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ABSTRACT

Sudemycin E is an analog of the pre-messenger
RNA splicing modulator FR901464 and its deriva-
tive spliceostatin A. Sudemycin E causes the death
of cancer cells through an unknown mechanism.
We found that similar to spliceostatin A,
sudemycin E binds to the U2 small nuclear
ribonucleoprotein (snRNP) component SF3B1.
Native chromatin immunoprecipitations showed
that U2 snRNPs physically interact with nucleo-
somes. Sudemycin E induces a dissociation of
the U2 snRNPs and decreases their interaction
with nucleosomes. To determine the effect on
gene expression, we performed genome-wide
array analysis. Sudemycin E first causes a rapid
change in alternative pre-messenger RNA
splicing, which is later followed by changes in
overall gene expression and arrest in the G2
phase of the cell cycle. The changes in alternative
exon usage correlate with a loss of the H3K36me3
modification in chromatin encoding these exons.
We propose that sudemycin E interferes with the
ability of U2 snRNP to maintain an H3K36me3
modification in actively transcribed genes. Thus,
in addition to the reversible changes in alternative
splicing, sudemycin E causes changes in chroma-
tin modifications that result in chromatin
condensation, which is a likely contributing factor
to cancer cell death.

INTRODUCTION

Almost all human polymerase II transcripts undergo
alternative pre-messenger RNA (pre-mRNA) splicing,
which increases the number of proteins that can be
encoded in the genome. Exons in pre-mRNA are
recognized by the spliceosome, a macromolecular
complex composed of five small RNAs and at least 170
proteins (1). An exon is defined by its two splice sites and
the branch point, which are only weakly conserved in
mammals. The spliceosome assembles around exons in a
step-wise manner. First, U1 snRNP binds to the 50 splice
site, followed by binding of splicing factor 1 to the branch
point, which increases U2AF binding to the 30 splice site,
stabilizing the entry of U2 snRNP and the release of
splicing factor 1. In this spliceosomal A complex, the
branch point adenosine is recognized by the U2 snRNP
through an interaction between the U2 component
SF3B1/(SAP155) and U2AF (2). This stabilization is
ATP dependent and allows the inclusion of the U4/U5/
U6 snRNPs, leading to the formation of the assembled
spliceosome in the B complex. Further rearrangements
allow the catalysis of the splicing reaction in the C
complex in two transesterification reactions (3). The U2
snRNP undergoes structural changes during the splicing
reaction and releases its SF3 complex after the first cata-
lytic splicing step (4).
Alternative exon recognition occurs predominantly

cotranscriptional and is therefore mechanistically coupled
to other events in gene expression. For example, a fast-
moving RNA polymerase promotes alternative exon
skipping (5,6). There is accumulating evidence that
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chromatin structure is linked to exon selection.
Nucleosomes are associated with DNA sequences that
encode exons (7,8). Histone modification, such as
H3K4me3, assists in the recruitment of U2 snRNP compo-
nents to sites of active transcription, which could promote
exon recognition (9). It is possible that pre-mRNA splicing
affects chromatin changes, in return, as DNA encoding
exons are characterized by the H3K36me3 modification.
This modification is lower in DNA corresponding to alter-
native exons, when compared with constitutive exon.
Because on average, alternative exons of the same pre-
mRNA assemble fewer spliceosomes than the constitutive
exons, this suggests that the activity of the spliceosome is
reflected in the H3K36me3 modification.
Reflecting the central role of alternative pre-mRNA

splicing in gene expression, abnormal splicing patterns are
frequently associated with human diseases. Deregulated
splicing patterns are a hallmark of cancer, but the
reason for this deregulation is not fully understood
(10–12). The tumor microenvironment is generally
hypoxic and more acidic than normal tissue, which can
result in the pathological generation of protein isoforms
supporting metastasis (13). Several protein isoforms
generated by alternative splicing are crucial for cancer
progression and are the subject of experimental thera-
peutic intervention. For example, the RON tyrosine
kinase gene can generate a constitutively active kinase
due to the skipping of an alternative exon (14). The
exon, controlled by the splicing factor SF2/ASF, deter-
mines the epithelial to mesenchymal transition, which de-
termines the invasiveness of cancer cells (15). Another
hallmark of cancer cells are changes in their chromatin
structure (16). The recent demonstration that chromatin
structure globally influences the localization and availabil-
ity of splicing factors (17) indicates that missplicing
observed in cancer could originate in an altered nuclear
structure.
Two naturally occurring compounds, FR901464 and

pladienolide B, have been shown to affect pre-mRNA
splicing in vivo and to suppress tumor growth (18).
FR901464 has been derivatized to generate spliceostatin
A (19), which targets the U2 snRNP component
SF3B, and modulates alternative splicing in vitro (19).
Further analysis has shown that spliceostatin A in-
hibits spliceosome assembly in the B complex after a
pre-spliceosomal complex has been formed (20).
Spliceostatin A influences the interaction of SF3B1 with
the pre-mRNA, leading to a nonproductive recruitment of
U2 snRNP, which affects a subset of 30 splice sites (21),
explaining why in vivo spliceostatin A targets certain al-
ternative splicing events.
Sudemycin E is a refined totally synthetic analog of

FR901464 (22). This compound selectively stops the
growth of tumors in mice and preferably targets cancer
cells, sparing nonneoplastic cells. Similar to spliceostatin
A, it changes alternative splicing (23).
Here, we analyzed the effect of sudemycin E on cancer

cells. Sudemycin works via a two-stage mechanism, first
reversibly affecting alternative splicing of �7.5% of alter-
native exons due to a dissociation of U2 snRNPs. Possibly
due to the dissociation, sudemycin E decreases the binding

of U2 snRNPs to nucleosomes. As a likely result, the
H3K36me3 chromatin mark in DNA corresponding to
altered alternative exons is decreased. Several hours
later, we found general changes in gene expression, not
just in alternative splicing. Together, these events lead to
chromatin condensation and an arrest in the G2 stage of
the cell cycle.

