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Abstract
Background  Artificial intelligence has made significant contributions to oncology through the availability of high-
dimensional datasets and advances in computing and deep learning. Cancer precision medicine aims to optimize 
therapeutic outcomes and reduce side effects for individual cancer patients. However, a comprehensive review 
describing the impact of artificial intelligence on cancer precision medicine is lacking.

Observations  By collecting and integrating large volumes of data and applying it to clinical tasks across various 
algorithms and models, artificial intelligence plays a significant role in cancer precision medicine. Here, we describe 
the general principles of artificial intelligence, including machine learning and deep learning. We further summarize 
the latest developments in artificial intelligence applications in cancer precision medicine. In tumor precision 
treatment, artificial intelligence plays a crucial role in individualizing both conventional and emerging therapies. 
In specific fields, including target prediction, targeted drug generation, immunotherapy response prediction, 
neoantigen prediction, and identification of long non-coding RNA, artificial intelligence offers promising perspectives. 
Finally, we outline the current challenges and ethical issues in the field.

Conclusions  Recent clinical studies demonstrate that artificial intelligence is involved in cancer precision medicine 
and has the potential to benefit cancer healthcare, particularly by optimizing conventional therapies, emerging 
targeted therapies, and individual immunotherapies. This review aims to provide valuable resources to clinicians and 
researchers and encourage further investigation in this field.
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Tumor microenvironment
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McCarthy J et al. coined “artificial intelligence” at the 
initiation of the 1956 Dartmouth summer research proj-
ect, establishing the foundation of this field. This term, 
broadly defined as ‘the approach to creating intelligent 
machines,’ was based on the hypothesis that machines 
could emulate various aspects of learning and intelligence 
[1]. Briefly speaking, Artificial intelligence (AI) refers to a 
branch of computer science that emulates human intelli-
gent behavior and addresses challenges such as reasoning, 
knowledge representation, automated planning, natural 
language processing, machine perception, robotics, etc 
[2–4]. AI predominantly encompasses machine learning 
and deep learning, although these three terms are some-
times used synonymously. Emerging as a subtype of AI, 
machine learning focuses on utilizing computational algo-
rithms to identify patterns within data and fit predictive 
models to it [5]. Machine learning can be categorized as 
supervised learning, unsupervised learning, semi-super-
vised learning and reinforcement learning. Supervised 
learning uses human-labelled data for training and pre-
dicts outcomes through classification or regression. On 
the contrary, data-driven unsupervised learning are used 
for clustering or dimension reduction by training on unla-
beled data. Semi-supervised learning is in between, using 
both labelled and unlabeled data for training [6]. Finally, 

reinforcement learning is a specific method that compares 
against a pre-defined goal in iterative interactions, corre-
sponding to the generation of rewards or penalties, and is 
performed repeatedly [7, 8]. Each of these methods can be 
subdivided into different algorithms that are used individ-
ually or integrated. Deep learning is a subset of machine 
learning that typically does not require feature extraction. 
Its end-to-end learning capabilities significantly enhance 
the processing of natural raw data, a capability not present 
in traditional machine learning [9]. (Fig. 1) Focusing on 
deep neural networks (DNNs), deep learning uses algo-
rithms composed of multiple hidden processing layers to 
integrate extensive datasets and explore complex relation-
ships, greatly impacting fields including image identifica-
tion, speech recognition, object detection, and natural 
language processing, especially when involving biomedi-
cine [10]. 

According to GLOBOCAN 2020, it is expected that 
there will be 28.4  million cancer cases globally in 2040. 
Besides powerful advocacy for cancer prevention, opti-
mizing cancer management is crucial in the current 
context. Obama launched the Precision Medicine Initia-
tive as a revolutionary strategy for tailored cancer care 
in his 2015 State of the Union address. Since then, the 
world has been a shift towards cancer precision medicine 

Fig. 1  The concise overview of artificial intelligence and its associated algorithms. Artificial intelligence encompasses machine learning, which includes 
deep learning. The terms may be used interchangeably despite distinct characteristics. Algorithms serve as the fundamental basis for artificial intelligence 
and are classified into various categories
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(CPM) - individualized cancer care that places at its core 
the unique characteristics of patients [11, 12], including 
clinical records, health history, lifestyle, genome, epig-
enome, transcriptome, proteome, metabolome, medi-
cal image, histopathologic feature and new data streams 
that may develop as oncology research progresses [13, 
14]. Diverse patient-specific data is experiencing explo-
sive growth with medical technology advances and is 
constantly in flux during a patient’s trajectory, which 
requires significant expertise and time for collation and 
utilization. Thus, the use of AI techniques has become 
progressively ubiquitous due to their ability to enhance 
efficiency and reproducibility through automation [5]. 
Furthermore, a single type of data is extremely limited in 
providing a comprehensive view of a tumor. AI is driv-
ing the development of multimodal data integration in 
oncology and enhancing the precision of its predictive 
models by combining complementary information from 
different modalities [13]. The integration of highly het-
erogeneous data can be effectively managed and analyzed 
by deep learning neural networks due to their capacity to 
include diverse raw data types and flexibility in data pro-
cessing [15]. 

