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Abstract

Background Artificial intelligence has made significant contributions to oncology through the availability of high-
dimensional datasets and advances in computing and deep learning. Cancer precision medicine aims to optimize
therapeutic outcomes and reduce side effects for individual cancer patients. However, a comprehensive review
describing the impact of artificial intelligence on cancer precision medicine is lacking.

Observations By collecting and integrating large volumes of data and applying it to clinical tasks across various
algorithms and models, artificial intelligence plays a significant role in cancer precision medicine. Here, we describe
the general principles of artificial intelligence, including machine learning and deep learning. We further summarize
the latest developments in artificial intelligence applications in cancer precision medicine. In tumor precision
treatment, artificial intelligence plays a crucial role in individualizing both conventional and emerging therapies.

In specific fields, including target prediction, targeted drug generation, immunotherapy response prediction,
neoantigen prediction, and identification of long non-coding RNA, artificial intelligence offers promising perspectives.
Finally, we outline the current challenges and ethical issues in the field.

Conclusions Recent clinical studies demonstrate that artificial intelligence is involved in cancer precision medicine
and has the potential to benefit cancer healthcare, particularly by optimizing conventional therapies, emerging
targeted therapies, and individual immunotherapies. This review aims to provide valuable resources to clinicians and
researchers and encourage further investigation in this field.
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McCarthy ] et al. coined “artificial intelligence” at the
initiation of the 1956 Dartmouth summer research proj-
ect, establishing the foundation of this field. This term,
broadly defined as ‘the approach to creating intelligent
machines;, was based on the hypothesis that machines
could emulate various aspects of learning and intelligence
[1]. Briefly speaking, Artificial intelligence (Al) refers to a
branch of computer science that emulates human intelli-
gent behavior and addresses challenges such as reasoning,
knowledge representation, automated planning, natural
language processing, machine perception, robotics, etc
[2—4]. Al predominantly encompasses machine learning
and deep learning, although these three terms are some-
times used synonymously. Emerging as a subtype of Al,
machine learning focuses on utilizing computational algo-
rithms to identify patterns within data and fit predictive
models to it [5]. Machine learning can be categorized as
supervised learning, unsupervised learning, semi-super-
vised learning and reinforcement learning. Supervised
learning uses human-labelled data for training and pre-
dicts outcomes through classification or regression. On
the contrary, data-driven unsupervised learning are used
for clustering or dimension reduction by training on unla-
beled data. Semi-supervised learning is in between, using
both labelled and unlabeled data for training [6]. Finally,
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reinforcement learning is a specific method that compares
against a pre-defined goal in iterative interactions, corre-
sponding to the generation of rewards or penalties, and is
performed repeatedly [7, 8]. Each of these methods can be
subdivided into different algorithms that are used individ-
ually or integrated. Deep learning is a subset of machine
learning that typically does not require feature extraction.
Its end-to-end learning capabilities significantly enhance
the processing of natural raw data, a capability not present
in traditional machine learning [9]. (Fig. 1) Focusing on
deep neural networks (DNNs), deep learning uses algo-
rithms composed of multiple hidden processing layers to
integrate extensive datasets and explore complex relation-
ships, greatly impacting fields including image identifica-
tion, speech recognition, object detection, and natural
language processing, especially when involving biomedi-
cine [10].

According to GLOBOCAN 2020, it is expected that
there will be 28.4 million cancer cases globally in 2040.
Besides powerful advocacy for cancer prevention, opti-
mizing cancer management is crucial in the current
context. Obama launched the Precision Medicine Initia-
tive as a revolutionary strategy for tailored cancer care
in his 2015 State of the Union address. Since then, the
world has been a shift towards cancer precision medicine
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Fig. 1 The concise overview of artificial intelligence and its associated algorithms. Artificial intelligence encompasses machine learning, which includes
deep learning. The terms may be used interchangeably despite distinct characteristics. Algorithms serve as the fundamental basis for artificial intelligence

