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Abstract

Modern breeding programs routinely use genome-wide information for selecting individuals

to advance. The large volumes of genotypic information required present a challenge for

data storage and query efficiency. Major use cases require genotyping data to be linked with

trait phenotyping data. In contrast to phenotyping data that are often stored in relational

database schemas, next-generation genotyping data are traditionally stored in non-rela-

tional storage systems due to their extremely large scope. This study presents a novel data

model implemented in Breedbase (https://breedbase.org/) for uniting relational phenotyping

data and non-relational genotyping data within the open-source PostgreSQL database

engine. Breedbase is an open-source, web-database designed to manage all of a breeder’s

informatics needs: management of field experiments, phenotypic and genotypic data collec-

tion and storage, and statistical analyses. The genotyping data is stored in a PostgreSQL

data-type known as binary JavaScript Object Notation (JSONb), where the JSON structures

closely follow the Variant Call Format (VCF) data model. The Breedbase genotyping data

model can handle different ploidy levels, structural variants, and any genotype encoded in

VCF. JSONb is both compressed and indexed, resulting in a space and time efficient sys-

tem. Furthermore, file caching maximizes data retrieval performance. Integration of all

breeding data within the Chado database schema retains referential integrity that may be

lost when genotyping and phenotyping data are stored in separate systems. Benchmarking

demonstrates that the system is fast enough for computation of a genomic relationship

matrix (GRM) and genome wide association study (GWAS) for datasets involving 1,325 dip-

loid Zea mays, 314 triploid Musa acuminata, and 924 diploid Manihot esculenta samples

genotyped with 955,690, 142,119, and 287,952 genotype-by-sequencing (GBS) markers,

respectively.

Introduction

Routine genotyping is now possible with the advent of low-cost, high-throughput genotyping

platforms, giving rise to enormous amounts of data but presenting challenges for data manage-

ment and queriability [1]. Plant breeding programs routinely genotype for 1) quality control
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and validation of experimental designs [2, 3], 2) trait discovery through genome-wide associa-

tion studies (GWAS), and 3) prediction of phenotypic performance via marker-assisted selec-

tion and genomic selection (GS) [4–7]. To serve these three scenarios effectively and

efficiently, it is critical to store germplasm, pedigrees, experimental designs, and phenotypic

and genotypic information under a unified architecture. These services can either be imple-

mented within a single database or provided by independent applications interconnected via

application programming interfaces (APIs) such as, the publicly specified Plant Breeding API

(BrAPI) [8]. Here, we report the implementation of all the aforementioned services under a

single web-application connecting to a single database backend in the Breedbase system.

Breedbase is an open-source web-based database currently used by dozens of plant breed-

ing communities, including https://cassavabase.org and https://solgenomics.net [9–11]. The

codebase and application deployment are available from https://github.com/solgenomics/sgn

and https://github.com/solgenomics/breedbase_dockerfile, respectively.

For the backend database, Breedbase runs on PostgreSQL, an open-source relational database

engine [12]. Breedbase uses the Chado schema, supplemented with custom schema extensions

for handling user accounts and other metadata. Chado was initially developed at Flybase and is

now an important part of the Generic Model Organism Database (GMOD) suite of tools; Chado

is designed to be modular and ontology driven [13, 14]. Ontology driven schemas use controlled

vocabularies to map data spaces; they can be specific to an application or they can be open and

shared across many databases. One successful example of open-access controlled vocabularies is

the Crop Ontology project, which enables a common vocabulary for evaluating crops [15].

Adhering to an ontology driven philosophy enables Chado to be highly flexible in handling the

multitude of database implementations it currently serves. At the time of writing, there are 220

genomic databases that use some or all the modules in Chado [16]. Critical to Breedbase and the

work described here, is the Natural Diversity (ND) module in Chado, which is designed to store

data relating to any experiment involving phenotyping and/or genotyping [17].

Chado has traditionally been a purely relational schema. Non-relational or NoSQL data-

bases such as MongoDB, have recently become very popular, particularly for high density

data-types, such as genotyping data [18]. An advantage of non-relational databases is that rela-

tionships do not have to be explicitly defined in a schema. Instead, data can be stored via

nested objects composed of heterogeneous keys and values, allowing for flexibility in the data

structure and model; often non-relational data is structured using JavaScript Object Notation

(JSON). This is ideal for large, rapidly changing, or unstructured data. However, a disadvan-

tage of non-relational databases is that they are optimized for data retrieval, not for updating

data or the relationships between data. Given the broad community interest in querying non-

relational JSON structures concurrently with traditional relational data, the SQL specification

has evolved to support JSON storage and querying [19]. To accommodate the new standards,

PostgreSQL, which Breedbase uses, has added support for JSON and JSONb column data-

types. JSONb is a binary formatted JSON field, allowing for compressed data sizes and faster

queries in some scenarios.

Breeding methods such as GWAS and GS depend on large genotypic data and metadata,

generally stored in a standardized Variant Call Format (VCF) structure. VCF is a generic file

format for storing sequence variation, such as SNPs, indels, and structural variants, along with

annotations [20]. This format enables interoperability between researchers and between soft-

ware programs, as well as simple file generation and compact data representation for large

numbers of samples and markers. The JSON genotype storage model presented here closely

follows the VCF specification and can handle any kind of variant encoded in VCF, such as dif-

ferent ploidy levels, multiple alleles, insertions or deletions (indels), and structural variants.