This review focused on the latest AI applications for 
CPM, particularly in the fields of optimizing conven-
tional therapy, target prediction, drug selection, and per-
sonalized immunotherapy. (Fig. 2) Moreover, we discuss 
the current limitations and prospects in translating AI to 

clinical practice and present potential solutions to bridge 
the gap between AI and real-world medical practice.

Optimizing conventional therapy with AI 
techniques
Conventional treatments, such as surgery, radiotherapy 
and chemotherapy are still widely used in solid tumor 
management. To meet the demand for better outcomes, 
less risk, and more economical cost, achieving accuracy 
and individualization of conventional therapies is cru-
cial. AI models have the ability to process, analyze and 
integrate datasets efficiently, allowing each aspect in 
conventional therapeutic areas to change from relatively 
uniform processes to individualized solutions. (Fig. 3)

AI in perioperative decision-making
Through AI algorithms, analyzing complex datasets sup-
ports accurate risk prediction, personalized surgical strat-
egies and real-time adjustments, and leads to improved 
surgical outcomes and fewer complications. The com-
bination of artificial intelligence and advanced imaging 
technologies continues to advance surgical precision and 
patient management [16]. Thus, AI has become an essen-
tial tool in the whole perioperative processes, including 
preoperative planning, intraoperative guidance, as well as 
postoperative care [17]. 

Fig. 2  The comprehensive flowchart illustrating the application of artificial intelligence in precision cancer treatment. With various algorithms at its core, 
artificial intelligence is gradually being involved in the field of oncology. Individual characteristics data, generated from the whole process of cancer man-
agement, can be seamlessly integrated and efficiently utilized by artificial intelligence systems to facilitate accurate precision diagnoses and subsequently 
advance the efficacy of precision treatment strategies
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Preoperative planning
AI enhances preoperative strategies by providing sur-
geons with comprehensive insights into patient risk 
factors, tumor characteristics, and expected surgical 
outcomes. Especially, Lymph node metastasis (LNM) is 
critical in determining whether surgery is appropriate for 
patients with solid tumors. Machine learning significantly 
optimizes the decision-making for operation by predict-
ing LNM [18]. In colorectal cancer, Song JH et al. used a 
deep learning model with H&E-stained endoscopic resec-
tion specimens to predict LNM. Compared to traditional 
methods using clinical and/or pathological features, this 
model performed better in predicting LNM for stage-T1 
(AUC = 0.764 in validation set ). It substantially reducing 
unnecessary additional surgeries compared to current 
guidelines (67.4% vs. 82.5%) [19]. Similarly in other diges-
tive system cancers, researchers combined AI algorithms 
with other data modalities, including clinical variables 

[20, 21], histopathological images [22], and radiomics 
features [23–25], enhancing the prediction of LNM. 
Moreover, in solid cancers of other systems, AI models 
also show great potential to achieve the same goal, such 
as thyroid [26], lung [27], breast [28], and endometrial 
tumors [29]. For example, in a multicenter retrospective 
study, researchers proposed an AI-based model of out-
standing performance that demonstrated high accuracy 
in predicting LNM in bladder cancer (AUC ranged from 
0.978 to 0.998 in 5 validation sets). This diagnostic model 
outperformed senior pathologists in diagnostic sensitiv-
ity (0.983 vs. 0.947) [30]. 

Intraoperative guidance
After personalizing the surgical plan, AI has also become 
a transformative approach in intraoperative care, which 
can significantly enhance precision, efficiency, and 
decision-making during surgical procedures. Firstly, 

Fig. 3  Artificial intelligence makes conventional cancer treatment more individualized. AI is revolutionizing conventional cancer treatments such as 
surgery, radiotherapy, and chemotherapy. It enables greater individualization throughout the entire treatment process, including pre-treatment decision-
making, real-time management during treatment, and post-treatment care. AI approaches maximize the effectiveness of traditional treatment methods 
within the framework of precision medicine, enhancing therapeutic outcomes while minimizing side effects
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AI provides real-time diagnosis and decision support 
through detection and localization using single dataset 
or multimodal datasets [31]. Based on digital pathology 
data, Sendín-Martín M et al. developed an automated 
approach using a deep learning algorithm with ex vivo 
confocal microscopy for rapid detection of basal cell car-
cinoma during Mohs surgery (AUC = 0.94 in validation 
set) [32]. Based on imaging data, in neuro-oncology, AI 
models have revealed its potential in detecting tumor 
boundaries [33, 34]. A deep learning model was used to 
identify the eloquent cortex from rs-fMRI connectivity 
before surgery [35], while an AI technique combining 
CNN and NIR-II fluorescence imaging (named FL-
CNN) was similarly reported to enhance surgical safety 
by detecting glioma boundaries [36]. Besides using single 
data, real-time surgical decision support systems use 
multimodal AI to integrate patient-specific data to cre-
ate dynamic dashboards that guide surgeons at critical 
moments [37]. These systems enhance situational aware-
ness and inform decisions such as resection margins, 
biopsy necessity, or anatomical navigation. For example, 
Sturgeon, a patient-independent transfer-learning neu-
ral network, using rapid nanopore sequencing, allows 
rapid access to sparse methylation profiles during sur-
gery, enabling accurate diagnosis of most samples within 
40 min of starting sequencing [38]. 

