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Abstract

Background: Estimation of functional connectivity in gene sets derived from genome-wide or other biological
experiments is one of the essential tasks of bioinformatics. A promising approach for solving this problem is to
compare gene networks built using experimental gene sets with random networks. One of the resources that make
such an analysis possible is CrossTalkZ, which uses the FunCoup database. However, existing methods, including
CrossTalkZ, do not take into account individual types of interactions, such as protein/protein interactions, expression
regulation, transport regulation, catalytic reactions, etc., but rather work with generalized types characterizing the
existence of any connection between network members.

Results: We developed the online tool FunGeneNet, which utilizes the ANDSystem and STRING to reconstruct gene
networks using experimental gene sets and to estimate their difference from random networks. To compare the
reconstructed networks with random ones, the node permutation algorithm implemented in CrossTalkZ was taken
as a basis. To study the FunGeneNet applicability, the functional connectivity analysis of networks constructed for
gene sets involved in the Gene Ontology biological processes was conducted. We showed that the method
sensitivity exceeds 0.8 at a specificity of 0.95. We found that the significance level of the difference between gene
networks of biological processes and random networks is determined by the type of connections considered
between objects. At the same time, the highest reliability is achieved for the generalized form of connections that
takes into account all the individual types of connections. By taking examples of the thyroid cancer networks and
the apoptosis network, it is demonstrated that key participants in these processes are involved in the interactions
of those types by which these networks differ from random ones.

Conclusions: FunGeneNet is a web tool aimed at proving the functionality of networks in a wide range of sizes of
experimental gene sets, both for different global networks and for different types of interactions. Using examples of thyroid
cancer and apoptosis networks, we have shown that the links over-represented in the analyzed network in comparison
with the random ones make possible a biological interpretation of the original gene/protein sets. The FunGeneNet web
tool for assessment of the functional enrichment of networks is available at http://www-bionet.sscc.ru/fungenenet/.
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Background
At present, the reconstruction of molecular genetic net-
works (gene networks) is one of the most widely used
approaches for studying the mechanisms of the func-
tioning of complex biological processes. The use of this
approach is often a necessary requirement for solving
many problems in the field of biology, medicine, and
pharmacology, among others [1–7].
Around the world, many databases containing molecu-

lar genetic networks describing metabolic processes, dis-
eases, phenotypic traits, etc. have been developed – for
example, KEGG PATHWAY [8], BioCyc [9], BioGRID
[10] and IntAct [11].
There are systems that allow the reconstruction of

gene networks for a given set of genes/proteins including
FunCoup [12], STRING [13], Pathway Studio [14], In-
genuity Pathway Analysis [15], PINA [16], GeneMANIA
[17] and ReactomeFIViz [18]. These systems use various
information sources on interactions of molecular genetic
objects, including scientific publications and factual da-
tabases. FunCoup is one such system containing more
than 37 million interactions that include mRNA/protein
co-expression, protein–protein interaction, similarity by
phylogenetic profile, binding of shared transcription fac-
tors, sub-cellular co-localization and others. STRING is
another example of such systems, containing informa-
tion about protein–protein associations, information
obtained from curated databases, predictions (gene
neighborhood, gene fusions, gene co-occurrence), text-
mining, co-expression, etc.
Earlier, we developed the ANDSystem, which has a

wide range of tools for the reconstruction of associative
gene networks [19]. The knowledge base of ANDSystem
contains more than 14 million interactions between pro-
teins, genes, metabolites, microRNAs, diseases, bio-
logical processes, etc. Information on interactions was
extracted from PubMed abstracts using a text-mining
method and was also extracted from various molecular
genetic databases. Interactions were subdivided into
physical interactions, catalytic reactions, chemical trans-
formations, associations, regulation of expression, activ-
ity, transport/release, stability/degradation, etc. The
ANDSystem was used to solve a wide range of tasks re-
lated to the reconstruction of gene networks – in par-
ticular, for the interpretation of data of proteomic
experiments [20–22], the analysis of the tissue-specific
effect of gene knockout [23], the analysis of the hepatitis
C virus interaction [24, 25], the identification of genes
susceptibility to tuberculosis [26] and analysis of mo-
lecular mechanisms of comorbidity of diseases [27, 28].
Another well-known approach to the study of func-

tional linkages in gene sets is analysis of over-
representation of the Gene Ontology (GO) biological
processes, KEGG pathways and diseases. There are

several computer tools aimed at facilitating this task,
such as DAVID [29], BINGO [30], GO-function [31] and
others. These programs are widely used to interpret the
experimental sets of genes obtained in transcriptome
analysis, genome-wide association studies, mass spectro-
metric experiments, etc. [22, 32–35]. However, such
methods do not take into account a structure of the net-
works, which describe interactions between genes. Due
to this, for the last ten years, several methods allowing
to perform an analysis of gene networks were developed
[36–39]. One such method is EnrichNet [37], which uses
a random walk procedure for the estimation of the dis-
tance between experimentally obtained and predefined
functional gene sets inside a network. Comparison of
gene networks with random networks is an alternative
approach for determining functional connectivity in ex-
perimental sets of genes/proteins [40–42]. In the work
of McCormack et al. [43], a stand-alone tool, Cross-
TalkZ, was developed to assess the statistical significance
of inter and intra-connectivity (crosstalk enrichment) be-
tween or within gene sets. CrossTalkZ uses the FunCoup
database for the reconstruction of the gene networks,
while random networks are generated by the permuta-
tions of all edges or nodes in a global network [12].
In this paper, we describe a web tool that allows evalu-