MATERIALS AND METHODS

Cell culture

Rh18 cells, established at St. Jude Children’s Research
Hospital (24), were grown in RPMI 1640 medium
(Roswell Park Memorial Institute) supplemented with
10% (v/v) heat-inactivated fetal calf serum at 37�C in
5% CO2. HEK293 cells (Sigma) were grown in high
glucose Dulbecco’s modified Eagle’s medium containing
10% (v/v) heat-inactivated fetal calf serum, at 37�C in
5% CO2. Human skin primary fibroblasts (GM 00498D,
Coriell Institute) were grown in minimum essential
medium Eagle containing 10% (v/v) heat-inactivated
fetal calf serum, at 37�C in 5% CO2.

Cell viability

Viability was tested by metabolizing 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
(MTT) by mitochondrial dehydrogenases (Sigma):
1 000 000 cells were treated with the compounds at the
times indicated and were subsequently analyzed with
MTT according to the manufacturer’s protocol. The
MTT staining obtained from cells receiving just dimethyl
sulfoxide (DMSO) control were set as 100% signal.

Biotinylation pull down

Streptavidin beads (Life Technologies) were washed three
times with phosphate-buffered saline (PBS) buffer and
then precleared with 10% bovine serum albumin for
30min at 4�C. The precleared beads were incubated with
25 ml of DMSO or 10mM biotinylated sudemycin E and
HeLa nuclear (DundeeCellProducts) extract in 2�
immunoprecipitation buffer [IP, 10mM Tris–HCl (pH
7.4), 150mM NaCl, 10mM KCl] overnight. The next
day, beads were separated from unbound fractions,
washed two times and mixed with 90 ml of 1� sodium
dodecyl sulphate (SDS) sample (50mM Tris–HCl, pH
6.8, 2% SDS, 10% glycerol, 1% b-mercaptoethanol,
12.5mM ethylenediaminetetraacetic acid and 0.02%
bromophenol blue) buffer. Sixty microliters of unbound
and washed fractions were mixed with 30 ml of 3� SDS
sample buffer. All fractions were boiled for 5min and
loaded onto 10% SDS–polyacrylamide gels.

Nucleosome preparation

HEK293 cells were pelleted at 1000 rpm at 4�C and washed
in ice-cold PBS buffer. The cell pellet was resuspended in
ice-cold NP-40 lysis buffer [10mM Tris (pH 7.4), 10mM
NaCl, 3mM MgCl2, 0.5% NP-40, 0.15mM spermine and
0.5mM spermidine] and incubated on ice for 5min. The
solution was centrifuged at 3000 rpm for 10min. The
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nuclear fraction (pellet) was then resuspended in 1ml of ice-
cold micrococcal nuclease digestion buffer [10mMTris (pH
7.4), 15mM NaCl, 60mM KCl, 0.15mM spermine,
0.5mM spermidine and 1mM CaCl2] and digested with
50U/ml micrococcal nuclease at 37�C for 12min. The
reaction was stopped by addition of EDTA and NP-40 to
an end concentration of 0.01M and 0.1%, respectively.

Sudemycin E handling

Sudemycin E was dissolved in DMSO at 10mM final con-
centration. Rh18, HEK293 and fibroblasts were plated
and cultured for 24 h to 80% confluence before sudemycin
E treatment. The cells were treated with 1 or 10 mM
sudemycins (up to 48 h) or vehicle (DMSO) equal to
solvent.

Determination of sudemycin E concentration

After sudemycin E addition to the medium, the medium
and cells were collected and extracted with acetonitrile.
The extracted solution was analyzed by ultra-performance
liquid mass spectrometry coupled to mass spectrometry
[UPLC-MS/MS (TQ detector)]. The parent ion of
sudemycin E was quantitatively determined by comparing
it with a standard curve.

Flow cytometry

In all, 1� 106 HEK293 cells were fixed in 70% ethanol,
incubated for 30min at 4�C, treated with RNase A
(250 mg/ml) and stained with propidium iodide 10 mg/ml
(Sigma) for 30min at 37�C. Cell cycle analysis was
performed on a flow cytometer (FACSCalibur, BD
Biosciences).

Microscopy

HEK293 cells were seeded into 4-well chambers (Thermo
Scientific). After 24 h, cells were treated with 0, 4, 6 and
24 h with sudemycin E and then washed with PBS. Four
percent of paraformaldehyde in PBS, pH 7.4, was used for
10min to fix cells. Then, the cells were incubated for
10min with PBS containing 0.25% Triton X-100
(PBST). One percent bovine serum albumin in PBST
was used to block unspecific antibody binding. Cells
were incubated for 1 h in SF3B1 antibody, washed three
times with PBS and then incubated for another hour with
fluorescein isothiocyanate (FITC) anti-rabbit antibody.
Finally, cells were stained with 4’,6-diamidino-2-
phenylindole (DAPI) and analyzed by confocal micros-
copy (Nikon A1R-A1 Confocal Microscope System).

Glycerol gradient analysis

Nuclear extract from HeLa cells was loaded onto a linear
4-ml 15–30% glycerol gradient prepared in G150 buffer
(20mM HEPES, pH 7.9, 150mM NaCl, 1.5mM MgCl2,
0.5mM dithioerythritol). After centrifugation in a
Beckman SW60Ti rotor at 35 000 rpm (corresponding to
165 000g), at 4�C for 15 h, the gradient was fractionated
into 26 fractions of 150 ml each. 30 ml of 3� SDS sample
buffer were added to 60 ml of each fraction. The samples
were boiled for 5min, and 15 ml of each fraction was

loaded onto 10% SDS–polyacrylamide gels. Anti SF3B1
antisera was obtained from Abcam. To estimate the
Svedberg (S) values, we used conalbumin (molecular
weight 75 000 D; 5.4 S), aldolase (15 800 D, 11.5 S) and
ferritin (440 000, 17 S), all from GE healthcare.