The preferred format for uploading and downloading genotypic data in Breedbase is VCF.
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Materials and methods

I. Chado schema modifications

The Natural Diversity (ND) module [17] in the Chado schema provides the foundation for the

database schema used in the following work. The ND module allows for storage and querying

over many projects, and the evaluation of many stocks, genotyping experiments, and pheno-

typing experiments. Only three modifications to the ND schema are required to accommodate

the new non-relational genotyping data storage model: 1) the value field in the genotypeprop
table and 2) the value field in the nd_protocolprop table are both converted to the JSON

(JSONb in PostgreSQL) column type instead of text. Fig 1 shows the core of the schema with

the modifications highlighted in red. Additionally, 3) a Generalized Inverted Index (GIN) is

applied to the JSONb column in the genotypeprop table, allowing for faster queries of keys

within the JSON structures.

Genotype data in this schema are linked to a ‘genotyping protocol’; a ‘genotyping protocol’

is given a name, description, and controlled vocabulary type as an entry in the nd_protocol
table. The ‘genotyping protocol’ aggregates all meta-information provided in a VCF file

header, including variant calling software, genotypes calling format (i.e. allele depth, depth of

coverage, quality), the reference genome used for alignment, and marker-related information

(i.e. applied filters and information fields). It stores the aforementioned information and all

meta-data lines from the VCF file header in a JSON formatted value entry of the nd_protocol-
prop table linked to nd_protocol. The ‘genotyping protocol’ is central to grouping and delineat-

ing marker information in the database. The JSON data structure storage in the value field of

the nd_protocolprop table is described in more detail in the ‘Genotype Storage JSON

Fig 1. Core Chado database schema relied upon by Breedbase. The modifications for non-relationally storing genotyping data within the Chado relational

schema are highlighted in red [17].

https://doi.org/10.1371/journal.pone.0240059.g001
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Structures’ section below. A ‘genotyping project’ is defined as a group of ‘genotyping proto-

cols’, hierarchically; this organizational structure is useful for large breeding programs where

multiple genotyping events are occurring. The ‘genotyping project’ is stored as an entry in the

project table.

The samples genotyped are stored as entries in the stock table; in Breedbase, the stock entries

that can be genotyped have controlled vocabulary terms of either ‘tissue_sample’, ‘plot’, ‘plant’,

or ‘accession’. The genotype for a sample under a specific ‘genotyping protocol’ is stored as an

entry in the genotype table with a link to the genotypeprop table; the JSON formatted value field

in the genotypeprop table represents the sample’s complete ‘callset’ under a specific ‘genotyping

protocol’. A ‘callset’ represents all genotypes for all markers in the ‘genotyping protocol’ for a

single sample as defined in BrAPI [8]. More information on the JSON data structure stored in

the value field of the genotypeprop table is given in the ‘Genotype Storage JSON Structures’ sec-

tion below. Phenotypes for samples are linked using the phenotype table, where the variable

being measured is a controlled vocabulary type linked using the cvalue_id field and the pheno-

typic result is stored as a string in the value field. The nd_experiment table connects the project,
nd_protocol, stock, phenotype, and genotype tables under a controlled vocabulary type, enabling

querying across all entities involved.

II. Genotype storage JSON structures

The JSON value fields stored in the genotypeprop and nd_protocolprop tables take their forms

from the VCF data model. Intuitively, the first nine columns of information in the VCF are

aggregated into a single JSON object and stored as an entity in the nd_protocolprop table, while

a new JSON object is aggregated for each of the sample columns (columns 10 to the maximum

number of columns in the VCF) and stored as entries in the genotypeprop table. Tables 1 and 2

describe the structure of the value field JSON objects in the nd_protocolprop and genotypeprop
tables, respectively, for a hypothetical ‘genotyping protocol’ involving two markers named

‘S2_20032’ and ‘S2_20033’.

Table 1. Descriptions of the JSON objects stored in the nd_protocolprop table.

Controlled Vocabulary Entry Top-Level Key Value

Data-

Type

Description Example Value

‘vcf_map_details’ reference_genome_name String The name of the reference genome

against which genotypic variants

were called.

‘Mesculenta_511_v7’

‘vcf_map_details’ species_name String The name of the species which was

genotyped.

‘Manihot esculenta’

‘vcf_map_details’ sample_observation_unit_type_name String

Enum

The controlled vocabulary type of

the sample which was genotyped.

Can be either ‘tissue_sample’,

‘plant’, ‘plot’, or ‘accession’ in the

Breedbase database.

‘tissue_sample’

‘vcf_map_details’ header_information_lines Array of

Strings

An array containing information

about the genotyping protocol.

Intended for the information lines

at the top of the VCF beginning

with “##”.

[

"##fileformat = VCFv4.0", "##Tassel =

<ID = GenotypeTable, Version = 5>",

"##FORMAT = <ID = GT, Number = 1,

Type = String, Description = ’Genotype’>"

]

‘vcf_map_details’ marker_names Array of

Strings

An array containing all marker

names used in the genotyping

protocol.

[

"S2_20032",

"S2_20033"

]

(Continued)
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The nd_protocolprop table stores three entries to describe a genotyping protocol, as described

in Table 1. The first entry is stored using the controlled vocabulary term ‘vcf_map_details’ and

Table 1. (Continued)

Controlled Vocabulary Entry Top-Level Key Value

Data-

Type

Description Example Value

‘vcf_map_details_markers’ None Object An object where the top-level keys

are the marker names and the

respective values are marker

information objects (MIOs). This

object contains all markers

involved in the genotyping

protocol.