ation of the functional relationship between genes using
the STRING and ANDSystem databases, which differ
from FunCoup by types of interactions between objects
as well as information sources. Based on the analysis of
the gene sets involved in GO biological processes, it is
shown that the sensitivity of the method exceeds 0.8 at a
specificity of 0.95 for both STRING and the ANDSys-
tem. This study identified that the significance of the dif-
ference between gene networks of biological processes
and random networks depends on the type of interac-
tions (protein-protein interaction, co-expression, expres-
sion regulation, etc.). In particular, networks constructed
for apoptosis (GO), including separate types of links,
such as “activity and transport regulation”, “catalysis”,
“co-expression” and “interaction”, were statistically sig-
nificantly different from random networks. However, as
a rule, the greatest reliability was observed for networks
that included not individual types of links, but a general
type of connection – that is, a type of connection in
which two objects are considered to be connected if
there is a link between them of any particular form. The
FunGeneNet web tool allows users to upload a list of
human gene/protein identifiers as an input. The output
data is an associative gene network built either by the
ANDSystem or STRING, as well as the evaluation of
network functionality, expressed as the significance of
the network enrichment with links of a given type. Fun-
GeneNet is available at URL: http://www-bionet.sscc.ru/
fungenenet/.
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Implementation
FunGeneNet algorithm
In the first step, the network is automatically recon-
structed for the input list of genes/proteins, using the
ANDSystem or STRING base of knowledge. The net-
works used by FunGeneNet are subnetworks obtained
from of the global ANDSystem or STRING networks. In
the STRING networks, vertices correspond only to the
proteins, linked by a generalized type of interaction. In
the ANDSystem, genes and proteins are represented by
separate objects, which can be linked by various types of
interactions, including protein-protein interactions,
protein-DNA interactions, regulation of gene expression,
activity regulation, etc. In the next step, a filtration of
the subnetwork by user-specified interaction type is per-
formed. There are two operation modes in FunGeneNet.
The first mode is applied when a user selects “all types”
for the interaction. In this case, all interactions presented
in the FunGeneNet network are considered as a general-
ized type of interaction. The second mode is used when
a user selects a specified type of interaction (for ex-
ample, “activity regulation and transport”, “catalysis”,
etc.). In this case, the system employs only interactions
of the specified type, while any others are removed from
the network. It should be noted that in the case of
STRING, only the generalized interactions are used.
The method for assessing the functional enrichment

consists of comparing the number of links between the
analyzed and random networks. For this purpose, the
connectivity of 100 random networks is calculated and
the parameters of the normal distribution are evaluated
for this sample to use a one-sided single-sample t-test
(pnorm function of R language). In the absence of con-
nections in both the analyzed and all random networks
(edgeless networks), the p-value is taken to be 0.5, since
in the case of a small non-zero number of edges in the
sample of random networks, the p-value for an edgeless
network is close to 0.5.
For the reconstruction of the random networks we used

the node permutation approach proposed in [44]. The
main difference of our algorithm is that labels of vertices
were swapped in the global network, not in the local one.
Other randomization methods were not considered be-
cause they are significantly inferior in performance to the
method of node permutation and do not yield a significant
gain in accuracy [43]. Performance in this study was crit-
ical because FunGeneNet is a web-application.
Random networks were built according to the follow-

ing rules: (1) For each protein of the analysed set, the
vertex degree in the global network was counted and the
set of proteins of the global network with the same ver-
tex degree was determined; (2) One protein was ran-
domly selected from this set, which served as the
starting vertex for the reconstruction of the random

network; (3) The network reconstruction for the starting
vertices was performed as for the network being analyzed.
Thus, each random network contained the same num-

ber and type of vertices as the original network, and the
link types were also the same, while the number of links
in random networks and the original were different due
to permutations.
Restriction (1) on the degrees of selectable vertices in

the global network is aimed at reducing the study bias de-
scribed by Jensen et al. [45] as a tendency to study, in vari-
ous aspects, primarily well-studied molecules. In this
connection, we assume that vertices with relatively large
degrees (hubs) accumulate more false-positive interactions
than vertices with lower degrees. As can be seen from
Fig. 1, the vertex degrees in the global gene network can
be roughly described by a power law with the coefficient
γ = 1.39. Therefore, the probability of choosing at random
a vertex with a small degree is significantly higher than
the probability of choosing a hub. Thus, if in the studied
group of genes/proteins the hubs predominate for some
reason, then such a network is likely to be more con-
nected than the networks with randomly selected genes.
The presence of well-studied genes in the analyzed sample
can lead to a systematic error in random sampling, which
was also noted in other works [40, 43].