Nucleosome immunoprecipitation

Nucleosomes were immunoprecipitated in 2� IP buffer
[10mM Tris–HCl (pH 7.4), 150mM NaCl, 10mM KCl]
for 14–16 h at 4�C using specific antibodies to H3
(AbCam) or no antibody (No Ab). The following day,
beads were separated from unbound fractions and washed
several times. The unbound (Input), H3 andNoAb fractions
were collected, mixed with 3� SDS sample buffer, boiled for
5min and loaded onto 10% SDS–polyacrylamide gels.

Chromatin immunoprecipitations

Rh18 and HEK293 cells were lysed and sheared by sonic-
ation in 0.1%NP-40 in PBS (Sigma) lysis buffer to generate
cellular chromatin fragments of 400–500 bp. The chroma-
tin was immunoprecipitated for 14–16 h at 4�C using
specific antibodies to H3K36me3 and H3K27me3
(AbCam). After the incubation, chromatin immunopre-
cipitates were purified and then 2 ml of each sample was
analyzed by real-time polymerase chain reaction (PCR).

Real-time PCR

The real-time PCR was carried out in the Strategene
Mx3005P (Agilent Technologies), using SYBR green
reagent (Life Technologies). The relative expression was
estimated as follows: 2Ct(reference) � Ct(sample), where Ct (refer-
ence) and Ct (sample) were input DNA and specific histone
modification chromatin, respectively. For each experiment, at
least three immunoprecipitations were analyzed.

Reverse transcriptase-polymerase chain reaction

Total RNA from Rh18, HEK293 and fibroblast cells was
extracted using GenElute Mammalian Total RNA
Miniprep kit (Sigma) according to the manufacturer’s in-
structions. cDNAs were synthesized from 1 mg of each
RNA using SuperScript� III Reverse Transcriptase (Life
Technologies). Reverse transcriptase-polymerase chain
reaction (RT-PCR) experiments were carried out using
1 ml of each cDNA as template and specific primers.
Products were visualized on gel electrophoresis after
ethidium bromide staining. Primers used were as follows:

RPp30 _FOR:GAGGCCTGGCTTTTGAACTT;
RPp30 _REV:CCTTGGCGTCACTTTCAGAG;
DUSP11_FOR:GACATCAAGTGCCTGATGATGA;
DUSP11_REV:ATGTCCCCGGCACCTATT;
SRRM1_FOR:GACTCTGGCTCCTCCTCCTC;
SRRM1_REV:GGACTTCTCCTCCGTCTACCA;
PAPOLG_FOR:AAGAGATCCCATTCCCCATC;
PAPOLG_REV:TGCGTGATGTATCAATAGTTGGA;
MLH3_FOR:TTATTGCCTGTTTGATGAGCAC;
MLH3_REV:TCCTTTGTTCCTCTGTCACTGTT;
ß-ACTIN_FOR:AGAGCTACGAGCTGCCTGAC;
ß-ACTIN_REV:GGATGTCCACGTCACACTTC;
ADAT1_FOR:ATGGCCAGGTGGTCTTCATA;
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ADAT1_REV:GTCACTTGCACCGGCTTATC;
DNAJB7_FOR:CAGCAACAGAGATCCCCCTA;
DNAJB7_REV:AGCACCAACTGTCACCACAA;
PRPF39_FOR:ACCCTGGTGATCCTGAGACA;
PRPF39_REV:GAAGCTAATTCCCTTCGCAAC;
cRPP30 _FOR:TATATCTAGTGCTGCAGAAAGG;
cRPP30 _REV:GCCTAAAGAAAGTGGGGATAA;
cDUSP11_FOR:TTGTTTTGTTATTTAGGTTGGA;
cDUSP11_REV:ACTCACTCCTATAATACCAACACTT;
cSRRM1_FOR:ATCGCCAGTGACTAAAAG;
cSRRM1_REV:AATCTAAGTTCAAATAAGGGTC;
cPAPOLG_FOR:CTGCCTACATAGGCCTATCGA;
cPAPOLG_REV:GCGAGAGTCGTCTCTTAGAT;
cMLH3_FOR:CTGGGATTCAAACATATGGGATA;
cMLH3_REV:TCCAGACGTATACGCTCAT;
cADAT1_FOR:TATTTTGGGAGGTTGAGG;
cADAT1_REV:ATCAAAAAATTTTTTAAAATAAAATCT;
cDNAJB7_FOR:GTGTAATGTTTATTATTTTGTTTGAGA;
cDNAJB7_REV:ATTCAAACGATTCTCCTATCTC;
cPRPF39_FOR:GATTTTTGGGAGGGTTAGG;
cPRPF39_REV:CCTAACCGAAAATAACACTTCA;
AURKB_sFOR:ATGACCGGAGGAGGATCTAC;
AURKB_sREV:GATGGACCTCCAGCTACAAG;
AURKB_FOR:ACATCTTAACGCGGCACTTC;
AURKB_REV:TTGTCTTCCTCCTCAGGGAGG.