{

"S2_20032" : {

"name" : "S2_20032",

"chrom" : "2",

"pos" : "20032",

"alt" : "G,T",

"ref" : "C",

"qual" : "99",

"filter" : "PASS",

"info" : "AR2 = 0.29;DR2 = 0.342;

AF = 0.375",

"format" : "GT:AD:DP:GQ:DS:PL:NT"

},

"S2_20033" : {

"name" : "S2_20033",

"chrom" : "2",

"pos" : "20033",

"alt" : "G",

"ref" : "C",

"qual" : "99",

"filter" : "PASS",

"info" : "AR2 = 0.29;DR2 = 0.342;

AF = 0.375",

"format" : "GT:AD:DP:GQ:DS:PL:NT"

}

}

‘vcf_map_details_markers_array’ None Array of

Objects

An array containing marker

information objects (MIOs). This

array contains all markers used in

the genotyping protocol.

[

{

"name" : "S2_20032",

"chrom" : "2",

"pos" : "20032",

"alt" : "G",

"ref" : "C",

"qual" : "99",

"filter" : "PASS",

"info" : "AR2 = 0.29;DR2 = 0.342;

AF = 0.375",

"format" : "GT:AD:DP:GQ:DS:PL:NT"

},

{

"name" : "S2_20033",

"chrom" : "2",

"pos" : "20033",

"alt" : "G",

"ref" : "C",

"qual" : "99",

"filter" : "PASS",

"info" : "AR2 = 0.29;DR2 = 0.342;

AF = 0.375",

"format" : "GT:AD:DP:GQ:DS:PL:NT"

}

]

An example genotyping protocol containing two markers named “S2_20032” and “S2_20033” is given.

https://doi.org/10.1371/journal.pone.0240059.t001
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the value field JSON object contains the following top-level keys: ‘reference_genome_name’,

‘species_name’, ‘header_information_lines’, ‘sample_observation_unit_type_name’, and ‘mar-

ker_names’. Each of these keys gives information about the genotyping protocol and how the

genotyping data was generated. Particularly, the ‘header_information_lines’ key is to store an

array of strings for the meta-information header lines found at the top of a VCF file, indicated

with ‘##’. The ‘reference_genome_name’, ‘species_name’, and ‘sample_observation_unit_type_-

name’ keys map to string values for the name of the reference genome used for alignment, the

name of the species, and the controlled vocabulary type of the observation unit sampled for gen-

otyping (either ‘tissue_sample’, ‘plant’, ‘plot’, or ‘accession’ in Breedbase). The ‘marker_names’

key stores a list of all marker names used in the protocol.

The second entry in the nd_protocolprop table is stored using the controlled vocabulary

term ‘vcf_map_details_markers’. In this entry, the value field JSON object is a key value map-

ping of marker names to marker information objects (MIOs); each MIO has the following

keys: ‘chrom’, ‘pos’, ‘name’, ‘ref’, ‘alt’, ‘qual’, ‘filter’, ‘info’, and ‘format’, signifying values for,

chromosome number, base pair position, marker name or unique identifier, reference allele,

comma separated alternate alleles, marker quality score, filter status, additional information,

and genotype score format, respectively. This terminology is taken directly from the VCF spec-

ification and the meanings and data formats are identical. The third entry in the nd_protocol-
prop table is stored under the controlled vocabulary term ‘vcf_map_details_markers_array’.

This entry contains an array of MIOs. Note that the previous entry was an object of MIOs and

represents redundant information; however, these two data representations allow for flexible

and performant construction of JSON SQL queries in PostgreSQL.

The value field JSON object in the genotypeprop table is composed of dynamic top-level

keys; the top-level keys are all the marker names tested in the ‘genotyping protocol’ and are the

same marker names stored in the value field JSON object of the nd_protocolprop table

described in the previous paragraph. As described in Table 2, the subsequent object under

these top-level keys contains the genotype score information, with keys coming dynamically

from the ‘format’ field of the uploaded genotype file; uploading a VCF file allows for storage of

all VCF defined genotype attributes e.g. ‘GT’, ‘AD’, ‘DP’, ‘GQ’, ‘PL’, and ‘GL’. Alternatively,

uploading a tab-delimited allele matrix file, allows for storage of only ‘GT’ in the genotypeprop
JSON object. In all cases for every genotype, the uploaded genotype data files must minimally

contain the marker name, the reference and alternate alleles, and the genotype encoded in

VCF ‘GT’ form. Additionally in all cases of genotype upload, Breedbase generates and stores

two new keys named ‘NT’ and ‘DS’. The ‘NT’ key contains the nucleotides for the given poly-

morphism (e.g. ‘A’, ‘T’, ‘C’, or ‘G’), separated by a comma; the order of the nucleotides is the

same as in the ‘GT’ key and this is true for both unphased data (the GT key contains the “/”

Table 2. Description of JSON object stored in the genotypeprop table.

Top-Level Key Value

Data-Type

Description Example Value

$marker_name (Variable. To follow the example genotyping

protocol in Table 1, $marker_name would be “S2_20032” or

“S2_20033”.)