and are classified into various categories
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(CPM) - individualized cancer care that places at its core
the unique characteristics of patients [11, 12], including
clinical records, health history, lifestyle, genome, epig-
enome, transcriptome, proteome, metabolome, medi-
cal image, histopathologic feature and new data streams
that may develop as oncology research progresses [13,
14]. Diverse patient-specific data is experiencing explo-
sive growth with medical technology advances and is
constantly in flux during a patient’s trajectory, which
requires significant expertise and time for collation and
utilization. Thus, the use of Al techniques has become
progressively ubiquitous due to their ability to enhance
efficiency and reproducibility through automation [5].
Furthermore, a single type of data is extremely limited in
providing a comprehensive view of a tumor. Al is driv-
ing the development of multimodal data integration in
oncology and enhancing the precision of its predictive
models by combining complementary information from
different modalities [13]. The integration of highly het-
erogeneous data can be effectively managed and analyzed
by deep learning neural networks due to their capacity to
include diverse raw data types and flexibility in data pro-
cessing [15].

This review focused on the latest Al applications for
CPM, particularly in the fields of optimizing conven-
tional therapy, target prediction, drug selection, and per-
sonalized immunotherapy. (Fig. 2) Moreover, we discuss
the current limitations and prospects in translating Al to
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clinical practice and present potential solutions to bridge
the gap between Al and real-world medical practice.

Optimizing conventional therapy with Al
techniques

Conventional treatments, such as surgery, radiotherapy
and chemotherapy are still widely used in solid tumor
management. To meet the demand for better outcomes,
less risk, and more economical cost, achieving accuracy
and individualization of conventional therapies is cru-
cial. AI models have the ability to process, analyze and
integrate datasets efficiently, allowing each aspect in
conventional therapeutic areas to change from relatively
uniform processes to individualized solutions. (Fig. 3)

Al in perioperative decision-making

Through Al algorithms, analyzing complex datasets sup-
ports accurate risk prediction, personalized surgical strat-
egies and real-time adjustments, and leads to improved
surgical outcomes and fewer complications. The com-
bination of artificial intelligence and advanced imaging
technologies continues to advance surgical precision and
patient management [16]. Thus, Al has become an essen-
tial tool in the whole perioperative processes, including
preoperative planning, intraoperative guidance, as well as
postoperative care [17].

LS8N

a * Individual conventional therapy
Targeted therapy

Individual immunotherapy

Digital pathology \
Radiomics \

Genomics

Epigenomics - Prec|S|ontreatment R
Transcriptomics

Proteomics

Metabolomics

Fig. 2 The comprehensive flowchart illustrating the application of artificial intelligence in precision cancer treatment. With various algorithms at its core,
artificial intelligence is gradually being involved in the field of oncology. Individual characteristics data, generated from the whole process of cancer man-
agement, can be seamlessly integrated and efficiently utilized by artificial intelligence systems to facilitate accurate precision diagnoses and subsequently

advance the efficacy of precision treatment strategies
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Fig. 3 Artificial intelligence makes conventional cancer treatment more individualized. Al is revolutionizing conventional cancer treatments such as
surgery, radiotherapy, and chemotherapy. It enables greater individualization throughout the entire treatment process, including pre-treatment decision-
making, real-time management during treatment, and post-treatment care. Al approaches maximize the effectiveness of traditional treatment methods
within the framework of precision medicine, enhancing therapeutic outcomes while minimizing side effects

Preoperative planning

Al enhances preoperative strategies by providing sur-
geons with comprehensive insights into patient risk
factors, tumor characteristics, and expected surgical
outcomes. Especially, Lymph node metastasis (LNM) is
critical in determining whether surgery is appropriate for
patients with solid tumors. Machine learning significantly
optimizes the decision-making for operation by predict-
ing LNM [18]. In colorectal cancer, Song JH et al. used a
deep learning model with H&E-stained endoscopic resec-
tion specimens to predict LNM. Compared to traditional
methods using clinical and/or pathological features, this
model performed better in predicting LNM for stage-T1
(AUC=0.764 in validation set ). It substantially reducing
unnecessary additional surgeries compared to current
guidelines (67.4% vs. 82.5%) [19]. Similarly in other diges-
tive system cancers, researchers combined Al algorithms
with other data modalities, including clinical variables

[20, 21], histopathological images [22], and radiomics
features [23-25], enhancing the prediction of LNM.
Moreover, in solid cancers of other systems, Al models
also show great potential to achieve the same goal, such
as thyroid [26], lung [27], breast [28], and endometrial
tumors [29]. For example, in a multicenter retrospective
study, researchers proposed an Al-based model of out-
standing performance that demonstrated high accuracy
in predicting LNM in bladder cancer (AUC ranged from
0.978 to 0.998 in 5 validation sets). This diagnostic model
outperformed senior pathologists in diagnostic sensitiv-
ity (0.983 vs. 0.947) [30].