Array analysis

RNA was isolated using Qiagen kits. Its quality was
determined by RNA integrity number analysis, and
samples with an RNA integrity number > 9.5 were used
following the Affymetrix labeling procedure.
For the analysis, the signal from Affymetrix human

junction arrays (HJAY) was normalized using the ‘Probe
scaling’ method. The background was corrected with
ProbeEffect from GeneBase (25). The gene expression
index was computed from probes that were selected using
ProbeSelect from GeneBase (25). The gene expression
signals were computed using these probes. Genes were con-
sidered expressed if the mean intensity was �500. Genes
were considered regulated if (i) they were expressed in at
least one condition (i.e. VPA and/or control); (ii) the fold-
change was �1.5, which is above the noise level seen in cells
(26); and (iii) the unpaired t-test P-value between gene
intensities was �0.05. For each probe, a splicing index
was computed. Unpaired t-tests were performed to deter-
mine the difference in probe expression between the two
samples as described previously (27). Probe P-values in
each probeset were then summarized using Fisher’s
method. Using annotation files, splicing patterns (cassette
exons, 50/30 alternative splice sites and mutually exclusive
exons) were tested for a difference between isoforms, select-
ing the ones with a minimum number of regulated probeset
(with a P � 0.01) in each competing isoform (at least one-
third of ‘exclusion’ probesets have to be significant; at least
one-third of ‘inclusion’ probesets have to be significant and
show an opposite regulation for the splicing index
compared with the ‘exclusion’ probesets). For example,
for a single cassette exon, the exclusion junction and at
least one of the three inclusion probesets (one exon
probeset and two inclusion junction probesets) have to be

significant and have to show an opposite regulation for the
splicing index. The exon junction arrays contained 13150
alternative cassette exons, 6517 alternative 50/30 exons and
1145 mutually exclusive exons (20 812 alternative exons). A
total of 33 395 genes are taken into account.

RESULTS

Sudemycin E binds to SF3B1 and is toxic for some
cancer cells

Sudemycin E (Figure 1A, left) is chemically related to
spliceostatin A, a methylated derivative of FR901464,
which is a natural product that binds to the U2 component
SF3B1 and modulates splicing (19). Sudemycin E is a more
stable chemically refined totally synthetic analog of
FR901464 and its derivative spliceostatin A, which is
much more chemically stable than these compounds (22).
Sudemycin E also has much less stereochemical complexity
than FR901464 or spliceostatin A, as it contains only three
stereocenters compared with nine in those compounds (22).
This means that sudemycin E and analogs are more
amenable to medicinal chemistry structure-activity studies
and scale-up to large quantities that will ultimately be
needed for possible future clinical studies. Sudemycin
E selectively stops the growth of tumors in mice and
preferably targets cancer cells, sparing nonneoplastic cells.
Similar to spliceostatin A, it changes alternative splicing
(23).

We first tested whether sudemycin E also binds
to SF3B1 and used a biotinylated derivative of sudemycin
in pull-down experiments. After binding biotinylated
sudemycin (Figure 1A, right) to streptavidin-coated
magnetic beads, the beads were incubated with HeLa
nuclear extract, washed and protein was eluted. Using
western blot, we detected binding of SF3B1 to sudemycin
E-coated beads. This demonstrates sudemycin binding to
SF3B1, as expected from its chemical structure.

Sudemycin E causes the death of certain cancer
cells, while being generally nontoxic in nontransformed
cells (23). To understand the selectivity for cancer cells,
we determined the IC50 of sudemycin E toxicity in four
cell lines: Rh18, a rhabdomyosarcoma cell line represent-
ing the most common soft tissue sarcoma in children;
HEK293 cells, adenovirus-transformed human embryonic
kidney cells; HeLa cells, a cervical cancer cell line; and
human primary skin fibroblasts. After sudemycin
E treatment, death of cells becomes noticeable at 24 h
and is more pronounced at 48 h, where we determined
the IC50 using the MTT assay. As shown in Figure 1C,
the IC50 ranges from 0.16 to >30 mM. HeLa cells are most
sensitive to sudemycin E, with an IC50 �160 nM after 48 h
of treatment, followed by Rh18 cells with an IC50 of
1.12 mM. In contrast, HEK293 cells and primary fibro-
blasts are 10–30 times less sensitive to sudemycin
E, reflecting the selectivity of the drug for cancer cells.

A short incubation with sudemycin E is sufficient to cause
cell death

The IC50 in Rh18 cells depends on the time the drug is
present in the cells and ranges from >30, 5 and 0.8mM
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after 2, 8 and 72 h of treatment, respectively (23).
Therefore, we asked whether cells have to be continuously
exposed to sudemycin E for a cytotoxic effect to occur or
whether the drug triggers a cellular response that causes
the death of cells.

Rh18 cells were treated with 1 mM sudemycin, which
was washed out by changing the cell culture medium
after 30min. This was followed by 48 h culture without
the drug (Figure 2A). The survival of these cells was
compared with cells treated with 1 mM sudemycin for
48 h, where we left sudemycin E on the cells (Figure 2B).
We did not observe significant differences in cell viability,
measured by the MTT assay between the two conditions.
Using mass spectrometry, we determined sudemycin E
concentration in medium and found that it rapidly dis-
appears (Figure 2C and D).

The natural compound FR901463 that provided the
scaffold for sudemycin E was shown to arrest M-8 cells in
the G2/M phase of the cell cycle (18). Therefore, we asked
whether we observe similar effects after short sudemycin E
incubation times. We performed cell cycle analysis after
cells were treated for 24 h with sudemycin E or treated for
only 30min, followed by a medium change that removes
sudemycin and a subsequent incubation for 23.5 h.
Sudemycin E was used at a concentration corresponding
to the IC50, 1 mM for Rh18 cells and 10 mM for HEK293
cells (Figure 2E and F). In addition, a 1mM concentration
that shows low toxicity for HEK293 cells was used and had
no significant effect on the cell cycle (Figure 2G).