Object The top-level keys are the marker names. Each value is an object

containing all genotype score information in accordance with the VCF

data model, and the “NT” key. The “NT” key is generated by Breedbase

and is important for allelic interpretation of the genotype. The “DS” key

represents the dosage genotype (value of ‘0’, ‘1’, ‘2’, etc., or ‘NA’); it is

generated by Breedbase if it is not provided during upload.

{

"GT" : "0/0",

“NT” : “A,A”

"AD" : "9,0",

"DP" : "9",

"GQ" : "99",

"DS": "0",

"PL" :

"0,27,255"

}

https://doi.org/10.1371/journal.pone.0240059.t002
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separator) and phased data (the GT key contains the “|”separator). The ‘NT’ key is important

in the Breedbase system to provide allelic context to the genotype and enables simple querying.

The ‘DS’ key represents the dosage genotype and is a value of either ‘0’, ‘1’, ‘2’, etc., or ‘NA’. If

the ‘DS’ key is not provided in the VCF it is calculated by Breedbase as a sum of the reference

calls in the ‘GT’ key; for instance, where ‘GT’ = ’1/1’ then ‘DS’ = ‘0’, where ‘GT’ = ’0/0’ then

‘DS’ = ‘2’, where ‘GT’ = ’0/1’ or ’1/0’ then ‘DS’ = ‘1’, and where ‘GT’ = ’./.’ then ‘DS’ = ’NA’.

The ‘DS’ key is important for easily querying dosage genotype results and for subsequent

downstream analysis, such as imputation, GWAS or GS. In this way, all genotype information

provided in the uploaded genotyping file is stored, with VCF files being the preferred format

for uploading genotypic data into Breedbase.

An important difference between a VCF file and the data structure in the database is that

VCF files are ‘marker first’ (markers define the rows and the samples define the columns)

whereas this database implementation stores the data ‘sample first’ (the database rows define

samples and the ‘columns’ in the JSONb data structure define the markers) [21]. The data in the

database is therefore essentially the transpose of the VCF file and accordingly has to be trans-

posed when loaded and when downloaded into certain formats, including VCF. Transposition

is both memory and time intensive, with a complexity of O(n2). While it would be easy to store

both ‘marker first’ and ‘sample first’ matrix representations in the database, we have opted not

to do this because it leads to complex operations when data have to be added or removed.

III. Caching of results

Application performance is critical for breeding programs to effectively incorporate genotypic

information in decision making. Provided that genotyping protocols do not change after being

uploaded into Breedbase, file caching is used to maximize genotypic query performance in the

Breedbase system and to minimize system memory requirements. When a user issues a geno-

type query to the Breedbase system the following actions are executed: (1) the query parame-

ters are encoded into an MD5 hash string (2) the file cache determines whether this string

represents a query that has not been served by the system before (3) if the query has been

served before then the results will simply be returned to the user from the file cache (4) if the

query has not been served before, then the results will be fetched from the PostgreSQL data-

base, written to the file cache, and then returned to the user. The file cache minimizes system

memory requirements by iteratively writing results from the PostgreSQL database to the

cached file line-by-line; similarly, results can be efficiently read line-by-line.

The file cache is implemented using the Perl Cache::File module. To meet the requirements of

different analyses applications, three formats can be retrieved from the file cache system currently:

VCF, dosage matrix, and internal JSON. As is discussed in the “Packaged Queries” section below,

simple entry-points for retrieving results in any of the three formats from the file cache are pro-

vided. The VCF and dosage matrix formats are largely for user-facing actions for serving geno-

type results directly as files, whereas the internal JSON format is largely for operations and tools

within Breedbase. In the dosage matrix format, the first column lists all the genotyped markers,

each subsequent column is for a genotyped sample, and the genotypes are dosage values (e.g. ‘0’,

‘1’, ‘2’, etc., or ‘NA’). The internal JSON format follows the JSON representations previously

described; however, it also returns experimental metadata concerning the genotyped samples.

Results

I. Example SQL queries

Using PostgreSQL’s JSON and JSONb query functions, precise queries spanning phenotypes

and genotypes can be constructed; however, directly constructing SQL queries is not
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recommended because it does not take advantage of the file caching system within Breedbase.

Furthermore, constructing SQL queries directly may not retrieve all the possible metadata that

is available within the Breedbase database. The queries here are for demonstration purposes

only; in practice, the examples demonstrated in the “Packaged Queries” section below should

be used as templates in production settings.

SQL Example I. To construct a query with the following criteria: (1) stocks genotyped for

a marker named either ‘S10_0880’ or ‘S11_0112’, and (2) stocks have been phenotyped for a

trait called ‘plant height in cm’ in a field phenotyping experiment called ‘2019_CA_MT’, an

SQL query can be written as:

SELECT stock.uniquename FROM stock

JOIN nd_experiment_stock USING (stock_id)

JOIN nd_experiment_phenotype USING (nd_experiment_id)

JOIN nd_experiment_project USING (nd_experiment_id)

JOIN nd_experiment_protocol USING (nd_experiment_id)

JOIN phenotype USING (phenotype_id)

JOIN project USING (project_id)

JOIN nd_protocolprop USING (nd_protocol_id)

JOIN cvterm ON (phenotype.cvalue_id = cvterm.cvterm_id)

WHERE cvterm.name = ‘plant height in cm’

AND project.name = ‘2019_CA_MT’

AND nd_protocolprop.value->‘markers’?| array[‘S10_0880’, ‘S11_0112’];