In addition, AI-driven surgical robots are at the fore-
front of development [39]. They combine computer 
vision with machine learning algorithms to perform 
complex tasks such as tissue dissection, suture placement 
and real-time anatomical recognition [40–42]. These 
systems improve accuracy and reduce human error, and 
are particularly beneficial in minimally invasive surgery 
where precision is critical. Recently, Hani J Marcus et al. 
have presented the IDEAL framework for surgical robot-
ics, providing guidelines for AI-driven surgical robots in 
clinical translational phases [43]. 

Moreover, predictive modelling has become an impor-
tant tool, which assist in monitoring vital signs and 
physiological parameters during surgery. For example, 
the Hypotension Prediction Index System, which pre-
dicts the onset of intraoperative hypotension, enabling 
timely intervention and reduction of complications [44]. 
By analyzing time-series data from intraoperative moni-
toring systems, AI models– particularly one model based 
on recurrent neural networks (RNNs) - can also predict 
other complications such as hypoxia and excessive blood 
loss.(AUC = 0.94 in validation set of approximately 25000 
patients) [45].

Furthermore, intraoperative AI has advantages in 
addressing non-technical aspects of surgery, such as 
optimizing surgical teamwork and promoting surgi-
cal skills education. An important development in 
improving surgical collaboration is the creation of an 

AI-powered mentor designed to detect how well a sur-
gical team’s mental frameworks are aligned, which could 
be vital for surgical outcomes [46]. Furthermore, Various 
non-skill data streams including physiological metrics 
like heart rate variability, staffing levels and equipment 
availability could be integrated into a system designed 
for automation and optimization. Common intraopera-
tive challenges such as fatigue, communication break-
downs and turnover issues, and equipment shortages 
could be solved through this kind of AI-system [47, 48]. 
In terms of surgical education, traditional surgical edu-
cation lack effective assessment of feedbacks of trainees 
and consumes a longer period of time [49]. Reliable feed-
back from automated analysis of data makes AI meth-
ods uniquely suited to training surgical skills [50]. Rafal 
Kocielnik et al. proposed a collaborative human-machine 
refinement process that uses unsupervised machine 
learning algorithms to discover categories of feedback 
in the surgical record that significantly enhance the pre-
diction of behavioral change in trainees. This facilitates 
modification of trainee behaviors and more efficient skill 
acquisition [51]. 

Postoperative care and recovery
After surgery is conducted, AI holds promising poten-
tial in postoperative management by predicting compli-
cations, tracking recovery, and providing personalized 
follow-up. This approach reduces readmission rates, 
improves patient outcomes, and optimizes healthcare 
resources allocation. For example, to better predict 
major postoperative complications in patients under-
going cytoreductive surgery, Deng H et al. utilized US 
Hyperthermic Intraperitoneal Chemotherapy Collab-
orative Database to create an explainable machine learn-
ing model (AUC = 0.75 in validation set) [52], which 
proved more accurate than the published MLR model 
(AUC = 0.54). After other types of tumor surgery, Hassan 
AM et al. developed a random forest model for predict-
ing mastectomy skin flap necrosis (AUC = 0.70 in valida-
tion set) [53]. In measuring cosmetic outcomes, Kim DY 
et al. evaluated them after reconstructed breast surgery, 
using a generative adversarial network [54]. 

AI in individual radiotherapy
Besides surgery, radiotherapy remains one of the pri-
mary treatment modalities for cancer. The processes of 
radiotherapy generate various kinds of data, including 
clinical variables, imaging data, biological samples, plan-
ning parameters, and machine data. AI approaches show 
advantages in integrating these data to support tasks 
such as accurate contouring and dose prediction, thereby 
enhancing individualized radiotherapy [55, 56]. 
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Tumor contouring
Tumor contouring is usually the first step of radiother-
apy procedure. Traditionally, contouring of gross tumor 
volume, clinical target volume and organs at risk have 
been performed manually by radiation oncologists, rely-
ing highly on expertise, which results in unavoidable 
intra-observer viability and significant time consump-
tion. AI-mediated multistep integrated radiation therapy 
workflow has shown promising results in a single center 
[57]. Especially, deep-learning based systems has shown 
remarkable progress in this field [58]. A 3D U-Net, base 
on deep learning methods, has automated and standard-
ized the process of segmentation, delineating tumor 
boundaries with high precision [59]. Additionally, Shi 
F et al. generated RTP-net, a deep-learning model for 
radiotherapy planning, showing high accuracy with 
average Dice score of 0.95 [60]. To compare AI-led and 
oncologist-led methods, Jordan W et al. evaluated deep 
learning based auto-segmented contours trained by a 
single oncologist and expert contours created by multiple 
oncologists, concluding that the former performed accu-
rately in organs at risk and provided significant time sav-
ings [61]. 