As shown in Figure 2E and F, when used at concentra-
tions that are toxic for cells, we observed an arrest of both
Rh18 and HEK293 cells in G2. When used for 24 h, the
amount of cells in G2 increased �3-fold. When used for
only 30min, we found an increase of �50% in both cell
lines, which was statistically significant (Figure 2E and F).
In contrast, using 1 mM sudemycin, a concentration that is
not cytotoxic for HEK293 cells did not cause significant
changes (Figure 2G). The data indicate that sudemycin E
causes an arrest of cells in the G2 phase of the cell cycle,
which can also be seen after a 30-min incubation time.
Together, the data show that sudemycin has cytotoxic

effects after a short incubation time, and that it triggers
events that cause later cell death, as opposed to continu-
ous blocking a cell activity that is needed for survival.

Sudemycin E breaks up the U2 complex in vitro

SF3B1 is part of the U2 complex, a macromolecular
complex of at least 11 proteins assembling on the small U2
RNA (SM proteins, SF3B130, SF3B155, SF3a60, SF3B145,
SF3a120, SF3a66, U2-A’, U2-B’, SFb49, SF3B14b and
SF3B10). The U2 complex is largely remodeled during the
splicing reaction, with the loss of SF3A and SF3B proteins
during splicing catalysis (28). Therefore, we determine the
influence of sudemycin E on the U2 complex using HeLa
nuclear extract. HeLa nuclear extract was incubated with
10mM sudemycin and separated on glycerol gradients, as
previously described (29). As shown in Figure 3A, after
treatment, we detect SF3B1 no longer in the U2 complex

SF3B1

L W

L W B

DMSO

Biotin-sudemycinSF3B1

Cell name Cell type
Time of 

exposure 
(hours)

IC50 (µM)

Rh18 Rhabdomyosarcoma 48 1.12 ± 0.05

HEK293 Embryonic kidney 48 12.85 ± 0.03

HeLa Cervical cancer 48 0.16± 0.01

Fibroblasts Skin 48 >30 ± 0.04

A

B

C

B

sudemycin E

bio�n-sudemycin

Figure 1. Sudemycin E binds to SF3B1 and is toxic for cancer cell lines. (A) Structure of sudemycin E (left) and its biotinylated derivative (right).
(B) Binding of biotinylated sudemycin to SF3B1. Biotinylated sudemycin was bound to streptavidin coupled to magnetic beads, and incubated with
HeLa nuclear extract, followed by washing with PBS. The bound SF3B was eluted by boiling with 1% SDS, 10mM Tris and SF3B1 detected by
western blot. L: load, W: wash, B: bound sudemycin. Load corresponds to the total input. Ten percent of the input was loaded. (C) IC50 determined
for Rh18, HEK293, HeLa and primary fibroblast cells using the MTT assay; n=4. Sude E: sudemycin E.
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of about 17S, but in lighter fractions, corresponding to 11–
12S. U2 snRNPs extracted under high salt conditions
sediment at 12S, as several proteins present under splicing
conditions are lost from the U2 snRNP (29).
This suggests that sudemycin E does not simply bind to

SF3B1 found in the U2 complex, but causes its dissoci-
ation. Other than in the loaded sample, there was no
sudemycin E present in the gradient, suggesting that the
effect of sudemycin on the U2 complex is irreversible.

SF3B1 physically interacts with histone H3

It is well established that splicing and transcription are
coupled (30). Deep sequencing experiments indicate an
association of U2 snRNPs with histone H3 (31).
Therefore, we tested whether histone H3 can physically
interact with components of the U2 complex.

Because chromatin is largely insoluble, we purified
oligo-nucleosomes from sudemycin-treated and naı̈ve
Hela cells by performing limited chromatin nuclease diges-
tion (Figure 4A). Mono- and dinucleosomes were
immunoprecipitated with an anti H3 antiserum, and
bound SF3B1 was detected using western blot. As
shown in Figure 4B and C, we observe coprecipitation
between the U2 complex SF3B1 and nucleosomes,
demonstrating a physical interaction. Importantly, in the
presence of sudemycin E, this interaction is reduced by
25% (P< 0.05, n=4).

These data indicate a physical interaction between
nucleosomes and SF3B1. It is likely that SF3B1 is in a
complex with U2 that is bound by nucleosomes. The re-
duction of SF3B1 binding to nucleosomes could be caused
by a dissociation of the U2 complex that we observed in
gradient centrifugation.
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Figure 2. A short treatment with sudemycin E is sufficient to cause cell death. (A) Survival of Rh18 cells in the presence of 1 mM sudemycin;
sudemycin was added at time 0 and cell viability measured by the MTT assay, n=4; arrow indicates time of wash-out. (B) Survival of Rh18 cells
after 30-min incubation with 1 mM sudemycin, followed by a wash out of the drug through a change in medium. The cell viability was measured by
the MTT assay, n=4. (C) Stability of sudemycin in cell culture medium. One micromolar sudemycin was incubated in cell culture medium, and the
amount of sudemycin E was determined using mass spectrometry after acetonitrile extraction. (D) Stability of sudemycin in the presence of cells.
Sudemycin was incubated with Rh18 cells, and the amount of sudemycin was measured after acetonitrile extraction. (E) Cell cycle phases of Rh18
cells after 24 h DMSO treatment, 24 h sudemycin E treatment (1mM) and after a 30-min sudemycin E pulse, followed by medium change and 23.5 h
incubation. (F) Cell cycle phases of HKE293 cells after 24 h DMSO treatment, 24 h sudemycin E treatment (10 mM) and after a 30-min sudemycin E
pulse, followed by medium change and 23.5 h incubation. (G) Similar to B, but 1mM sudemycin was used. One micromolar sudemycin does not cause
considerable cell death in HEK293 cells. *P< 0.05; **P< 0.01; n> 4.
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A 6-h treatment with sudemycin E predominantly changes
alternative splicing