SQL Example II. To construct a query with the following criteria: (1) all triploid stocks

were genotyped for a marker named ‘S8_0880’ in a genotyping protocol named

‘2019_GT_MAP’ with genotyping depth of coverage (‘DP’) greater than 10 and genotyping

quality (‘GQ’) greater than 90 and (2) have the ‘T’ allele on all chromosomes in an unphased

call where the ‘T’ allele is the reference allele, and (3) were phenotyped for a trait called ‘plant

height in cm’ at a value greater than 5, an SQL query could be written as:

SELECT stock.uniquename FROM stock

JOIN nd_experiment_stock USING (stock_id)

JOIN nd_experiment_phenotype USING (nd_experiment_id)

JOIN nd_experiment_protocol USING (nd_experiment_id)

JOIN nd_experiment_genotype USING (nd_experiment_id)

JOIN phenotype USING (phenotype_id)

JOIN nd_protocol USING (nd_protocol_id)

JOIN nd_protocolprop USING (nd_protocol_id)

JOIN genotypeprop USING (genotype_id)

JOIN cvterm ON (phenotype.cvalue_id = cvterm.cvterm_id)
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WHERE cvterm.name = ‘plant height in cm’

AND phenotype.value::int > 5

AND nd_protocol.name = ‘2019_GT_MAP’

AND nd_protocolprop.value->‘markers’->‘S10_0880’->‘DP’::int > 10

AND nd_protocolprop.value->‘markers’->‘S10_0880’->‘GQ’::int> 90

AND genotypeprop.value->‘S8_0880’->‘NT’ = ‘T,T,T’

AND genotypeprop.value->‘S8_0880’->‘GT’ = ‘0/0/0’

II. Packaged queries

Perl Moose objects named CXGN::Genotype::Search, CXGN::Genotype::GRM, and CXGN::

Genotype::GWAS are available in Breedbase to facilitate query and analyses construction, and

to provide an interface to the file cache system.

A. CXGN::Genotype::Search. The CXGN::Genotype::Search object allows genotypes to

be queried for specific accessions, tissue samples, field trials, genotyping protocols, markers,

chromosomes, and base pair positions, using the ‘accession_list’, ‘tissue_sample_list’, ‘trial_-

list’, ‘protocol_id_list’, ‘marker_name_list’, ‘chromosome_list’, and ‘start_position’ and ‘end_-

position’ parameters, respectively. Minimally, a list of accessions and a genotyping protocol

should be supplied. The required configuration fields for instantiation are ‘bcs_schema’ and

‘cache_root’ for the Bio::Chado::Schema database schema connection and the directory of the

cache file system, respectively; all other fields are query parameters.

For convenience and performance reasons, the CXGN::Genotype::Search object provides

three entry-points for retrieving results from the file cache, formatted as either VCF, dosage

matrix, or internal JSON. There are two additional entry-points for retrieving genotypes in

VCF and dosage matrix formats computed from genotyped parents; the progeny’s genotypes

are calculated for each marker as an average of the parental dosage genotypes, simulating the

inbreeding coefficient of each marker genotype of the hybrid as one-half of each of the two

parents [22]. An example instantiation signature is given below with entry-points for retriev-

ing each of the cache file formats. These entry-points have the advantage of being memory effi-

cient by allowing reading of results line-by-line from the result file. The returned file handles

can also be returned directly to the user for download, as is used for the Breedbase Search Wiz-

ard demonstrated in the “Web Interface Queries’’ section below.

my $genotypes_search = CXGN::Genotype::Search->new({

bcs_schema =>$schema,

cache_root =>$cache_file_directory,

accession_list =>\@accession_list,

tissue_sample_list =>\@tissue_sample_list,

trial_list =>\@trial_list,

protocol_id_list =>\@protocol_id_list,

markerprofile_id_list =>\@markerprofile_id_list,

genotype_data_project_list =>\@genotype_data_project_list,
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chromosome_list =>[‘S1’,’S10’,’S80’],

start_position =>‘9000’,

end_position =>‘3000000’,

marker_name_list =>[’S80_265728’, ’S80_265723’],

genotypeprop_hash_select =>[’DS’, ’GT’, ’DP’],

protocolprop_top_key_select =>[’reference_genome_name’, ’header_information_lines’,

’marker_names’, ’markers’],

protocolprop_marker_hash_select =>[’name’, ’chrom’, ’pos’, ’alt’, ’ref’],

return_only_first_genotypeprop_for_stock =>0,

limit =>$limit,

offset =>$offset

});

my @required_config = ($shared_cluster_file_directory, ‘Slurm’, ‘localhost’, ‘batch’,

$basepath_directory);

# Retrieving VCF using cache file system

my $result_filehandle_VCF = $genotypes_search->get_cached_file_VCF(@required_config);

# Retrieving Dosage Matrix using cache file system

my $result_filehandle_dosage_matrix = $genotypes_search->get_cached_file_dosage_matrix

(@required_config);

# Retrieving Internal JSON using cache file system. There is an option to retrieve metadata

only without the genotype scores

my $result_filehandle_markerprofile_JSON = $genotypes_search-

>get_cached_file_search_json($shared_cluster_file_directory, $metadata_only);

# Retrieving VCF using cache file system for genotypes computed from genotyped parents

my $result_filehandle_VCF = $genotypes_search-

>get_cached_file_VCF_compute_from_parents(@required_config);