Dose optimizing
Precision-dose radiotherapy helps to maximize the effect 
on tumors while sparing healthy tissue. In terms of dose 
predicting, an individualized auto-planning system is 
urgently needed, as current radiotherapy operators often 
determine the dose of radiation based on standard pro-
tocols, adjusting them iteratively to coordinate doses in 
different regions. The method of iterative trials limits 
the efficiency and precision of radiotherapy [62]. Sys-
tems based on AI algorithms has made considerable 
progress in accurately making dose prediction [63, 64]. 
For example, Florian M et al. generated a generative 
adversarial network model to predict dose distributions 
inside unknown phantoms accurately, with potential 
applications in novel radiotherapy techniques requiring 
high accuracy, such as synchrotron X-ray microbeam 
radiation therapy [65]. Furthermore, the combination of 
radiomics data and dosimetry data has been widely used 
in response and toxicity prediction. For example, Jin C 
et al. presented a multi-task deep learning approach that 
allows solid tumor radiotherapy response prediction [66]. 
The imaging-based model, integrated with blood-based 
tumor markers, substantially improves prediction accu-
racy with AUC = 0.97 in validation set.

AI in personalized chemotherapy
While chemotherapy is a fundamental treatment for 
many cancers, it is often associated with severe side 
effects and variations in patient response. AI has become 

an invaluable tool for optimizing chemotherapy in ther-
apy planning and drug utilization.

Chemotherapy planning
AI methods were primarily used for decision-making 
in chemotherapy of different cancers. In gastric cancer, 
Sundar R et al. used a genomic-based random forest 
model to guide the selection of patients with gastric can-
cer who would benefit from paclitaxel [67]. In colorectal 
cancer, ssing deep learning and H&E-stained tissue sec-
tions, DoMore-v1-CRC provided a clinical decision sup-
port system that stratified patients with stage II and III 
colorectal cancer with favorable prognosis, helping to 
avoid unnecessary adjuvant chemotherapy [68]. Similar 
results were obtained when a machine learning frame-
work was used to predict the response of neoadjuvant 
chemotherapy in muscle-invasive bladder cancer [69]. 
In ovarian cancer, a 2021 study showed that AI models 
trained on gene expression data could predict the effi-
cacy of platinum-based chemotherapy with more than 
80% accuracy [70]. These predictive models help oncolo-
gists to avoid ineffective treatments, minimize the risk of 
unnecessary toxicity, and select the best beneficiaries.

Optimizing drug efficacy
Even if the potential beneficiaries of chemotherapy can 
be identified, drug resistance largely limits the applica-
tion of conventional chemotherapy. Machine learning 
can be used to accurately predict patients’ resistance to 
chemotherapy drugs, potentially mitigating this issue. 
Sasaki K et al. integrated machine learning algorithms 
with CT images to predict neoadjuvant chemotherapy 
resistance in patients with advanced gastric cancer. The 
integrated model demonstrated better results than cur-
rent clinical models (AUC > 0.752 in validation sets from 
three centers) [71]. The latest developments in AI meth-
odologies and tools have also enhanced our understand-
ing of cancer multidrug resistance. In response, Fu L et 
al. presented a new viewpoint on repurposing non-oncol-
ogy small-molecule drugs as an attractive approach to 
improve cancer therapy [72]. 

AI in targeted treatment
Focusing on specific molecular targets involved in can-
cer progression, targeted therapy has become one of the 
most popular treatments in CPM [73]. Nevertheless, due 
to the limited understanding of carcinogenesis, obstacles 
remain in the development of targeted therapies, espe-
cially in the fields of target prediction and drug selection. 
Implementing the entire process from target identifi-
cation to targeted drug therapy is challenging based on 
a single technique or single-omics data. Therefore, AI 
holds considerable potential to effectively integrate mul-
tiple datasets and explore interactions between genes 
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and gene products involved in tumorigenesis, thereby 
advancing the clinical application of targeted drugs [74]. 
(Fig. 4)

Prediction of emerging targets with AI
Precisely predicting drugs is the basis of targeted therapy. 
AI-driven algorithms primarily predict new druggable 
targets by combining omics data. Using nonparametric 
random forest to analysis genomics data, Zare A et al. 
reported an inflammatory breast cancer (IBC)-specific 
gene signature (G59) to show the molecular differences 
between IBC and non-IBC patients, paving the path for 
discovering therapeutic targets at the genomic level [75]. 
In addition, the combination of machine learning models 
and mechanistic information could help to demonstrate 
signal transduction network heterogeneity and identify 
potential therapeutic target. For example, Pham TH et 
al. integrated a machine-learning framework with chemi-
cogenomics and transcriptomics data to identify YAP/
TAZ dependency across cancers and propose a poten-
tial therapeutic target in Hippo pathway dysregulation 
[76]. Moreover, integrating multi-omics data, Xiao Y et 
al. used machine learning methods based on the polar 
metabolome and lipidome analysis to distinguish triple-
negative breast tumors into two prognostic metabolo-
mics subgroups (C2 and C3) [77]. They subsequently 
revealed that N-acetyl-aspartyl-glutamate is a critical 
tumor-promoting metabolite and might exist as a poten-
tial therapeutic target for high-risk C2 and C3 tumors.

AI in targeted drugs
After identifying potential therapeutic targets, AI could 
participate form drug generation to selection to utiliza-
tion. With AI models, it is easier to generate and validate 
drugs that interact most effectively. Furthermore, drug 
repurposing and combination therapies can be realized 
through powerful analytical capabilities of AI, which are 
also of vital importance combating potential drug resis-
tance and minimizing side effects.