Intraoperative guidance

After personalizing the surgical plan, AI has also become
a transformative approach in intraoperative care, which
can significantly enhance precision, efficiency, and
decision-making during surgical procedures. Firstly,
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Al provides real-time diagnosis and decision support
through detection and localization using single dataset
or multimodal datasets [31]. Based on digital pathology
data, Sendin-Martin M et al. developed an automated
approach using a deep learning algorithm with ex vivo
confocal microscopy for rapid detection of basal cell car-
cinoma during Mohs surgery (AUC=0.94 in validation
set) [32]. Based on imaging data, in neuro-oncology, Al
models have revealed its potential in detecting tumor
boundaries [33, 34]. A deep learning model was used to
identify the eloquent cortex from rs-fMRI connectivity
before surgery [35], while an Al technique combining
CNN and NIR-II fluorescence imaging (named FL-
CNN) was similarly reported to enhance surgical safety
by detecting glioma boundaries [36]. Besides using single
data, real-time surgical decision support systems use
multimodal Al to integrate patient-specific data to cre-
ate dynamic dashboards that guide surgeons at critical
moments [37]. These systems enhance situational aware-
ness and inform decisions such as resection margins,
biopsy necessity, or anatomical navigation. For example,
Sturgeon, a patient-independent transfer-learning neu-
ral network, using rapid nanopore sequencing, allows
rapid access to sparse methylation profiles during sur-
gery, enabling accurate diagnosis of most samples within
40 min of starting sequencing [38].

In addition, Al-driven surgical robots are at the fore-
front of development [39]. They combine computer
vision with machine learning algorithms to perform
complex tasks such as tissue dissection, suture placement
and real-time anatomical recognition [40—42]. These
systems improve accuracy and reduce human error, and
are particularly beneficial in minimally invasive surgery
where precision is critical. Recently, Hani ] Marcus et al.
have presented the IDEAL framework for surgical robot-
ics, providing guidelines for Al-driven surgical robots in
clinical translational phases [43].

Moreover, predictive modelling has become an impor-
tant tool, which assist in monitoring vital signs and
physiological parameters during surgery. For example,
the Hypotension Prediction Index System, which pre-
dicts the onset of intraoperative hypotension, enabling
timely intervention and reduction of complications [44].
By analyzing time-series data from intraoperative moni-
toring systems, AI models— particularly one model based
on recurrent neural networks (RNNs) - can also predict
other complications such as hypoxia and excessive blood
loss.(AUC =0.94 in validation set of approximately 25000
patients) [45].

Furthermore, intraoperative AI has advantages in
addressing non-technical aspects of surgery, such as
optimizing surgical teamwork and promoting surgi-
cal skills education. An important development in
improving surgical collaboration is the creation of an
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Al-powered mentor designed to detect how well a sur-
gical team’s mental frameworks are aligned, which could
be vital for surgical outcomes [46]. Furthermore, Various
non-skill data streams including physiological metrics
like heart rate variability, staffing levels and equipment
availability could be integrated into a system designed
for automation and optimization. Common intraopera-
tive challenges such as fatigue, communication break-
downs and turnover issues, and equipment shortages
could be solved through this kind of Al-system [47, 48].
In terms of surgical education, traditional surgical edu-
cation lack effective assessment of feedbacks of trainees
and consumes a longer period of time [49]. Reliable feed-
back from automated analysis of data makes AI meth-
ods uniquely suited to training surgical skills [50]. Rafal
Kocielnik et al. proposed a collaborative human-machine
refinement process that uses unsupervised machine
learning algorithms to discover categories of feedback
in the surgical record that significantly enhance the pre-
diction of behavioral change in trainees. This facilitates
modification of trainee behaviors and more efficient skill
acquisition [51].