# Retrieving Dosage Matrix using cache file system for genotypes computed from genotyped

parents

my $result_filehandle_dosage_matrix = $genotypes_search-

>get_cached_file_dosage_matrix_compute_from_parents(@required_config);

B. CXGN::Genotype::GRM. A Perl Moose object named CXGN::Genotype::GRM pro-

vides a standardized interface for retrieving a genomic relationship matrix (GRM) by mini-

mally specifying a list of accessions and a genotyping protocol. The required configuration

fields are ‘bcs_schema’, ‘people_schema’, ‘cache_root’, and ‘grm_temp_file’ for the Bio::

Chado::Schema database schema connection, the CXGN::Metadata::Schema database schema

connection, the directory of the cache file system, and a temporary file to save the GRM result,

respectively; all other fields are query parameters and parameters for calculating the GRM.
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The GRM is computed using the R rrBLUP package and imputes missing genotypes using an

‘Expectation Maximization’ (EM) algorithm [23]. The genotypes are filtered using user input

for minor allele frequency (MAF) and percent missing data for markers and samples prior to

calculating the GRM. Three formats are available for download: a tab-separated matrix format

(.tsv), a three-column format (.tsv), and a heatmap figure (.pdf). The three-column format is

particularly useful for fitting mixed models in ASReml [24] once the data is exported from

Breedbase. The GRM can be computed for accessions whose parents are genotyped, as

described previously, using the ‘get_grm_for_parental_accessions’ boolean attribute.

my $geno = CXGN::Genotype::GRM->new({

bcs_schema =>$schema,

people_schema =>$people_schema,

cache_root =>$cache_root,

grm_temp_file =>$file_temp_path,

accession_id_list =>\@accession_list,

plot_id_list =>\@plot_id_list,

protocol_id =>$protocol_id,

get_grm_for_parental_accessions =>$compute_from_parents,

download_format =>$download_format, #either ‘matrix’, ‘three_column’, or ‘heatmap’

minor_allele_frequency =>0.01,

marker_filter =>0.6,

individuals_filter =>0.8

});

My $result_filehandle_grm = $geno->download_grm(@required_config);

C. CXGN::Genotype::GWAS. A genome-wide association study (GWAS) can be com-

puted using the CXGN::Genotype::GWAS Perl Moose object by minimally specifying a list of

accessions, a list of phenotypic traits, and a genotyping protocol. The required configuration

parameters are ‘bcs_schema’, ‘people_schema’, ‘cache_root’, ‘grm_temp_file’, ‘gwas_temp_-

file’, and ‘pheno_temp_file’ for the Bio::Chado::Schema database schema connection, the

CXGN::Metadata::Schema database schema connection, the directory of the cache file system,

and temporary files to process the GWAS result, respectively; all other fields are query parame-

ters and parameters for performing the GWAS. The R rrBLUP package is used to perform

imputation using the ‘EM’ algorithm [23]; rrBLUP performs the GWAS using a mixed linear

model including fixed effects for the experimental design (i.e., location and year of field experi-

ment and replicate of tested accession) of the phenotypic measurements and using a kinship

matrix calculated from the genotypic data. Genotypes are filtered by MAF and missing marker

and sample data prior to calculating the kinship matrix and the GWAS. The GWAS can be

computed for accessions whose parents are genotyped, as described previously, using the

‘get_grm_for_parental_accessions’ boolean attribute. If the provided trait list represents a

series of repeated measurements, the boolean ‘traits_are_repeated_measurements’ attribute

can be used. When traits are not to be treated as repeated measurements, results are returned
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for each trait independently. Results can be returned in two formats: a tabular result file (.tsv)

or figures for Manhattan and QQ plots (.pdf).

my $geno = CXGN::Genotype::GWAS->new({

bcs_schema =>$schema,

people_schema =>$people_schema,

grm_temp_file =>$file_temp_path,

gwas_temp_file = >$file_temp_path_gwas,

pheno_temp_file =>$file_temp_path_pheno,

cache_root =>$cache_root,

download_format =>$download_format, #either ‘results_tsv’ or ‘manhattan_qq_plots’

accession_id_list =>\@accession_list,

trait_id_list =>\@trait_id_list,

traits_are_repeated_measurements =>$traits_are_repeated_measurements,

protocol_id =>$protocol_id,

get_grm_for_parental_accessions =>$compute_from_parents,

minor_allele_frequency =>0.01,

marker_filter =>0.6,

individuals_filter =>0.8

});

My $result_filehandle_gwas = $geno->download_gwas(@required_config);

III. Web interface queries

Breedbase provides a web-interface compatible with all modern internet browsers on any

device. A suite of web-pages are available for management of germplasm resources, pedigrees,

seed inventories, field trials, experimental locations, phenotypic records, crossing blocks, gen-

otyping storage, and other plant breeding program aspects. Once the information is entered

into Breedbase, the primary means of searching and retrieving information is through the

Search Wizard (Fig 2).