FunGeneNet input data
A list of protein IDs for the following databases is sup-
plied to the input: UniProt, Ensemble. The program also
understands NCBI gene identifiers. In a case where
genes are fed to the input of the tool, the list of encoded

Fig. 1 Distribution of vertices in the ANDSystem global human gene
network by vertex degree. Black colour identifies the trend line of
the number of vertices f(x), where x is the vertex degree. R2 is the
coefficient of determination
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proteins is first determined, and then the reconstruc-
tion is performed. The user has the opportunity to se-
lect the STRING system or the ANDSystem, through
which the gene network will be reconstructed. In the
case of using STRING, the user can select one of the
standard thresholds for the presence of a connection in
the global network: 150, 400, 700 and 900. In the case
of the ANDSystem, the user can select the type of inter-
action from the list (activity and transport regulation,
catalysis, coexpression, expression regulation, inter-
action and all types).

FunGeneNet output data
The FunGeneNet output is a file containing an inter-
active network in ANDSystem/tab-delimited format and
the t-test p-value, which characterizes the difference be-
tween the analysed network and random networks. The
given t-test p-value assumes the normal distribution of
the number of links in random networks and can be
biased from the true probability values. Therefore, in
addition to the network being analyzed, the ROC curve
p-value is calculated as the proportion of negative sam-
ple networks having a t-test p-value less than or equal to
that for the network being analyzed (coords function of
the pROC package of R language).

Accuracy estimation of the FunGeneNet method
To analyze the accuracy of the FunGeneNet method, we
applied the ROC analysis technique [46]. Networks con-
structed for GO biological processes were considered as a
positive sample. Information on the involvement of pro-
teins in the processes was taken from the UniProt-GOA
database (Submission date: 3/16/2016) [47]. GO networks
were divided into two groups according to the number of
proteins. The first group included processes for which 2
to 50 proteins were annotated, and the second group in-
cluded processes with more than 50 proteins according to
UniProt-GOA (Additional file 1: Table S1).
As a negative sample of networks, four types of ran-

dom networks were used, for which it was assumed that
they include functionally unrelated genes. Networks of
the first type (simply random) were constructed by ran-
domly selecting proteins from the whole set of human
proteins, each of which had at least one connection in
the global ANDSystem network. This restriction, to ex-
clude proteins not participating in the formation of the
global network, is also applied to other types of random
networks. To build networks of the second type (well-
studied), a random selection was made from proteins,
mentioned in at least 50 PubMed publications. Thus,
this group was represented by the relatively well-studied
proteins. This group was created in order to take into
account the possible FunGeneNet misclassification bias
introduced by the level of scrutiny of proteins [45].

Networks of the third type (GO-based) were built using
a random selection of proteins from a variety of pro-
teins annotated in the GOA database (Additional file 2:
Table S2). The reconstruction of these networks was
carried out in such a way that one network did not con-
tain the proteins involved in the same biological
process. Networks of the fourth type (identical degree
distribution [IDD]) were constructed with a restriction
on the vertex degrees, so that each set of proteins from
the positive sample corresponded to a set of the nega-
tive sample. The selection procedure consisted of three
steps: (1) the vertex degree in the global network is de-
termined for each protein of a positive sample, (2) the
list of all proteins with the same degree as for a particu-
lar protein of a positive sample is extracted from the
global network, (3) the starting protein for IDD net-
work reconstruction is selected at random from this
list. This method of reconstruction guaranteed equal
vertex degree distributions in positive and negative
samples. When considering characteristics of FunGen-
eNet – depending on the size and completeness of the
networks, the STRING score, and the t-test/permuta-
tion option – networks of the type “simply random”
(Additional file 2: Table S2) were used.
To construct the ROC curves, the number of random

networks in a negative sample, as well as the distribution
of the number of proteins in the random networks were
specified to be equal to those in the positive sample. The
same positive and negative samples of proteins were
used to reconstruct networks for the ANDSystem and
STRING (version 9.1).
The ROC curve classifier score was taken to be equal

to 1 − p-value, where p-value characterized the statistical
significance of the differences between the analysed net-
works and random networks, given out in the output
data of the program. The area under the ROC curve
(AUC) was calculated using the “roc” function of the
pROC package of R language. As the “roc” argument
“auc”, a “predictor” vector consisting of values of 1 − p-
value for functional and random networks was fed. The
argument “response” was a vector, with the coordinate
values equal to 1 for functional networks and 0 for ran-
dom networks.
To analyze the performance of the method depending

on the type of interactions, the ANDSystem types were
combined into larger types: (1) “activity and transport
regulation”, which included the following types of inter-
actions: “activity downregulation”, “activity regulation”,
“activity upregulation”, and “transport regulation”; (2)
“catalysis”, including “catalyze”, “cleavage”, “degradation
downregulation”, “degradation regulation”, and “degrad-
ation upregulation”; (3) “coexpression”, which was taken
as a separate type; (4) “expression regulation”, consisting
of “up-”, “down-”, and “expression regulation” itself; (5)
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“interaction”, which was taken as a separate type; and (6)
“all types”, including all of the above types, as well as the
type “expression” and the type “association”.
To estimate how the completeness of genes of the stud-