Drug generation
For traditional drug generation, the industry and rease-
arch have often focused on the chemical aspects of 
compound generation while overlooking the biological 
consequences. In the stage of drug discovery, aberrant 
m6A regulators have emerged as popular drug targets in 
recent years. AI-assisted synthesis of FTO inhibitors and 
METTL3 inhibitors has greater advantages over natu-
ral compounds [78]. Using deep learning and molecular 
dynamics simulation-based drug screening, Zhang H 
et al. identified UM-164 as a potential TIPE2 inhibitor 
[79]. Despite only focusing on chemical aspects, follow-
ing machine-learning-based virtual screening, surface 
plasmon resonance, molecular docking, and pharmacoki-
netic analyses identified two potential inhibitors of anti-
apoptotic members of the Bcl-2 family in solid tumors 
[80]. In addition, knowledge of drug mode of action 
(MoA) is an important part of developing anti-cancer 
drugs. Mohamad Saoud et al. have successfully predicted 

Fig. 4  Artificial intelligence involves throughout the targeted therapy process. AI plays an important role throughout the entire process of targeted 
therapy. From the identification of therapeutic targets and the development and utilization of targeted drugs to the precise delivery of these drugs, AI 
demonstrates significant potential at every stage of the targeted therapy workflow
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MoA of novel drug candidates in prostate cancer cells 
using metabolomics data combined with machine learn-
ing, and the predicted results of MoA based on prostate 
cancer cell therapy was successfully validated in breast 
cancer and Ewing’s sarcoma [81]. 

Drug selection
Turing from drug generation to practical clinics, drug 
selection is essential for individualized therapy. Based 
primarily on the chemical information of drugs, Su R et 
al. proposed a deep learning network named Siamese 
Response Deep Factorization Machines to directly rank 
the drugs for helping each patient receive the most effec-
tive drugs [82]. Additionally, at the single-cell sequencing 
data level, Chen J et al. developed a deep transfer learn-
ing model called scDEAL to predict and select drugs 
[83]. Other investigators have also obtained the goal with 
using AI to integrate data from different modalities. For 
example, Liu X et al. predicted drug response to guide 
anti-cancer drug selection by GraphCDR, a contrastive 
learning neural network based on multi-omics profiles 
and chemical structure of drugs [84]. 

Drug utilization
In the area of targeted drug utilization, AI contributes 
to drugs combination, repurposing, and delivery. Multi-
targeted drugs combination is an emerging theme due 
to the increased understanding of intra-tumor heteroge-
neity, which is an important attempt in precision medi-
cine. However, identifying multi-targets and selecting 
co-suppressive patient-specific therapies is difficult, as 
it is challenging in terms of both efficacy and toxicity. 
Researchers have proposed the AI-driven model scTher-
apy in conjunction with single-cell transcriptomics data 
to priorities multi-targeted therapeutic options for tumor 
patients. In a pan-cancer analysis of five cancer types, 
19% of the therapeutic regimens generated by the sys-
tem were patient-specific [85]. Using multi-omics data, 
Li X et al. also integrated cancer informatics algorithms 
and machine learning methods to develop a system 
called REFLECT [86]. It could optimize therapeutic ben-
efits by choosing proper drug combinations. To improve 
drug repurposing, Cui C et al. integrated drug-exposure 
expression profiles and drug-drug links, using a graph 
neural network to develop a breast tumor drug repurpos-
ing strategy [87]. In addition, given the heterogeneity of 
delivery among drugs, using AI to enhance nanomedi-
cine design for improved drug delivery efficiency repre-
sents a promising development [88, 89]. 

AI in personalized immunotherapy
Cancer immunotherapy represents a transformative 
approach in cancer treatment, restoring the normal anti-
tumor immune response to control and eliminate tumors 

by restarting the tumor-immune cycle [90]. However, 
the effectiveness of immunotherapy varies significantly 
among patients. With integrating multimodal data, AI 
has emerged as a key tool to better understand tumor 
microenvironment (TME) and tumor immunology. Spe-
cially, AI models help to predict patient responses to 
immunotherapy, guide the discovery of neoantigens and 
tumor vaccines, and understand new concerns in tumor 
immunity such as LncRNA. (Fig. 5)

AI in predicting immunotherapy response
Immune checkpoint inhibitors(ICIs) are the most widely 
used approach in the field of tumor immunotherapy, 
and predicting its biomarkers is extremely important to 
enable personalized immunotherapy. Analyzing genom-
ics, transcriptomics, epigenomics, radiomics and digital 
pathology data derived from high-throughput sequenc-
ing, AI is promising in predicting biomarkers for immu-
notherapy, including the most common biomarkers for 
ICIs, novel biomarkers, and predictive tools to be mined 
from TME [91, 92]. 

Through prediction of common biomarkers of ICIs
PD-L1 is one of the most important biomarkers in ICIs. 
Assessment of PD-L1 is crucial for treatment stratifica-
tion and predicting immunotherapy outcomes. Com-
bining digital pathological images [93, 94] or radiomics 
data [95, 96], AI models have significantly enhanced 
the ability to predict PD-L1 expression in solid tumors. 
For example, in non-small cell lung cancer, Choi S et al. 
developed an analyzer for PD-L1 tumor proportion score 
using whole-slide images [97]. Comparing the accuracy 
of manual evaluation and AI-assisted evaluation, they 
found that AI assistance increased the overall concor-
dance rate among pathologists to 90.2% (compared to 
81.4% for manual evaluation) with statistical significance 
(P < 0.001). In terms of multimodal data integration, Van-
guri R S et al. also integrated AI and pathology with CT 
images, demonstrating an AUC of 0.80 in validation set 
for their model in predicting ICIs response in lung tumor 
[98]. 