The Search Wizard (https://breedbase.org/breeders/search) enables construction of queries

spanning accessions, field trials, genotyping protocols, locations, years, and phenotypic traits,

and also provides an interface for downloading phenotypic and genotypic results as data files

in several formats. Genotypic data can be filtered by chromosome, start position, and end posi-

tion and can be downloaded in VCF or dosage matrix formats. More precise filtering is possi-

ble by selecting a marker set; a marker set is a user defined list of markers or a range of

physical positions. Once accessions are selected the GRM can be downloaded, and if pheno-

typic traits are selected then a GWAS can also be downloaded. The Search Wizard internally

uses the entry-points previously described in the “Packaged Queries” section. Phenotypic rec-

ords can be filtered by minimum and maximum values prior to downloading as CSV or Excel

files.
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IV. Limitations

The maximum number of markers that can be stored is limited by the PostgreSQL maxi-

mum data limit of 1GB per a single field [25]. If each marker requires 60 bytes of storage

space, the maximum number of markers that can be described in a single genotyping

protocol is approximately 17 million. For a 1 gigabase genome, this would represent

almost 2 single nucleotide polymorphisms (SNPs) for every 100 base pairs or a polymor-

phism rate of about 2%. In the case of large genomes that are very polymorphic, these

storage limitations may be reached, and additional implementation approaches may be

required, such as storing different chromosomes individually in separate genotypeprop
entries. Furthermore, storage of polyploid genotypes increases the number of bytes per

marker, reducing the maximum number of markers which can be stored in the current

implementation.

Fig 2. The search wizard is the primary means of querying Breedbase and provides a means for downloading phenotypic and genotypic records in several formats.

The search consists of four query categories (1) to (4) to filter across every kind of data object in the database. In this example, traits were first selected (1) and ‘grain

moisture’, ‘grain yield’, and ‘plant height’ were chosen. Then, accessions were selected (2) and from the 1,404 accessions which met the selected trait criteria 8 accessions

were chosen. Then, trials were selected (3) and of the 5 field trials which met the selected trait and accessions criteria, 4 trials were chosen. Then, locations were selected (4)

and the two locations which met the previous criteria were chosen. A genotyping protocol can be selected as a filter in (1) to (4); however, a default genotyping protocol is

used when one is not explicitly selected. Clicking on “Related Genotype Data” brings a dialog to filter genotype data for the selected accessions by chromosome, start

position, and end position prior to downloading in VCF or Dosage Matrix formats (5). Additionally, a marker set can be selected to filter downloaded genotypes further.

Genotypes can be computed from parents in the pedigrees of the selected accessions if the parents were genotyped by clicking the “Compute from Parents” checkbox for

(5), (6), or (7). The genomic relationship matrix (GRM) can be downloaded (6) for the selected accessions after filtering for minor allele frequency (MAF) and missing

data. Three formats for downloading the GRM are available: a tab separated matrix format (.tsv), a three-column format (.tsv), and a heatmap figure (.pdf). A GWAS can

be computed by selecting accessions and traits in (1) to (4) and results can be downloaded (7) as Manhattan and QQ plot figures (.pdf) or as a tabular file of the p-values (.

tsv). Clicking “Related Trial Phenotypes” brings a dialog to filter phenotypes by minimum and maximum values prior to downloading phenotypic data in CSV or Excel

formats (8).

https://doi.org/10.1371/journal.pone.0240059.g002
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V. Performance benchmark

To test the Breedbase JSON genotype storage system, three datasets were loaded into a test

Breedbase instance running on a HP Z820 workstation with 256 GB RAM and 2x Intel Xeon

E5-2660v2 CPUs. The first dataset loaded is a VCF containing 314 Musa acuminata samples

genotyped with 142,119 genotype-by-sequencing (GBS) markers; this data is available in the

Breedbase instance https://musabase.org/breeders_toolbox/protocol/1 and contains triploid

genotypes [26, 27]. The second dataset loaded is a VCF containing 924 Manihot esculenta sam-

ples genotyped with 287,952 GBS markers and is available in the Breedbase instance https://

cassavabase.org/breeders_toolbox/protocol/6 [28]. The third dataset loaded is a VCF contain-

ing 1,325 Zea mays samples genotyped with 955,690 GBS markers and is available in the

Breedbase instance https://imagebreed.org/breeders_toolbox/protocol/5 [29].

Additionally, four phenotypic datasets were loaded into the Breedbase instance; the pheno-

typic records include accessions evaluated in field trials for which genotypic records in the

aforementioned VCF datasets exist. The first dataset is from https://musabase.org of 75 pheno-

typic traits evaluated across 3 field trial experiments of Musa acuminata accessions. The sec-

ond dataset is from https://cassavabase.org of 18 phenotypic traits evaluated across 3 field trial

experiments of Manihot esculenta accessions. The third dataset is from https://imagebreed.org

of 14 phenotypic traits evaluated across 3 field trial experiments of Zea mays accessions. To

test computing genotypes from genotyped parents, pedigrees between hybrid Zea mays prog-

eny accessions and parent accessions are uploaded into Breedbase; a fourth dataset was

uploaded of 14 phenotypic traits evaluated across 3 field trial experiments for the hybrid Zea
mays accessions.

The Perl test script, the three genotypic data VCF files, the four phenotypic data CSV files,

and an SQL dump of the data loaded into the test Breedbase instance are included with this

publication in the “Supplemental Information”. The phenotypic data files include the field

experiment metadata and pedigree information. Note that there exist significant typographical

errors between the accession names listed in the genotype VCF files and the accessions listed

in the phenotypic information files, both for the tested accessions and for the pedigree acces-

sions; however, Breedbase consolidates these names through a curation interface during

upload of new accession names. Typographical errors such as ‘Tx303’ vs ‘TX-303’ are flagged

by a text similarity score and the interface allows for correctly storing the relationships

between identifiers.