ied process, presented in the experimental set of genes,
would affect the obtained results, the following analysis
was performed. At the first step, all GO biological pro-
cesses were divided into five main groups according to the
number of genes involved in each process: (1) processes,
involving 10 genes; (2) from 20 to 22 genes; (3) from 40 to
50 genes; (4) from 100 to 200 genes; (5) from 400 to 1000
genes. Next, for each process, 10 genes were randomly se-
lected from its entire set of genes. Thus, the completeness
for the first group was 100% (the experimental set
contained all genes of the process), for the second it was
45–50%, for the third it was 5–10%, etc. The selected lists
of proteins are given in Additional file 1: Table S1. At the
next step, an ROC curve was constructed for each range
of the completeness.
The significance of the difference in the AUC of the

ROC curves was estimated using the two-sided unpaired
DeLong’s test, through the roc.test function of R
language.
The p.adjust function of R language was used for the

Benjamini Hochberg multiple testing correction.

Results
Method assessment
We consider two method variants, based on 1000 permu-
tations as well as the t-test, using parameters of normal
distribution estimated from 100 permutations. To assess
any decrease in accuracy in the case of using the t-test in-
stead of permutations, we build ROC curves for these var-
iants (Fig. 2). Figure 2 shows that the AUC for these
variants is nearly the same for both the ANDSystem and
STRING. Due to this, and based on the fact that the
method variant using a t-test reduces the number of cal-
culations by approximately 10 times, below we show ROC
curves constructed by the method based on the t-test.
An interesting question about the FunGeneNet applic-

ability is the dependence of the quality of the functional/
non-functional network classification on the size of the
gene set. Figure 3 shows that FunGeneNet performs
non-random classification even in cases of small net-
work sizes.
Interactions between the genes contained in the global

network have a different degree of reliability. Therefore,
in the STRING system, a special score is used, which de-
scribes the weight of interactions. The STRING score is
the threshold for eliminating noise information. Increas-
ing the score for STRING networks can reduce the share
of false interactions and decrease the completeness of
networks. For this reason, a decision was made to check
how the accuracy of FunGeneNet depends on the

STRING score. Figure 4 shows the ROC curves for the
standard values of the STRING score.
The use of ANDSystem networks in FunGeneNet al-

lows analysis of different types of interactions, including
all types (generalized type), activity and transport regula-
tion, catalysis, co-expression, expression regulation, and
interaction. Figure 5 shows the ROC curves for the dif-
ferent interaction types from the ANDSystem according
to the different network sizes.
Another important issue to assess the quality of the

method is the appropriate sampling of non-functional
networks. We proposed four models of non-functional
networks: “simply random” — random selection of a set
of proteins, from having at least one connection in the
global network; “well-studied” — the choice is the same
as in “simply random”, but from proteins found in more
than 50 publications; “GO based” — random selection is
made from GOA, so that all the proteins in the sample
do not have common GO biological processes in the dir-
ect GOA annotation; “the same degree of distribution”
(IDD) — with this choice of negative control, the vertex
degree distributions (vertex degrees are counted using
the global network) in negative protein samples are
exactly the same for those of positive samples. Figure 6
illustrates the ROC curves for the ANDSystem for vari-
ous models of negative control.
Since, in an experimental gene/protein set that can be

analyzed with the help of FunGeneNet, for some reason
only a small part of the biological process under investi-
gation may appear, we explored how much the accuracy
of the method depends on the completeness of the data

Fig. 2 Method accuracy for t-test. GO sets including from 11 to 50
proteins were used as a positive control. “Simply random” sample
was used as a negative control
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on the observed process. Figure 7 shows the ROC curves
for different portions of GO biological processes for
which the network is built. It can be observed from the
figure that, as expected, with a decrease in the propor-
tion of proteins over which the network is built, the area
under the ROC curve decreases. For protein sets com-
posed of 5–10% of all proteins assigned to the GO bio-
logical process, the classification is weaker, but not yet
random, and for sets of 1–2.5%, it is close to random.

Thyroid cancer network
Papillary thyroid cancer is the most common form of
thyroid cancer [48]. In the dbDEPC database, we identi-
fied data from three experiments on papillary thyroid
cancer: EXP00039 (E39), EXP00050 (E50) and
EXP00051 (E51). E39 contained a list of 30 differentially
expressed proteins [49]. E50 and E51 were conducted
within the same work and gave an identical list of 16

proteins for two different variants of cancer cell types
[50]. At the intersection between the E39 and E50 lists,
there were five proteins: ANXA1, Beta-actin, Moesin,
FTL and Galectin-3.
Using FunGeneNet, we reconstructed networks for

E39 (Additional file 3) and E50 (Additional file 4), as
well as for intersection (Additional file 5) and union
(Additional file 6) of the protein lists. The results of
comparing networks E39 and E50 with random net-
works are listed in Table 2.