In addition to PD-L1, other biomarkers are also poten-
tially useful for predicting ICIs response with the aid of 
AI algorithms [99]. For example, Gong X et al. developed 
a machine-learning model and demonstrated that HLA 
gene expression is able to predict the immune subtypes of 
patients receiving ICIs [100]. Tumor mutational burden is 
another key feature that has been extensively studied. To 
evaluate tumor mutational burden and predict response 
to immune checkpoint blockade, researchers respectively 
combined AI algorithms with transcriptomics [101], 
radiogenomics [102], and digital pathology [103–105], 
demonstrating potential clinical benefits.
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Through prediction of novel biomarkers
Many novel biomarkers have been confirmed with the 
assistance of AI [92]. Through genomics data, loss of 
heterozygosity status in human leukocyte antigen and 
genomic intra-tumor heterogeneity were identified to 
be associated with ICIs efficacy by Wang et al. with ML-
based methods in non-small-cell lung cancer patients 
[106]. Using epigenomic data, artificial intelligence-
driven approaches have identified a number of DNA 
methylation indicators as biomarkers for ICIs in differ-
ent solid tumors [107, 108]. Through radiomics data, 
Dercle et al. used random forest algorithm to analysis 
575 patients with melanoma treated with ICIs in KEY-
NOTE-002 and KEYNOTE-006 trials. They identified 
a radiomic biomarker composed of volumetric growth 
(absolute tumor volume difference), tumor volume, 
quantitative representation of tumor spatial heterogene-
ity, and quantitative representation of tumor edge phe-
notype, achieving precisely predicting OS (AUC = 0.92) 
[109]. 

The application of AI to integrate multimodal data to 
predict biomarkers has been a hot topic in recent years 
[110]. Through AI-driven multi-modal data integration, 
researchers have proposed a number of unique classi-
fications to be used as biomarkers for immunotherapy, 
some of which have achieved good results [111]. For 
example, Shen et al. used ML-based methods to estab-
lish an immune cell phenotype with three classifications 
based on data from multiple sources, and identified that 
the LAG-3 + CD8 + T-cell population can be a novel 

biomarker for poorer OS and PFS in patients with mela-
noma and uroepithelial carcinoma(OS: P < 0.001; PFS: 
P = 0.004) [112]. Similarly, in bladder cancer, Shuai Ren 
et al. used the Graph Neural Networks model to inte-
grate multi-omics data to generate a simple linear scor-
ing model, responseScore, to predict immunotherapy 
response and identify key pathways. The model had an 
AUC of 0.839 in the validation set [113]. However, it is 
important to notice that multi-data integration brings 
higher challenges on the quality of input data. In addi-
tion, the validation datasets of these published multi-
modal data integration AI systems are limited, so the 
evaluation of these AI procedures needs to be cautious.

Through exploration of TME
TME is the living space surrounding the tumor cells, 
including various types of cells, factors and matrix. AI 
techniques can accurately predict the status of TME 
and improve understanding of factors impacting immu-
notherapy efficacy. Along with the study of TME, some 
biomarkers, including neutrophil-lymphocyte ratio and 
tumor stemness showed potential predictive effects. 
With the help of support vector machine classifiers and 
random forests analysis, Raman spectroscopy shows 
potential for predicting response to ICIs in TME [114]. 

The tumor immune microenvironment (TIME), which 
represents the immune context of TME, has been proven 
to be associated with carcinogenesis, tumor progression, 
and identification of potential therapeutic targets [115, 
116]. Tumor-infiltrating immune cells in TIME were 

Fig. 5  Artificial intelligence’s promising role in personalized immunotherapy. AI holds significant promise in personalized immunotherapy by contrib-
uting to key aspects of cancer immunotherapy, including predicting immune responses and generating tumor vaccines. This means that AI not only 
enhances the precision of widely used immunotherapeutic approaches, such as immune checkpoint inhibitors, but also exhibits great potential in the 
development of future individualized immunotherapy strategies
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widely researched. Based on biomarkers of tumor-infil-
trating lymphocytes (TILs), Park S et al. used AI models 
and whole-slide images to predict the efficacy of ICIs and 
defined three immune phenotypes for predicting tumor 
response [117]. Similarly, Ao Z et al. developed a TILs 
score analyzer with clinical data and machine-learning 
algorithms. Using this analyzer, they evaluated the effi-
cacy of drugs and selected an epigenetic drug called 
LSD1i which could enhance the therapeutic benefit of 
ICIs [118]. Furthermore, understanding T cell exhaustion 
(TEX) heterogeneity also helps to evaluate immunother-
apies. Zhang Z et al. developed a machine learning-based 
gene signature to model the hierarchical TEX stages and 
optimize immunotherapy [119]. Similarly, Using unsu-
pervised deep learning algorithms and analyzing spa-
tial transcriptomics data, Chia-Kuei Mo et al. increased 
understanding of TME and proposed enhanced markers 
of immune depletion [120]. 