Loading genotype data. For the benchmark test, all VCF files were uploaded consecu-

tively through the Breedbase web-interface. Uploading the VCF containing 314 Musa acumi-
nata samples genotyped with 142,119 GBS markers required a maximum of 2.36 GB RAM and

93 minutes to complete. Uploading the VCF containing 924 Manihot esculenta samples geno-

typed with 287,952 GBS markers required a maximum of 10.8 GB RAM and 237 minutes to

complete. Uploading the VCF containing 1,325 Zea mays samples genotyped with 955,690

GBS markers required a maximum of 8.49 GB RAM and 535 minutes to complete. Future

development to improve the upload process can parallelize genotype loading and can provide

email responses to the user.

Retrieving genotype and phenotype data performance. For each of the three species in

the test data, a random set of 25 accessions were chosen 10 different times with replacement.

Those accessions were then (1) queried for 500 random markers and genotypic data was

returned in VCF and dosage matrix formats, (2) the GRM was computed using all genotypes in

the genotyping protocol after filtering for 1% MAF, 60% missing marker genotypes, and 80%

missing sample genotypes, (3) GWAS was performed for two phenotypic traits using all geno-

types in the genotyping protocol after filtering for 1% MAF, 60% missing marker genotypes,
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and 80% missing sample genotypes, and (4) the accessions were queried for all phenotypic traits

evaluated. An additional scenario was tested for Zea mays in which the genotypes were com-

puted from genotyped parents in the pedigree. Table 3 lists the mean query time in seconds for

these four scenarios. The same queries were then performed a second time in order to test the

file cache performance; Table 4 lists the mean query time in seconds for the four scenarios

retrieving data from the file cache. The genotype downloads and computation of the GRM and

GWAS were performed using the CXGN::Genotype::Search, CXGN::Genotype::GRM, and

CXGN::Genotype::GWAS modules described in the “Packaged Queries” section.

VI. Scalability and continued development

Cassavabase (https://cassavabase.org) is the Breedbase instance currently with the largest geno-

typic data, nearly 100,000 samples with dense GBS genotypes from genotyping protocols of up to

287,952 markers, as well as thousands of samples with low density genotypes from genotyping

protocols of around 20 markers. The system is used routinely to perform genomic selection anal-

ysis by affiliated breeding programs using the built-in solGS tool [6]. Further scalability tests and

development will be necessary before this solution can accommodate very large breeding pro-

grams; however, Cassavabase and the performance benchmark described above show that for

small to medium programs the implementation presented here is an appropriate solution.

Table 3. Results for non-cached query performance.

Crop Species Test Scenario

For Non-cached Query

VCF Mean

Download Time

(s)

Dosage Matrix Mean

Download Time (s)

Genomic Relationship Matrix

(GRM) Mean Download Time

(s)

Genome Wide Association

Study (GWAS) Mean Download

Time (s)

Phenotype Query

Mean Time (s)

Musa acuminata (triploid

accessions)

129.8 99.7 257.3 373.7 0.220

Manihot esculenta (diploid

accessions)

240.8 159.3 649.7 810.3 0.030

Zea mays (diploid hybrid

genotypes calculated from

genotyped parents)

1083.7 874.7 6696.6 7570.1 0.040

Zea mays (diploid accessions) 454.6 634.5 5973.5 6347.2 0.040

Mean time in seconds required to download VCF, dosage matrix, GRM, GWAS, and phenotypic results for the banana, cassava, and maize test datasets loaded into a

test Breedbase instance. The maize data tested an additional scenario in which the hybrid genotypes are computed from their genotyped parents in the pedigree.

https://doi.org/10.1371/journal.pone.0240059.t003

Table 4. Results for repeated query performance from the file cache.

Crop Species Test Scenario For

Repeated Cached Query

VCF Mean

Download Time

(s)

Dosage Matrix Mean

Download Time (s)

Genomic Relationship

Matrix Download Time (s)

Genome Wide Association Study

(GWAS) Mean Download Time

(s)

Phenotype Query

Mean Time (s)

Musa acuminata (triploid

accessions)

0.010 0.010 0.007 0.007 0.220

Manihot esculenta (diploid

accessions)

0.009 0.010 0.007 0.008 0.030

Zea mays (diploid hybrid

genotypes calculated from

genotyped parents)

0.007 0.018 0.007 0.007 0.040

Zea mays (diploid accessions) 0.010 0.029 0.008 0.007 0.070

Mean time in seconds required to download VCF, dosage matrix, GRM, GWAS, and phenotypic results for the banana, cassava, and maize test datasets loaded into a

test Breedbase instance. The maize data tested an additional scenario in which the hybrid genotypes are computed from their genotyped parents in the pedigree.

https://doi.org/10.1371/journal.pone.0240059.t004
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Development will continue on the presented database system to support the many plant

breeding communities relying on Breedbase. Software development of Breedbase is stream-

lined through the Git version control available on Github through https://github.com/

solgenomics/sgn. In this way, issues arising in the software can be posted and new releases to

the software can be managed through a review process. Documentation is bundled directly

with the software at https://solgenomics.github.io/sgn. For easy deployment, Breedbase is

released in a Docker https://github.com/solgenomics/breedbase_dockerfile. The Docker

deployment allows launching a Breedbase web-server and database instance with minimal

configuration, and provides detailed documentation.
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