Apoptosis network
As an example, we considered a functional network
formed by genes/proteins participating in the GO apop-
totic process [GO: 0006915]. Apoptosis is known to be
necessary for the normal development and functioning
of the organism and is also of key importance in mecha-
nisms of many diseases, such as neurodegenerative and

Fig. 3 Dependence of the method accuracy on the size of the networks for ANDSystem (a) and STRING (b). The size of the network (designated
as “size”) was defined as the number of proteins annotated with the GO biological process. As a negative sample, the sample “simply random”
was taken (see methods). The STRING score was used by default (= 400)

Fig. 4 ROC-curves for different values of STRING score for networks of size > 10 and ≤ 50 (a) and for networks of size = 10 (b). In all variants, as a
negative control, all genes with at least one bond in the global network with a score above 400 were taken. Edgeless networks correspond to
the linear sections of the ROC curve. Linear segments are due to a fairly large proportion of edgeless networks with the same p-values in positive
and negative controls

Tiys et al. BMC Genomics 2018, 19(Suppl 3):76 Page 108 of 141



cancer diseases [51–53]. A wide range of interactions is
involved in this process, including the protein–protein
interaction and regulatory links that determine the regu-
lation of gene expression, as well as the regulation of
protein activity and transport, etc. The identification of
the significance of different connection types in the gene
network of the apoptotic process can help to better
understand the mechanisms of functioning and the role
of participants of this complex biological process.
The protein list of apoptosis according to UniProt-

GOA included 593 proteins (Additional file 7: Table S4).
The network included 591 proteins, 585 genes and 12,529
interactions (Additional file 8: apoptotic process.andz).

FunGeneNet established the apoptosis network as
functionally enriched by the types of “activity and trans-
port regulation” (p-value = 3.95e-09), “catalysis” (p-value
= 3.06e-06), “coexpression” (p-value = 3.09e-02), “inter-
action” (p-value = 3.24e-76) and “all types” (ANDSystem
p-value = 1.46e-30, STRING p-value = 0). All networks
for these types of links generally correspond to the
power law of vertex degree distribution (Additional file 7:
Table S4). This means that a small fraction of vertices
aggregates most of the connections and these vertices
can be of considerable interest.

Fig. 5 ROC-curves for different types of interactions for ANDSystem networks of size from 11 to 50 genes (a) and over 50 (b)

Fig. 6 The quality of the method for different models of negative
control. The size of the networks used in the comparison lies in the
range: 10 < size ≤ 50

Fig. 7 ROC-curves for different completeness of networks. The
percentages indicate the completeness of the network, which was
calculated as the ratio of the random sample size of the GO biological
process, chosen to construct the ROC curve to the full size of this process
(See methods). Each of the considered networks includes 10 genes
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Discussion
Method assessment
From Fig. 2, we can see that CrossTalkZ as compared to
FunGeneNet showed a slightly higher AUC value.
Nevertheless, due to its low performance, this program
was not used in our system. In particular, this is due to
the permutation of all the vertex names of the global
network, while our algorithm is based on the permuta-
tion of only those nodes of the global network that are
relevant to the analyzed one.
An increase in the number of correctly predicted func-

tional networks with an increase in their size (Fig. 3) may
be explained by an information noise decrease in the net-
works. The noise is a proportion of false positive links in
the analyzed network. To detect a significantly higher
number of links in the functional network compared with
the random ones, it is required that the signal/noise ratio
in the functional network be greater than that in the ran-
dom networks. Another reason for the slight difference of
small networks from random ones may be their incom-
pleteness in comparison to large networks. This is because
the meaningful part of the small networks has only been
studied recently and not all genes involved and links
between them have been revealed.
From Fig. 3 it is seen that for α = 1 − specificity = 0.05

for networks of a size greater than 10 and not greater
than 50, the sensitivity exceeds 0.8 for both the
ANDSystem and STRING. Further, we use this group of
GO biological processes to examine the behaviour of the
ROC curves in various conditions.
It is interesting that for the networks with sizes from 2

to 50 genes in Fig. 3a, a sensitivity jump by 0.02 is de-
tected in the range of α [0.33, 0.34]. This jump corre-
sponds to edgeless networks of positive and negative
samples, for which all the random networks turned out
to be edgeless. This jump is due to there being fewer
networks in the negative sample (29 from 3458 edgeless)
compared to the positive sample (115 from 1211). This
fact is most likely connected with the difference in the
distribution of vertex degrees in functional and non-
functional networks. This question deserves a separate

consideration with the goal of constructing, based on
the vertex degrees in the global gene network, a method
for classifying functional and non-functional gene sets.
For GO biological processes including more than 10
genes, there are only six such edgeless networks. Thus,
the contribution of edgeless networks is insignificant
and the jump on the chart is invisible.
As can be seen in Fig. 4a, the highest AUC is observed