To determine the molecular effects of sudemycin treat-
ment, we performed genome-wide exon junction array
analysis. First, we treated Rh18 cells with 1 mM of
sudemycin E for 6 h. The concentration of 1 mM was
chosen because it is in the IC50 range for Rh18 cells,
which is 1.12±0.05mM (Figure 1C). We choose 6 h, as
there is no measurable cell death at this time point, which
allows detecting early consequences of sudemycin E
action. The array analysis indicated that sudemycin E

changes 1553 alternative exons (Figure 5B), which is
expected for a substance inhibiting the U2 snRNP.
Unexpectedly, we observed changes in general gene ex-
pression for 575 genes (Figure 5A). Gene ontology (GO)
pathways that were affected the strongest were nitrogen
metabolic processes, nitrogen compound processes and
nucleoside synthesis. Because there is no observable cell
death at 6 h of treatment (Figure 2A and B), it is likely
that the changes observed here represent the first cellular
response to sudemycin, which affects alternative exons in
most biological pathways. These data are in agreement
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with findings for spliceostatin (21) that rapidly changes
splice site selection of selected alternative exons.

A 24-h treatment with sudemycin E changes
predominantly gene expression

To determine the changes in gene expression under condi-
tions when Rh18 cells start dying due to sudemycin E
treatment, we added 10 mM of the drug for 24 h. Because
sudemycin E rapidly disappears in the presence of Rh18
cells (Figure 2C and D), we choose a higher sudemycin E
concentration to ensure that sudemycin E is present
throughout the treatment time. Unexpectedly, we
observed more changes in overall gene expression (3777;
Figure 5C) than in alternative splicing (2117; Figure 5D).
The most affected Kyoto Encyclopedia of Genes and
Genomes pathway was the spliceosome, where 43 of
128 genes were affected. Forty-one of these genes were
upregulated. About 4% of all changes affected genes
acting in DNA metabolism, indicating a deregulation in
DNA repair and replication. Most of these genes (2108)
were upregulated in expression; 1669 were downregulated.
The data sets obtained after 6 and 10 h of sudemycin E

treatment are mostly not overlapping. The most striking
difference is a change in expression of 43 of 128 genes

acting in the spliceosome, none of which was changed
after 6 h of treatment.

Together, the data suggest that sudemycin E acts in two
stages: first, it causes changes in alternative splicing. Later,
the drug changes mainly gene expression, which affects the
spliceosome and DNA metabolism the strongest.

Early changes in alternative splicing occur gradually and
are reversible

We next validated changes observed in the arrays by RT-
PCR, using primers in constitutive exons flanking an
alternative cassette exon. The overall validation rate was
>85% (7 of 8), when splicing events with a high confi-
dence of prediction were used (P< 10�10).

Because sudemycin E appears to act in a step-wise
manner, we determined changes in alternative splicing in
a time course by RT-PCR. We first analyzed Rh18 cells
using 1 mM sudemycin, a concentration around the IC50
value. Sudemycin E was added at time 0, and cells were
tested after 2–24 h, without changing the medium. For the
genes tested, changes in alternative splicing increased
gradually for 6 h and reverted to the original splicing
pattern after 24 h (Figure 6A), consistent with the
decrease of sudemycin E (Figure 2D).
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We next used the same 1 mM sudemycin E concentration
for HEK293 cells and did not observe significant changes
in alternative splicing (Figure 6B). However, when using
the higher concentration of 10 mM, which is comparable
with the IC50 of sudemycin E in HEK293 cells, we
observed changes in alternative splicing (Figure 6C),
similar to the ones observed in Rh18 cells. In all concen-
trations and cell used, the alternative splicing patterns
revert to the original condition after 24 h. This could
be due to the loss of sudemycin, as we found that >90%
of sudemycin E is degraded after 12 h in cell culture
(Figure 2D).

The data indicate that sudemycin E rapidly changes
splicing, as expected for a compound interfering with the
U2 component SF3B1. These changes do not persist in
cells, most likely because sudemycin E decays and cells
repair the damaged U2 particles.

Thirty minutes of sudemycin E treatment cause
changes in alternative splicing

Because sudemycin E caused death of cells 48 h after a
short incubation time (Figure 2A), we investigated
whether 30 min of sudemycin E treatment causes

changes in alternative splicing. Rh18 cells were treated
with 1 mM sudemycin E for 30min. The drug was then
removed by a change in medium. Changes in splicing
were determined after 6 h by RT-PCR. As shown in
Figure 7, this short pulse is sufficient to trigger a change
in alternative splicing. This indicates that sudemycin
causes rapid changes in cells, leading to detectable
changes in alternative splicing later. Changes in alternative
splicing are most likely detected after enough of the
mRNA present before drug treatment decayed, which
results in their detection after a few hours.

Changes in gene expression caused by sudemycin
E persist after drug treatment

An unexpected finding of sudemycin E treatment was the
deregulation of general gene expression (validation rate by
RT-PCR 60%, 8 of 13). We analyzed several of these
changes in detailed time courses using RT-PCR. As
shown in Figure 8A, in Rh18 cells treated with 1mM
sudemycin, gene expression changes gradually over time,
similar to changes in alternative splicing. However, most
of the changes in expression do not revert to the original
splicing pattern when sudemycin E is degraded after 24h
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(Figure 2C). Similar to changes in splicing, most analyzed
genes in HEK293 cells are not changed using 1mM
sudemycin E (Figure 8B). However, HEK293 cells change
splicing patterns in response to sudemycin E at a concen-
tration of 10mM, near their particular IC50, similar to Rh18
cells (Figure 8C and B). These data suggest that changes in
gene expression evoked by sudemycin E are generally not as
rapidly reversible as changes in alternative splicing.