Postoperative care and recovery

After surgery is conducted, Al holds promising poten-
tial in postoperative management by predicting compli-
cations, tracking recovery, and providing personalized
follow-up. This approach reduces readmission rates,
improves patient outcomes, and optimizes healthcare
resources allocation. For example, to better predict
major postoperative complications in patients under-
going cytoreductive surgery, Deng H et al. utilized US
Hyperthermic Intraperitoneal Chemotherapy Collab-
orative Database to create an explainable machine learn-
ing model (AUC=0.75 in validation set) [52], which
proved more accurate than the published MLR model
(AUC=0.54). After other types of tumor surgery, Hassan
AM et al. developed a random forest model for predict-
ing mastectomy skin flap necrosis (AUC=0.70 in valida-
tion set) [53]. In measuring cosmetic outcomes, Kim DY
et al. evaluated them after reconstructed breast surgery,
using a generative adversarial network [54].

Al in individual radiotherapy

Besides surgery, radiotherapy remains one of the pri-
mary treatment modalities for cancer. The processes of
radiotherapy generate various kinds of data, including
clinical variables, imaging data, biological samples, plan-
ning parameters, and machine data. AI approaches show
advantages in integrating these data to support tasks
such as accurate contouring and dose prediction, thereby
enhancing individualized radiotherapy [55, 56].
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Tumor contouring

Tumor contouring is usually the first step of radiother-
apy procedure. Traditionally, contouring of gross tumor
volume, clinical target volume and organs at risk have
been performed manually by radiation oncologists, rely-
ing highly on expertise, which results in unavoidable
intra-observer viability and significant time consump-
tion. Al-mediated multistep integrated radiation therapy
workflow has shown promising results in a single center
[57]. Especially, deep-learning based systems has shown
remarkable progress in this field [58]. A 3D U-Net, base
on deep learning methods, has automated and standard-
ized the process of segmentation, delineating tumor
boundaries with high precision [59]. Additionally, Shi
F et al. generated RTP-net, a deep-learning model for
radiotherapy planning, showing high accuracy with
average Dice score of 0.95 [60]. To compare Al-led and
oncologist-led methods, Jordan W et al. evaluated deep
learning based auto-segmented contours trained by a
single oncologist and expert contours created by multiple
oncologists, concluding that the former performed accu-
rately in organs at risk and provided significant time sav-
ings [61].

Dose optimizing

Precision-dose radiotherapy helps to maximize the effect
on tumors while sparing healthy tissue. In terms of dose
predicting, an individualized auto-planning system is
urgently needed, as current radiotherapy operators often
determine the dose of radiation based on standard pro-
tocols, adjusting them iteratively to coordinate doses in
different regions. The method of iterative trials limits
the efficiency and precision of radiotherapy [62]. Sys-
tems based on Al algorithms has made considerable
progress in accurately making dose prediction [63, 64].
For example, Florian M et al. generated a generative
adversarial network model to predict dose distributions
inside unknown phantoms accurately, with potential
applications in novel radiotherapy techniques requiring
high accuracy, such as synchrotron X-ray microbeam
radiation therapy [65]. Furthermore, the combination of
radiomics data and dosimetry data has been widely used
in response and toxicity prediction. For example, Jin C
et al. presented a multi-task deep learning approach that
allows solid tumor radiotherapy response prediction [66].
The imaging-based model, integrated with blood-based
tumor markers, substantially improves prediction accu-
racy with AUC=0.97 in validation set.

Al in personalized chemotherapy

While chemotherapy is a fundamental treatment for
many cancers, it is often associated with severe side
effects and variations in patient response. Al has become

Page 6 of 16

an invaluable tool for optimizing chemotherapy in ther-
apy planning and drug utilization.