for a STRING score of 150, and the smallest for a score
of 900. This indicates that the method works better in
complete but noisy networks, compared to networks
with a small fraction of false positive interactions, with a
high proportion underpredicted. Figure 4b shows the
same pattern on networks with a fixed size of 10. This
dependence is even more pronounced, apparently be-
cause of the small size of the networks and the absence
of its variability. In a small-sized network, there are only
a few well-established links, and that is why long linear
segments corresponding to edgeless networks for scores
of 700 and 900 appeared in Fig. 4b. It can be shown that
the greater the score, the longer the linear sections and
the more edgeless networks.
It appeared that with the increase of network size, the

quality of classification grows (Fig. 5). The most accurate
among the considered types of interactions appeared to be
“all types”. Such a result was expected, since the consider-
ation of only a specific type of interaction (for example,
only transport regulation) leads to information loss, while
the use of a generalized type avoids this [54, 55]. It should
be noted that the quality of classification for some inter-
action types (for example, “catalysis” or “activity and trans-
port regulation”) can be explained by the smaller number
of genes involved in the GO biological process linked by
such types, which, in particular, may cause the appearance
of edgeless networks.
From 1625 processes involving from 11 to 50 proteins,

1507 differed in at least one type of connection
(Additional file 9: Table S3). For each type of link, there
were processes that differed only by this type of link
(Table 1). This means that, having examined the differ-
ences from random networks by the mixed type of links

Table 1 The distribution of the number of networks of GO biological processes statistically significantly different from random ones
for different interaction types

Interaction type Number of networks different by
at least two interaction types

Number of networks different by
only the interaction type

Number of networks not
different by “all types”

Activity and transport regulation 392 (0.26) 7 (0.005) 10 (0.007)

Catalysis 293 (0.194) 3 (0.002) 8 (0.005)

Coexpression 424 (0.281) 5 (0.003) 17 (0.011)

Expression regulation 500 (0.332) 15 (0.01) 21 (0.014)

Interaction 1250 (0.829) 64 (0.042) 77 (0.051)

All types 1395 (0.926) 83 (0.055) –

Values in parentheses are the fraction of the number of networks different by at least one type
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(“all types”), we under-predict some functional networks.
We tested if there are any common properties for net-
works that differ in a certain type. It turned out that for
the “expression regulation” type among 21 significant
GO biological processes that do not differ from random
networks by “all types”, a group of 10 processes are dis-
tinguished, which are related to cell proliferation and the
cell cycle: negative regulation of B-cell proliferation,
positive regulation of phosphorylation, negative regula-
tion of cyclin-dependent protein serine/threonine kinase
activity, negative regulation of proteasomal ubiquitin-
dependent protein catabolic process, positive regulation
of cell cycle, negative regulation of organ growth,
homeostasis of number of cells, positive regulation of
cellular component movement, regulation of protein
kinase B signalling and regulation of actin cytoskeleton
reorganization. In addition to this group, it is possible to
identify a more specific group of B-cell proliferation
(negative regulation of B-cell proliferation, cellular re-
sponse to interleukin-4, cellular response to interleukin-
6). IL-4 (BSF-1) and IL-6 stimulate B-cell proliferation
[56, 57]. Another group of processes for the “expression
regulation” type refers to cell differentiation (trophecto-
dermal cell differentiation, monocyte differentiation, and
endothelial cell differentiation). Thus, it can be assumed
that the networks of some functionally related GO bio-
logical processes are more different from random net-
works by a certain type of interaction compared with
networks for other GO biological processes.
The most represented type of links, not counting “all

types”, was the “interaction” type. Of 1507 significant
networks, 1250 differed by this type. However, if we ex-
clude processes that are significant by the “all types”,
then only 77 networks will remain. Increased representa-
tion of the interaction type in comparison with other
types of interactions can be explained by the appearance
of high-performance methods, such as mass spectrom-
etry [58] and yeast two-hybrid analysis [59].
It can be demonstrated from the Fig. 6 that the AUC

varies insignificantly with different models of negative
control (p-value = 0.105 for comparison of “simply ran-
dom” and “well-studied”). On the one hand, this shows
that imposing a strict vertex limit on IDD does not turn
random networks into functional ones, which could be
expected, since the pool of vertices for random selection
is greatly reduced. On the other hand, the proximity of
“simply random”, “GO-based” and “well-studied” curves
shows that the proposed increased examination of
GOA-annotated genes, compared to random genes, does
not significantly affect the quality of the method.
Since it is difficult to determine what is really a non-

functional network, we consider random networks as
non-functional networks. It is possible that of all the re-
constructed random networks, some are functional

networks, which can underestimate the sensitivity and
specificity, because among these random functional net-
works there may be those with a connectivity that is
higher than the connectivity of the analyzed functional
networks. Perhaps, in the presence of such a
phenomenon, the addition of a restriction on the vertex
degrees in a random network (as in the IDD variant)
may lead to an increase in the proportion of such false
positive networks in the negative sample and a greater
underestimation of the method accuracy. However, as
can be seen from Fig. 6, this understatement does not
occur. In addition, we showed that for networks larger
than 10, the method works well enough. So, even with
some portion of the functional networks among random
ones, random networks are an acceptable model of
negative control.
The result of the dependency analysis between accur-