Using AI to target new tumor antigens
The search for tumor antigens as well as the developing 
of tumor vaccines are emerging strategies in immuno-
therapy. Somatic cancer mutations expressed especially 
in cancer cells, and these gene products could become 
neoantigens after breaking down and be targeted. Recog-
nized by CD4 + or CD8 + T cells without being subject to 
central tolerance, neoantigens have great potential as tar-
gets for T cell-based immunotherapies [121]. As neoanti-
gens are mostly unique for each patient, this therapeutic 
method is inherently personalized.

Neoantigen identification
Neoantigens are essentially the products of gene muta-
tions in tumor cells. The development of AI techniques 
has promoted the discovery of mutations by analyz-
ing high-throughput sequencing data [122–124]. Based 
on single data modality, by processing and analyzing 
transcriptome data, a machine-learning computational 
pipeline named EasyFuse developed by Weber D et al. 
to could help to detect cancer-associated gene fusions, 
potential sources of highly immunogenic neoantigens 
[125]. Integrating multimodal omics data including 
genomics, transcriptomics and proteomics data, the 
researchers developed an advanced ML-driven compu-
tational framework program called NeoDisc. This proce-
dure was shown to outperform conventional methods in 
accurately prioritizing immunogenic neoantigens [126]. 

Prediction of MHC-antigen binding
Since neoantigens are presented on major histocompat-
ibility complex (MHC) before bonding T cells, predicting 
peptide-MHC binding, is as crucial as predicting neoan-
tigens and important in generating tumor vaccines [127]. 
Using label-agnostic protein sequence data, a transfer 

learning model called MHCRoBERTa was employed to 
address this task [128]. Using machine learning meth-
ods, the integrated model called Anthem combined mass 
spectrometry with machine learning, and particularly 
predicted HLA-I binding [129]. Similarly, Haodong Xu 
et al.so generated a DL-based system called ImmuneApp 
to predict HLA-I binding [130]. For the accurate predic-
tion of HLA-II binding, Racle J et al. also realized it with 
a machine-learning framework [131]. 

Designing of personalized tumor vaccines
By simulating interactions with the immune system, AI 
contributes to the design and optimization of vaccines. 
It helps guide researchers in selecting the most promis-
ing personalized vaccines for further development and 
improves the efficiency and effectiveness of the vaccine 
development process [132]. Powderly JD et al. and Xu 
Y et al. designed mRNA vaccines and peptide vaccines 
with the help of AI, respectively, and conducted phase I 
clinical trials in different cancer areas [133, 134]. In addi-
tion, adjuvants play a crucial role as an essential compo-
nent in the development of effective cancer vaccines that 
enhance the body’s immune response to cancer cells and 
improve the effectiveness of cancer vaccines [135]. AI 
is involved in the development of tumor vaccine adju-
vants in five ways: preliminary design, virtual screening, 
property prediction, and reuse [136]. For example, Sajjad 
Haider et al. successfully predicted three potent CXCL12 
inhibitors that could potentially act as adjuvants using a 
ligand-based virtual screening tool [137]. 

Promoting the use of long non-coding RNA in 
immunotherapy with AI
Long non-coding RNA (lncRNA), which regulates tran-
scription, epigenetic modifications, and other post-tran-
scriptional mechanisms, is closely associated with cancer 
immunity regulation and the TME [138]. AI helps to 
elucidate its various mechanisms and its role in tumor 
immunotherapy. It is documented in several types of can-
cer that lncRNA interacts with RNA-binding protein, and 
the use of machine learning methods revealed details of 
the mechanism and the potential of RNA-based thera-
peutics [139]. Given the importance of TILs in immuno-
therapy mentioned above, Zhou M et al. and Zhang N et 
al. respectively explored the tumor-infiltrating immune 
cell-associated lncRNA in low-grade glioma and tumor-
infiltrating B lymphocytes [140]. Integrating machine 
learning algorithms and clinical profiles, they found that 
the tumor-infiltrating immune cell-associated lnc signa-
ture could select potential beneficiaries of immunother-
apy. Liu Z et al. used an integrative procedure of machine 
learning to validate the clinical significance of lncRNA 
in colorectal tumors [141]. They constructed a consen-
sus immune-related lncRNA signature to predict clinical 
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outcomes, finding that the low-risk group benefited more 
from bevacizumab, whereas the high-risk group was 
better suited for fluorouracil-based chemotherapy. A 
consensus machine learning-derived lncRNA signature 
developed by Liu Z et al. reached a similar conclusion 
[142]. It was even further found to play a role in tumor 
recurrence prediction.

Limitations and challenges of AI in oncology
While AI has been widely studied in tumor management 
and has potentially shown a game-changing impact in 
this field, barriers remain in translating algorithms and 
research into clinical applications that require further 
discussion and investigation.

Quality and bias
Data bias could exist at every step of the process for AI 
applications [143, 144]. The greatest source of data used 
for training AI models is electronic health records from 
clinical activities, but unstructured and inconsistent 
records limit their usability, necessitating structured 
data organization [145]. Moreover, while data heteroge-
neity across institutions is common, evaluating external 
cohorts is crucial. Although more studies recently use 
training data from multiple centers, the representative-
ness of the target is still limited by biases that cannot be 
eliminated in gender, ethnicity, research interest, fund-
ing etc., potentially resulting in poor generalization of 
models and even increasing of health-care discrimination 
[146]. 

