ, Tewari KS, Koh WJ. Multimodality Therapy for Locally Advanced
Cervical Carcinoma: State of the Art and Future Directions. J Clin Oncol
(2007) 25:2952–65. doi: 10.1200/JCO.2007.10.8324

6. Sarıgül M, Ozyildirim BM, Avci M. Differential Convolutional Neural
Network. Neural Networks (2019) 116:279–87. doi: 10.1016/j.neunet.
2019.04.025

7. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al.
A Guide to Deep Learning in Healthcare. Nat Med (2019) 25:24–9. doi:
10.1038/s41591-018-0316-z

8. Lin L, Dou Q, Jin YM, Zhou GQ, Tang YQ, ChenWL, et al. Deep Learning for
Automated Contouring of Primary Tumor Volumes by MRI for
August 2021 | Volume 11 | Article 702270

https://www.frontiersin.org/articles/10.3389/fonc.2021.702270/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.702270/full#supplementary-material
https://doi.org/10.6004/jnccn.2019.0001
https://doi.org/10.6004/jnccn.2019.0001
https://doi.org/10.1001/jama.2019.16176
https://doi.org/10.1200/JCO.2000.18.8.1606
https://doi.org/10.1016/j.ijrobp.2013.05.033
https://doi.org/10.1200/JCO.2007.10.8324
https://doi.org/10.1016/j.neunet.2019.04.025
https://doi.org/10.1016/j.neunet.2019.04.025
https://doi.org/10.1038/s41591-018-0316-z
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. AI CTV Contouring: Turing Test
Nasopharyngeal Carcinoma. Radiology (2019) 291:677–86. doi: 10.1148/
radiol.2019182012

9. Lustberg T, van Soest J, Gooding M, Peressutti D, Aljabar P, van der Stoep J,
et al. Clinical Evaluation of Atlas and Deep Learning Based Automatic
Contouring for Lung Cancer. Radiother Oncol (2018) 126:312–7. doi:
10.1016/j.radonc.2017.11.012

10. Ahn SH, Yeo AU, Kim KH, Kim C, Goh Y, Cho S, et al. Comparative Clinical
Evaluation of Atlas and Deep-Learning-Based Auto-Segmentation of Organ
Structures in Liver Cancer. Radiat Oncol (2019) 14:213. doi: 10.1186/s13014-
019-1392-z

11. Ayyalusamy A, Vellaiyan S, Subramanian S, Ilamurugu A, Satpathy S,
Nauman M, et al. Auto-Segmentation of Head and Neck Organs at Risk in
Radiotherapy and Its Dependence on Anatomic Similarity. Radiat Oncol J
(2019) 37:134–42. doi: 10.3857/roj.2019.00038

12. Kim N, Chang JS, Kim YB, Kim JS. Atlas-Based Auto-Segmentation for
Postoperative Radiotherapy Planning in Endometrial and Cervical Cancers.
Radiat Oncol (2020) 15:106. doi: 10.1186/s13014-020-01562-y

13. Liu Z, Liu X, Guan H, Zhen H, Sun Y, Chen Q, et al. Development and
Validation of a Deep Learning Algorithm for Auto-Delineation of Clinical
Target Volume and Organs at Risk in Cervical Cancer Radiotherapy.
Radiother Oncol (2020) 153:172–9. doi: 10.1016/j.radonc.2020.09.060

14. van Rooij W, Dahele M, Ribeiro Brandao H, Delaney AR, Slotman BJ,
Verbakel WF. Deep Learning-Based Delineation of Head and Neck Organs
at Risk: Geometric and Dosimetric Evaluation. Int J Radiat Oncol Biol Phys
(2019) 104:677–84. doi: 10.1016/j.ijrobp.2019.02.040

15. van der Veen J, Willems S, Deschuymer S, Robben D, Crijns W, Maes F, et al.
Benefits of Deep Learning for Delineation of Organs at Risk in Head and Neck
Cancer. Radiother Oncol (2019) 138:68–74. doi: 10.1016/j.radonc.2019.05.010

16. Men K, Zhang T, Chen X, Chen B, Tang Y, Wang S, et al. Fully Automatic and
Robust Segmentation of the Clinical Target Volume for Radiotherapy of
Breast Cancer Using Big Data and Deep Learning. Phys Med (2018) 50:13–9.
doi: 10.1016/j.ejmp.2018.05.006

17. Men K, Chen X, Zhang Y, Zhang T, Dai J, Yi J, et al. Deep Deconvolutional
Neural Network for Target Segmentation of Nasopharyngeal Cancer in
Planning Computed Tomography Images. Front Oncol (2017) 7:315. doi:
10.3389/fonc.2017.00315

18. Moeskops P, Veta M, Lafarge MW, Eppenhof KAJ, Pluim JPW. Adversarial
Training and Dilated Convolutions for Brain MRI Segmentation In: Deep
Learning in Medical Image Analysis and Multimodal Learning for Clinical
Decision Support. Springer: Cham. (2017) p. 56–64. doi: 10.1007/978-3-319-
6755897