acy of the method and completeness of the data on the
observed process (Fig. 7) is important for choosing a
strategy for analyzing experimental sets of genes/pro-
teins using FunGeneNet, as well as other methods based
on the analysis of gene networks constructed from ex-
perimental gene sets. The absence of the significant dif-
ferences from random networks may be related to
incompleteness of experimental gene sets with respect
to the real number of genes involved in the studied bio-
logical process. By taking into account this fact, experi-
ments can be adjusted. Another way to solve this
problem can be the extension of an experimental set of
genes by gene-prioritization methods [60]. In particular,
our analysis of the different levels of completeness of ex-
perimental gene sets on the example of GO biological
processes showed that in cases where an experimental
set of genes was less than 2.5% of the total number of
genes of the target process, the absence of significance
of functional connectivity in gene sets can be expected.

Thyroid cancer network
We were interested in identifying which genes/proteins
in the Papillary thyroid cancer networks and their con-
nections contribute to distinction from random net-
works (Table 2). The most important was the combined
network of E50 and E39, which differed from random
networks by the combined type “all types”, and the E50
network, which differed in the type of “catalysis”. Inter-
estingly, the latter difference was due to the presence of
two catalytic bonds in the protein transthyretin (TTR),
which is a carrier of thyroid hormones. The involvement
of TTR in thyroid cancer is consistent with the previ-
ously advanced hypothesis of an increased risk of thyroid
cancer in the presence of particularly polybrominated
diphenyl ethers (PBDEs), metabolites of which compete
with thyroid hormones for binding to TTR [61]. Since
TTR has catalytic activity [62], it can be assumed that
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PBDEs, through binding to TTR, change its catalytic ac-
tivity. Interestingly, the second catalytic TTR link in the
analyzed network is aimed at its cleavage by oncogene
DJ-1, which, in an unknown way, regulates the
phosphatidylinositol-3 kinase signalling pathway through
the tumour suppressor PTEN [63]. Mutations in the
PTEN gene lead to syndromes accompanied by cancer
in various tissues, including the thyroid gland [63]. Thus,
it can be assumed that TTR mediates the regulation of
PTEN by DJ-1 protein.

Apoptosis network
An analysis of the gene network of GO apoptotic
process [GO: 0006915] has revealed, that of the 90
transport regulation links, 30 links regulating the release
of cytochrome c attract attention. This is consistent with
the key role of cytochrome c in the mitochondria-

dependent pathway of apoptosis [64]. The second leader
by the number of “regulation of transport” connections
is BAX protein. This protein aggregates 12 such bonds,
of which nine show the influence of other proteins on
BAX translocation from the cytosol into the mitochon-
dria. This translocation is also the central event in the
mechanism of apoptosis [65]. Among the links regulat-
ing activity, the maximum degrees of the vertices are for
NFKB1 and P53. Among the 43 bonds, NFKB1 37 is di-
rected at regulating the activity of this protein. As is
known, this protein initiates apoptosis in order to sup-
press the development of tumours [66]. Of the 39 links
of p53, 24 are directed to its regulation, this is consistent
with p53’s key role in triggering apoptosis due to DNA
damage, oncogenes expression and the effects of other
factors [67]. For the “catalysis” type links, the partici-
pants with the highest degrees of vertices were the anti-

Table 2 Enrichment by various types of functional interactions in groups of differentially expressed proteins in thyroid cancer
(dbDEPC) estimated with FunGeneNet

Experiment ANDSystem interaction type p-value BH correcteda p-value

E39 all types 3.83E-03
(1.47e-17)

1.84E-02

E39 activity and transport regulation 1.58E-01 3.45E-01

E39 catalysis 6.56E-01 7.50E-01

E39 coexpression 6.08E-01 7.50E-01

E39 expression regulation 7.27E-01 7.93E-01

E39 interaction 4.62E-01 7.06E-01

E50 all types 2.02E-02
(6.31e-05)

8.08E-02

E50 activity and transport regulation 1.09E-01 2.91E-01

E50 catalysis 1.45E-05 1.74E-04

E50 coexpression 5.00E-01 7.06E-01

E50 expression regulation 6.56E-01 7.50E-01

E50 interaction 6.58E-02 1.97E-01

E50 ∩ E39 all types 4.36E-01
(3.52E-03)

7.06E-01

E50 ∩ E39 activity and transport regulation 1.35E-01 3.24E-01

E50 ∩ E39 catalysis 5.00E-01 7.06E-01

E50 ∩ E39 coexpression 5.00E-01 7.06E-01

E50 ∩ E39 expression regulation 5.69E-01 7.50E-01

E50 ∩ E39 interaction 7.84E-01 8.18E-01

E50 ∪ E39 all types 6.42E-06
(3.48e-29)