Interpretability and transparency
AI algorithms, especially black-box deep-learning mod-
els, often generate outputs without explaining the inter-
mediate steps, resulting in a lack of interpretability [147]. 
This limitation in intelligibility challenges the collabora-
tion between different clinicians or between AI systems 
and clinicians, partially limiting their real-world medi-
cal utility [148]. It is crucial for clinicians to understand 
AI models and relate them to human medical knowl-
edge. In the era of precision oncology, this contributes 
to improved diagnostic accuracy and efficiency [149]. 
Biological network models in natural systems have the 
potential to enhance the cognition of how AI system 
works and improve its transparency [150]. Meanwhile, 
greater involvement of clinicians in data collection, bias 
mitigation, and technology application is needed to 
establish an efficient human-computer hybrid system 
rather than applying AI in isolation [151]. 

Security and privacy
Data security and privacy are also being challenged in the 
age of AI. Many AI systems, especially those connected 
to networks, face potential security risks, including 

malicious hacking that could compromise patient data 
privacy. Data breaches could lead to severe conse-
quences, including the possibility of algorithm tamper-
ing to favor certain stakeholders. To address these risks, 
robust security measures, along with comprehensive 
laws and regulations, are essential for ensuring the safe 
deployment of AI applications.

Regulation and ethics
The regulatory framework for AI in healthcare is still 
evolving. Although some AI tools have been approved 
for clinical use by regulatory bodies like the FDA, the 
process of approving AI algorithms remains complex 
and time-consuming. The major ethical problem in this 
field is determining who should take responsibility for AI 
decision-making. Undeniably, clinicians providing medi-
cal advice, manufacturers of AI products, employers of 
clinicians, and health systems are all stakeholders in AI 
applications and should be held accountable if AI leads to 
suboptimal or adverse outcomes [152]. Under the current 
liability system, clinicians may hesitate to use AI espe-
cially when facing its opaqueness. Therefore, specialized 
adjudication systems together with special compensation 
systems funded by relevant people’s taxes or fees might 
be able to replace the traditional liability system in medi-
cal disputes involving AI [152]. 

Future prospects and conclusions
AI in oncology holds great prospects and has the poten-
tial to transform cancer treatment by enabling more 
precise, personalized and efficient interventions. Firstly, 
understanding the cancer biology will always be a focus 
and a challenge in the field of oncology, and integrating 
and analyzing an increasing number of multimodal data-
sets is the most effective means of addressing this issue. 
As the field of AI develops, it is becoming more and 
more capable of integrating data through ever-refined 
algorithms [153, 154]. Besides today’s most commonly 
used datasets from modern medical activities, includ-
ing genomics data, imaging genomics data, TME-based 
data, and electronic health records, it is even possible to 
integrate potentially exploitable datasets such as facial 
and tongue visual diagnosis data generated from tradi-
tional Chinese medicine diagnosis and treatment [155]. 
This could better reveal the complex patterns of tumor 
behavior and treatment response and facilitate personal-
ized tumor therapy. It is worth noting that most of the 
existing data used to train AI systems are derived from 
clinical studies. While this somewhat reduces bias, it 
undoubtedly makes AI systems less externally accessi-
ble. Therefore, compared to the limited amount of data 
originating from clinical studies, the larger and more 
complex real-world data is “an ocean” of lesser-explored 
data waiting to be integrated and utilized by AI [156]. In 



Page 12 of 16Wang et al. Journal of Translational Medicine          (2025) 23:120 

addition, the impact of AI on equality in oncology goes 
in both directions [157]. The ideal AI system is instead 
one of the best ways to address equality in oncology if its 
impact on health equality is considered in the early stages 
of its development, including integrating different datas-
ets, addressing algorithmic bias, ensuring fair validation 
across different demographic and geographic contexts, 
and prioritizing fair outcomes. This is mainly in terms of 
removing implicit bias from clinicians’ subjective assess-
ments [158]. AI provides tools to reduce disparities in 
cancer care by increasing access to diagnostics, treat-
ments, and clinical trials across populations. In short, 
individualized patient information is used as the most 
important basis for decision-making. At the same time, 
AI has the potential to tailor tools for resource-limited 
settings, such as portable imaging devices and simplified 
diagnostic approaches, from which lower-income popu-
lations can still have access to advanced cancer treat-
ments. Finally, the value of large-scale language models 
(such as ChatGPT and systems based on it) in oncology 
remains to be developed [154]. They can provide simpli-
fied communication and knowledge acquisition, enhance 
opportunities for patient engagement, and thus improve 
the efficiency of the entire cancer care process. In conclu-
sion, it is undeniable that AI algorithms have great poten-
tial in tumor treatment, and promote the management of 
tumors in the era of precision medicine. However, gaps 
remain between AI models and their clinical implemen-
tation. With research fervor in this area extremely high, 
However, gaps remain between AI models and their 
clinical implementation. Large-scale prospective clinical 
trials are expected, and in particular, AI-driven cancer 
precision medicine should not be pursued cautiously to 
maintain cost-effectiveness. Future research should focus 
on improving security and interpretability to enhance 
coordination between AI and clinicians, making AI more 
applicable.
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