Chemotherapy planning

Al methods were primarily used for decision-making
in chemotherapy of different cancers. In gastric cancer,
Sundar R et al. used a genomic-based random forest
model to guide the selection of patients with gastric can-
cer who would benefit from paclitaxel [67]. In colorectal
cancer, ssing deep learning and H&E-stained tissue sec-
tions, DoMore-v1-CRC provided a clinical decision sup-
port system that stratified patients with stage II and III
colorectal cancer with favorable prognosis, helping to
avoid unnecessary adjuvant chemotherapy [68]. Similar
results were obtained when a machine learning frame-
work was used to predict the response of neoadjuvant
chemotherapy in muscle-invasive bladder cancer [69].
In ovarian cancer, a 2021 study showed that Al models
trained on gene expression data could predict the effi-
cacy of platinum-based chemotherapy with more than
80% accuracy [70]. These predictive models help oncolo-
gists to avoid ineffective treatments, minimize the risk of
unnecessary toxicity, and select the best beneficiaries.

Optimizing drug efficacy

Even if the potential beneficiaries of chemotherapy can
be identified, drug resistance largely limits the applica-
tion of conventional chemotherapy. Machine learning
can be used to accurately predict patients’ resistance to
chemotherapy drugs, potentially mitigating this issue.
Sasaki K et al. integrated machine learning algorithms
with CT images to predict neoadjuvant chemotherapy
resistance in patients with advanced gastric cancer. The
integrated model demonstrated better results than cur-
rent clinical models (AUC >0.752 in validation sets from
three centers) [71]. The latest developments in Al meth-
odologies and tools have also enhanced our understand-
ing of cancer multidrug resistance. In response, Fu L et
al. presented a new viewpoint on repurposing non-oncol-
ogy small-molecule drugs as an attractive approach to
improve cancer therapy [72].

Al in targeted treatment

Focusing on specific molecular targets involved in can-
cer progression, targeted therapy has become one of the
most popular treatments in CPM [73]. Nevertheless, due
to the limited understanding of carcinogenesis, obstacles
remain in the development of targeted therapies, espe-
cially in the fields of target prediction and drug selection.
Implementing the entire process from target identifi-
cation to targeted drug therapy is challenging based on
a single technique or single-omics data. Therefore, Al
holds considerable potential to effectively integrate mul-
tiple datasets and explore interactions between genes
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and gene products involved in tumorigenesis, thereby
advancing the clinical application of targeted drugs [74].
(Fig. 4)

Prediction of emerging targets with Al

Precisely predicting drugs is the basis of targeted therapy.
Al-driven algorithms primarily predict new druggable
targets by combining omics data. Using nonparametric
random forest to analysis genomics data, Zare A et al.
reported an inflammatory breast cancer (IBC)-specific
gene signature (G59) to show the molecular differences
between IBC and non-IBC patients, paving the path for
discovering therapeutic targets at the genomic level [75].
In addition, the combination of machine learning models
and mechanistic information could help to demonstrate
signal transduction network heterogeneity and identify
potential therapeutic target. For example, Pham TH et
al. integrated a machine-learning framework with chemi-
cogenomics and transcriptomics data to identify YAP/
TAZ dependency across cancers and propose a poten-
tial therapeutic target in Hippo pathway dysregulation
[76]. Moreover, integrating multi-omics data, Xiao Y et
al. used machine learning methods based on the polar
metabolome and lipidome analysis to distinguish triple-
negative breast tumors into two prognostic metabolo-
mics subgroups (C2 and C3) [77]. They subsequently
revealed that N-acetyl-aspartyl-glutamate is a critical
tumor-promoting metabolite and might exist as a poten-
tial therapeutic target for high-risk C2 and C3 tumors.
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Al in targeted drugs

After identifying potential therapeutic targets, Al could
participate form drug generation to selection to utiliza-
tion. With Al models, it is easier to generate and validate
drugs that interact most effectively. Furthermore, drug
repurposing and combination therapies can be realized
through powerful analytical capabilities of Al, which are
also of vital importance combating potential drug resis-
tance and minimizing side effects.