1.54E-04

E50 ∪ E39 activity and transport regulation 4.03E-01 7.06E-01

E50 ∪ E39 catalysis 1.11E-04 8.88E-04

E50 ∪ E39 coexpression 1.19E-03 7.14E-03

E50 ∪ E39 expression regulation 8.89E-01 8.89E-01

E50 ∪ E39 interaction 4.71E-02 1.61E-01

p < 0.001 are highlighted in bold
STRING p-values are given in parentheses
aBenjamini-Hochberg correction, see methods
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apoptotic kinase AKT1, the proapoptotic CASP3, and
the apoptosis-inducing p53. Among the 19 links of
AKT1, 12 are phosphorylation of apoptotic proteins with
AKT1. Of the 30 CASP3 links, 17 are cleavage of apop-
totic proteins by CASP3. Of the 35 bonds of p53, 13 are
responsible for regulation of its stability. For the co-
expression network, a connected component was found
containing four cellular receptors (CD2, IL2RA,
TNFRSF18, and PRAME), kinase CDK11B and keratin
KRT20. The maximum number of links in the co-
expression network was three and was observed as adja-
cent to the CD2 protein. In the “interaction” network,
Polyubiquitin-C (373 bonds), P53 (101 bonds) and
CASP3 (67 bonds) were the leading proteins
(Additional file 7: Table S4). When protein is ranked
according to the specificity rate (SR = [number of con-
nections in this network] / [number of connections in
the global network]), the proteasome proteins PSMA8
(SR = 0.929) and PSMB6 (SR = 0.816) are leaders, as
well as HIPPI protein (SR = 0.750), inducing apoptosis
through activation of caspase-8 expression [68].
Thus, on the basis of analysis of different types of in-

teractions in the gene network, describing the GO
process of apoptosis, the connected components were
identified, i.e. sets of genes involved in over-represented
interactions. It appeared that these components include
genes that are key for apoptosis.

Network modularity
The difference between functional networks and random
ones is in good agreement with the principle of modular
organization of biological systems, which Hartwell et al.
(1999) brought into focus [69]. According to their defin-
ition, the module is part of a biological system that has a
function that can be separated from the function of
other such subsystems. The reflection of the principle of
the modular organization at the level of gene networks
is that the genes belonging to one module are closely lo-
cated in the network [70, 71]. The work carried out by
Ames (2013) [54] showed that the cohesive sub-graphs
of global networks constructed from experimental data
of different types overlap significantly with each other
and with GO. Furthermore, the combination of these
networks increases the coverage of GO. Based on the
network modularity in the studies of Dutkowski et al.
[72], Gligorijevi’c et al. [55] and Kramer et al. [73], gene
ontologies were constructed exclusively based on net-
work topology. Such topologies have shown a significant
intersection with the existing topology of GO. Thus, the
difference between functional networks and those that
are random in terms of the number of connections is in
agreement with the modular principle of network
organization. For example, FunGeneNet showed the sig-
nificance of the functional connectivity of the set of

genes involved in histone deubiquitination [GO:0016578]
as being equal to 6.48e-21, calculated by the ANDSystem,
which can be a functional module (NeXO:8805) according
to the NeXO ontology [72].

Conclusions
At present, using experimental transcriptomic, genomic
and proteomic technologies, large arrays of experimental
gene sets are generated. Such approaches are widely
used to study medical-biological problems related to
phenotypic traits, diseases, pathological conditions, etc.
Reconstruction and analysis of gene networks that de-
scribe the functional interactions between genes in ex-
perimental sets of genes is a promising approach for the
interpretation of omics data. FunGeneNet is dedicated
to the analysis of the functional connectivity in experi-
mental gene sets and identification of the most import-
ant links between genes from these sets, including the
physical protein–protein interactions, protein–DNA in-
teractions, and regulatory links such as regulation of ex-
pression, activity, etc. Reconstruction of gene networks
for analyzed gene sets in FunGeneNet is carried out
automatically using STRING and the ANDSystem.
The application of FunGeneNet to the analysis of gene

sets involved in Gene Ontology biological processes has
shown the statistical significance of the difference of net-
works reconstructed for these processes from random
networks, which is in good agreement with the notion
that functionally related genes participate in common
biological processes. Sensitivity of our method exceeds
0.8, while specificity is 0.95.
The main feature of the method implemented in

FunGeneNet is that it allows consideration of specific
types of molecular-genetics interactions. An analysis of
the connection types showed that the difference of GO
biological processes from random networks depends on
the types of interactions represented in them. Thus,
genes involved in such processes can play an important
functional role in analyzed processes. In particular, the
analysis of a set of genes involved in apoptosis showed
that such genes as NFKB1, P53, AKT1, CASP3 and
HIPPI possess significant links, which is in good agree-
ment with the literature data. Analysis of the gene sets
associated with thyroid cancer taken from the dbDEPC
database showed that these genes are significantly func-
tionally related, and also suggests the molecular mecha-
nisms of the role of genes involved in significant
catalytic reactions.
An analysis of the gene sets associated with thyroid

cancer taken from the dbDEPC database showed that
these genes are significantly functionally related, and
also allowed to suggest molecular mechanisms of the
role of genes involved in significant catalytic reactions.
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