Sudemycin E changes histone modifications

The persistent change in gene expression after sudemycin
E treatment suggested a change in chromatin modifica-
tion. It has been shown that U2 snRNPs associate with
H3K36me3 modifications (31) and we could detect
binding of the U2 component SF3B1 to nucleosomes, sup-
porting the idea that U2 directly interacts with chromatin.
Furthermore, sudemycin E decreases SF3B1 binding
(Figure 4C). This indicates that sudemycin E

treatment changes the U2/nucleosome interaction,
possibly because the drug causes a dissociation of the
U2 complex (Figure 3).

We tested an influence of sudemycin E on histone modi-
fications using chromatin immunoprecipitations. Cells
were treated with sudemycin E for 6 h, and chromatin
was immunoprecipitated using an H3K36me3 antibody.
We then measured the DNA corresponding to pre-
mRNA intron/exon borders that are influenced by alter-
native splicing using real-time PCR. As shown in
Figure 9A and B, we found a marked decrease of
H3K36me3 in both Rh18 and HEK293 cells when
regions within the gene were analyzed. Similar to other
experiments, we used 1 mM sudemycin E for Rh18 cells
and 10 mM for HEK293 cells. Beta-actin as a nonaffected
gene showed no effect.

Because we detected changes in the overall gene expres-
sion after sudemycin E treatment, we analyzed histone
modifications in promoter regions. We focused on the
H3K27me3 modifications, which generally represses gene
expression (32). As shown in Figure 9C and D, after 6 h
of sudemycin E treatment, there is an increase in the
H3K27me3 modification. This correlates with the decrease
in the overall gene expression that we observed using RT-
PCR. However, the changes in the promoter regions are not
as uniformly strong as changes in the H3K36me3 modifica-
tions seen at exon junctions. Again, the nonregulated gene
beta actin showed no change in modification.

Collectively, the data indicate that sudemycin E causes
a change in chromatin modifications. The drug de-
creases modifications that favor an open chromatin
conformation.

Sudemycin E causes chromatin condensation

H3K36 trimethylation increases transcription and generally
opens chromatin. Because we observed a strong decrease of
H3K36me3 modification in target genes after sudemycin E
treatment, we asked whether sudemycin E causes chromatin
condensation. We stained Rh18 cells after 6 and 24h of
sudemycin E treatment. Similar to spliceostatin A,
sudemycin E disrupts SF3B1-containing speckles. In
addition, we found that treated cells showed an increase of
DAPI staining in large foci (Figure 10), suggestive of chro-
matin condensation.

DISCUSSION

Splicing modulators related to FR901464 show promise as
anti-cancer drugs. However, the reason for their selectivity
is not understood. Here we investigate the mechan-
ism of sudemycin E, a simple chemical derivative of
FR901464 and its related compound spliceostatin A.
Sudemycin analogs are less complex (containing only
three stereocenters rather than the nine in FR901464
and spliceostatin A), which facilitates its synthesis and
structure–activity relationship analysis. Importantly,
sudemycin E is more potent in killing cancer cells and
tumors than in its toxicity toward normal human
cells (22). FR901464 is chemically unstable in aqueous
solution, with a half-life of 45min in cell culture medium
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(19). This raises the question whether the change in alter-
native splicing observed for spliceostatin A (21) is the sole
or the major cause for the death of cancer cells.

Our results suggest that ongoing pre-mRNA splicing is
necessary to keep the epigenetic state of cancer cells.
Sudemycin causes structural changes of U2 snRNPs,
which likely result in epigenetic changes. We propose
that these epigenetic changes strongly contribute to the
selectivity of sudemycin for cancer cells (Figure 11).

Sudemycin E changes alternative splicing

To determine molecular targets of sudemycin E, we per-
formed genome wide array analysis. We found that after
6 h of treatment, 1553 alternative exons are changed,
which represent 7.46% of the alternative exon on the
array. In agreement with studies using reporter genes
(23), this clearly shows that sudemycin E does not
globally block pre-mRNA splicing, but predominantly
modulates a subset of alternative splicing events. This
modulation of alternative splicing, but not a global inhib-
ition in cell culture, has also been reported for
spliceostatin A (21). We did not detect statistical signifi-
cant changes in sequence or exon length in the exons
affected by sudemycin E, but it is likely that similar to
spliceostatin A (21), alternative exons that show subopti-
mal base pairing to U2 snRNA are affected.

Using identified splicing events, we compared different
cell lines in their response to sudemycin E. Surprisingly,
we found that the splicing patterns are influenced in a
similar way independently of sudemycin’s toxicity for
the cell. The only difference is the concentration of
sudemycin E needed to change splicing, which needs to
be higher in sudemycin-insensitive cells to alter splice
site selection. This suggests that sudemycin can enter
both sensitive and insensitive cells.

We followed the effect of sudemycin E on alternative
splicing in time course experiments and observed for most
genes that the strongest changes occur between 2 and 4 h.
Unexpectedly, the splicing patterns revert to the original
mode after 24 h, when we can measure an arrest in cell
cycle. We observed the loss of most of sudemycin E after
24 h of incubation in cells, which could be due to a cellular
degradation system or chemical reactivity of sudemycin E.
Therefore, it is likely that sudemycin E reversibly inhibits
the spliceosome in cells, which will function normally after
the drug has been removed.
Unexpectedly, a 30-min incubation of sudemycin,

followed by drug removal, is enough to obtain a change
in alternative splicing after 6 h and an arrest in the cell
cycle after 24 h. The 6-h time delay could reflect the time
it takes to degrade mRNAs present at the time of
sudemycin E treatment, as only after these RNAs are
removed, changes in alternative pre-mRNA splicing will
be visible. The exact molecular mechanism and the
kinetics of sudemycin E action on U2 snRNP remain to
be determined. It is possible that sudemycin E inhibits the
biological activity of SF3B1 before it leads to the dissoci-
ation of the U2 complex. The U2 snRNP undergoes re-
arrangements during the splicing reaction, and it is thus
possible that the binding site for sudemycin E changes
during the reaction. Because only a subset of alternative
exons is affected by sudemycin E, it is likely that
sudemycin E affects only U2 snRNPs that are actively
engaged in the splicing reaction of these exons. U2
complexes participating in splicing of other exons could
be more stable due to other proteins present in exon
enhancer complexes.
Finally, when sudemycin is removed after a 30-min

pulse, the alternative splicing patterns revert to the
original splicing mode. Because the cells still die, it is
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likely that factors other than the splicing changes contrib-
ute to cell death.