19. Norman B, Pedoia V, Majumdar S. Use of 2D U-Net Convolutional Neural
Networks for Automated Cartilage and Meniscus Segmentation of Knee MR
Imaging Data to Determine Relaxometry and Morphometry. Radiology (2018)
288:177–85. doi: 10.1148/radiol.2018172322

20. Zhou LQ, Wu XL, Huang SY, Wu GG, Ye HR, Wei Q, et al. Lymph Node
Metastasis Prediction From Primary Breast Cancer US Images Using Deep
Learning. Radiology (2020) 294:19–28. doi: 10.1148/radiol.2019190372

21. Harris VA, Staffurth J, Naismith O, Esmail A, Gulliford S, Khoo V, et al.
Consensus Guidelines and Contouring Atlas for Pelvic Node Delineation in
Prostate and Pelvic Node Intensity Modulated Radiation Therapy. Int J Radiat
Oncol Biol Phys (2015) 92:874–83. doi: 10.1016/j.ijrobp.2015.03.021

22. Lim K, Small W Jr, Portelance L, Creutzberg C, Jürgenliemk-Schulz IM,
Mundt A, et al. Consensus Guidelines for Delineation of Clinical Target
Volume for Intensity-Modulated Pelvic Radiotherapy for the Definitive
Treatment of Cervix Cancer. Int J Radiat Oncol Biol Phys (2011) 79:348–55.
doi: 10.1016/j.ijrobp.2009.10.075

23. Small WJr., Bosch WR, Harkenrider MM, Strauss JB, Abu-Rustum N,
Albuquerque KV, et al. NRG Oncology/RTOG Consensus Guidelines for
Delineation of Clinical Target Volume for Intensity Modulated Pelvic
Radiation Therapy in Postoperative Treatment of Endometrial and Cervical
Cancer: an Update. Int J Radiat Oncol Biol Phys (2021) 109:413–24.
doi: 10.1016/j.ijrobp.2020.08.061

24. Turing AM. Computing Machinery and Intelligence. Mind (1950) 433–60.
doi: 10.1093/mind/LIX.236.433

25. Keenan LG, Rock K, Azmi A, Salib O, Gillham C, McArdle O. An Atlas to Aid
Delineation of Para-Aortic Lymph Node Region in Cervical Cancer: Design
Frontiers in Oncology | www.frontiersin.org 10
and Validation of Contouring Guidelines. Radiother Oncol (2018) 127:417–22.
doi: 10.1016/j.radonc.2018.02.013

26. Small WJr., Mell LK, Anderson P, Creutzberg C, De Los Santos J, Gaffney D,
et al. Consensus Guidelines for Delineation of Clinical Target Volume for
Intensity-Modulated Pelvic Radiotherapy in Postoperative Treatment of
Endometrial and Cervical Cancer. Int J Radiat Oncol Biol Phys (2008)
71:428–34. doi: 10.1016/j.ijrobp.2007.09.042

27. Apolle R, Appold S, Bijl HP, Blanchard P, Bussink J, Faivre-Finn C, et al.
Inter-Observer Variability in Target Delineation Increases During Adaptive
Treatment of Head-and-Neck and Lung Cancer. Acta Oncol (2019) 58:1378–
85. doi: 10.1080/0284186X.2019.1629017

28. Bø HK, Solheim O, Jakola AS, Kvistad KA, Reinertsen I, Berntsen EM. Intra-
Rater Variability in Low-Grade Glioma Segmentation. J Neuro-oncol (2017)
131:393–402. doi: 10.1007/s11060-016-2312-9

29. Larsson R, Xiong JF, Song Y, Ling-Fu, Chen YZ, Xiaowei X, et al. Automatic
Delineation of the Clinical Target Volume in Rectal Cancer for Radiation
Therapy Using Three-Dimensional Fully Convolutional Neural Networks.
Annu Int Conf IEEE Eng Med Biol Soc (2018) 2018:5898–901. doi: 10.1109/
EMBC.2018.8513506

30. Song Y, Hu J, Wu Q, Xu F, Nie S, Zhao Y, et al. Automatic Delineation of the
Clinical Target Volume and Organs at Risk by Deep Learning for Rectal
Cancer Postoperative Radiotherapy. Radiother Oncol (2020) 145:186–92. doi:
10.1016/j.radonc.2020.01.020

31. Shusharina N, Söderberg J, Edmunds D, Löfman F, Shih H, Bortfeld T.
Automated Delineation of the Clinical Target Volume Using Anatomically
Constrained 3D Expansion of the Gross Tumor Volume. Radiother Oncol
(2020) 146:37–43. doi: 10.1016/j.radonc.2020.01.028

32. Liu Z, Liu X, Xiao B, Wang S, Miao Z, Sun Y, et al. Segmentation of Organs-at-
Risk in Cervical Cancer CT Images With a Convolutional Neural Network.
Phys Med (2020) 69:184–91. doi: 10.1016/j.ejmp.2019.12.008
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