Sudemycin E causes a dissociation of the U2 complex
in vitro and influences U2 nucleosome interaction

FR901464 binds to the spliceosomal component SF3B1
(19). SF3B1 is part of the U2 complex, formed by
the association of at least 18 proteins with the U2
snRNA. The SF3 complex composed of SF3B and
SF3A dissociates before the first step of splicing, after
the spliceosome has been properly assembled on the pre-
mRNA (4).
We found that a biotinylated sudemycin derivative

binds to SF3B1, which was expected due to its pharmaco-
phore similarity to spliceostatin A. Because the U2 snRNP
dissociates during the splicing reaction, we tested the in-
fluence of sudemycin E on the U2 snRNP complex in vitro,
and found that after sudemycin treatment, SF3B1
immunoreactivity is present in lighter gradient fractions,
indicating a dissociation of the U2 complex. When

spliceosomes are prepared under higher salt conditions,
several proteins are stripped off the mature U2 snRNP,
resulting in a particle sedimenting around 12 S (29). After
6 h of sudemycin treatment, we detect SF3B1 in fractions
corresponding to 11–12 S. It remains to be determined
whether sudemycin E has the same effect on U2 snRNPs
as high salt. Isolated SF3B1 protein is expected to
sediment around 11 S assuming a globular structure, but
it is not clear what structure the protein has when
sudemycin E is bound.

The composition of the U2 snRNP complexes formed
after sudemycin E treatment remains to be determined,
but it is possible that the drug recapitulates the natural
dissociation of the SF3 complex from the U2 snRNP that
occurs during the splicing reaction.

The majority, an estimated 80%, of pre-mRNA splicing
occurs co-transcriptionally in human cells (33). It is well
established that chromatin modifications influence consti-
tutive and alternative pre-mRNA splicing (5). For
example, exons correspond to specific chromatin marks
(8,34) and histone modifications influence alternative
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splicing by recruiting auxiliary factors to the nascent pre-
mRNA (35). In return, RNA guides enzymes to chromatin
modifying complexes (36). To test an interaction between
SF3B1 and chromatin, we prepared soluble mono-, di-
and tri-nucleosomes under native conditions and
determined SF3B1 binding. We detected SF3B1 after
immunoprecipitations of these preparations, suggesting
an interaction between the U2 snRNPs and nucleosomes.
Because the preparations contain DNA and RNA, it is
possible that they are nucleic acid mediated.
Importantly, sudemycin-treated cells show significantly
less binding of SF3B1 to nucleosomes. Together with
our finding that sudemycin E causes a dissociation of
U2 snRNP, these data indicate that the intact U2
snRNP preferentially binds to nucleosomes.

A functional influence of sudemycin E on U2 snRNP–
nucleosome interaction was apparent in chromatin

immunoprecipitations using K36me3-modified histone
H3. It has been earlier shown that the presence of
SF3B3 influences this mark, which is increased at exon/
intron junctions (31,37). In all genes tested, we found a
decrease in the H3K36me3 modification after cells were
treated with sudemycin E at a concentration that causes
cell cycle arrest. H3K36me3 is associated with open chro-
matin in the bodies of active genes. We postulate that U2
snRNPs participate in maintaining the H3K36me3 modi-
fication, possibly by direct interaction with nucleosomes in
active genes (Figure 11A). The loss of U2 snRNP activity
caused by sudemycin leads rapidly to a change in alterna-
tive splicing (Figure 11B), which is reversed after the drug
is either removed or degraded. Sudemycin E causes a dis-
sociation of U2 snRNP, which likely influences chromatin
modifications, such as H3K36me3, which decreases.
Because H3K36me3 is generally associated with open

untreated

DAPI SF3B overlay

6 hrs

24 hrs

Figure 10. Change of global chromatin after sudemycin treatment. HEK293 cells were treated with 10 mM sudemycin for 6 or 24 h and analyzed by
confocal microscopy. After 6 h, �30% of the cells showed chromatin condensations, indicated by focal DAPI staining (arrows). The cell nuclei were
stained with DAPI and with an antiserum against SF3B1.
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chromatin, its loss could lead to a condensation of chro-
matin (Figure 11C). We postulate that this chromatin con-
densation spreads in the nucleus affecting expression of
multiple genes that we detected in the array experiments
after 24 h.
Similar to stem cells, cancer cells have generally more

dynamic chromatin, in part characterized by abundant
H3K36me3 marks (38,39). A condensation of chromatin,
caused in part by the loss of H3K36me3 marks in active
genes, will reprogram cancer cells to die. In this model,
chromatin changes strongly contribute to the selectivity of
sudemycin for cancer cells.
There are now several diseases known to be caused by

aberrant expression of splicing factors, for example, spinal
muscular atrophy (loss of SMN), amyotrophic lateral
sclerosis (mutants of FUS) and retinitis pigmentosa (loss
of constitutive splicing factors PRP8 and PRP18 (40). It is
not understood why a change in pre-mRNA splicing

causes cell death in these diseases and most investigations
focused on a change in splicing isoforms. Our data suggest
the possibility that changes in pre-mRNA processing
could lead to chromatin changes that ultimately cause
cell death.
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