Drug generation

For traditional drug generation, the industry and rease-
arch have often focused on the chemical aspects of
compound generation while overlooking the biological
consequences. In the stage of drug discovery, aberrant
mo6A regulators have emerged as popular drug targets in
recent years. Al-assisted synthesis of FTO inhibitors and
METTL3 inhibitors has greater advantages over natu-
ral compounds [78]. Using deep learning and molecular
dynamics simulation-based drug screening, Zhang H
et al. identified UM-164 as a potential TIPE2 inhibitor
[79]. Despite only focusing on chemical aspects, follow-
ing machine-learning-based virtual screening, surface
plasmon resonance, molecular docking, and pharmacoki-
netic analyses identified two potential inhibitors of anti-
apoptotic members of the Bcl-2 family in solid tumors
[80]. In addition, knowledge of drug mode of action
(MoA) is an important part of developing anti-cancer
drugs. Mohamad Saoud et al. have successfully predicted

Drugs delivery

Drugs combination AR

Drugs repurposing

Drugs generation

Targets prediction

Fig. 4 Artificial intelligence involves throughout the targeted therapy process. Al plays an important role throughout the entire process of targeted
therapy. From the identification of therapeutic targets and the development and utilization of targeted drugs to the precise delivery of these drugs, Al
demonstrates significant potential at every stage of the targeted therapy workflow
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MoA of novel drug candidates in prostate cancer cells
using metabolomics data combined with machine learn-
ing, and the predicted results of MoA based on prostate
cancer cell therapy was successfully validated in breast
cancer and Ewing’s sarcoma [81].

Drug selection

Turing from drug generation to practical clinics, drug
selection is essential for individualized therapy. Based
primarily on the chemical information of drugs, Su R et
al. proposed a deep learning network named Siamese
Response Deep Factorization Machines to directly rank
the drugs for helping each patient receive the most effec-
tive drugs [82]. Additionally, at the single-cell sequencing
data level, Chen ] et al. developed a deep transfer learn-
ing model called scDEAL to predict and select drugs
[83]. Other investigators have also obtained the goal with
using Al to integrate data from different modalities. For
example, Liu X et al. predicted drug response to guide
anti-cancer drug selection by GraphCDR, a contrastive
learning neural network based on multi-omics profiles
and chemical structure of drugs [84].

Drug utilization

In the area of targeted drug utilization, Al contributes
to drugs combination, repurposing, and delivery. Multi-
targeted drugs combination is an emerging theme due
to the increased understanding of intra-tumor heteroge-
neity, which is an important attempt in precision medi-
cine. However, identifying multi-targets and selecting
co-suppressive patient-specific therapies is difficult, as
it is challenging in terms of both efficacy and toxicity.
Researchers have proposed the Al-driven model scTher-
apy in conjunction with single-cell transcriptomics data
to priorities multi-targeted therapeutic options for tumor
patients. In a pan-cancer analysis of five cancer types,
19% of the therapeutic regimens generated by the sys-
tem were patient-specific [85]. Using multi-omics data,
Li X et al. also integrated cancer informatics algorithms
and machine learning methods to develop a system
called REFLECT [86]. It could optimize therapeutic ben-
efits by choosing proper drug combinations. To improve
drug repurposing, Cui C et al. integrated drug-exposure
expression profiles and drug-drug links, using a graph
neural network to develop a breast tumor drug repurpos-
ing strategy [87]. In addition, given the heterogeneity of
delivery among drugs, using Al to enhance nanomedi-
cine design for improved drug delivery efficiency repre-
sents a promising development [88, 89].

Al in personalized immunotherapy

Cancer immunotherapy represents a transformative
approach in cancer treatment, restoring the normal anti-
tumor immune response to control and eliminate tumors
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by restarting the tumor-immune cycle [90]. However,
the effectiveness of immunotherapy varies significantly
among patients. With integrating multimodal data, Al
has emerged as a key tool to better understand tumor
microenvironment (TME) and tumor immunology. Spe-
cially, AI models help to predict patient responses to
immunotherapy, guide the discovery of neoantigens and
tumor vaccines, and understand new concerns in tumor
immunity such as LncRNA. (Fig. 5)

Al in predicting immunotherapy response

Immune checkpoint inhibitors(ICIs) are the most widely
used approach in the field of tumor immunotherapy,
and predicting its biomarkers is extremely important to
enable personalized immunotherapy. Analyzing genom-
ics, transcriptomics, epigenomics, radiomics and digital
pathology data derived from high-throughput sequenc-
ing, Al is promising in predicting biomarkers for immu-
notherapy, including the most common biomarkers for
ICIs, novel biomarkers, and predictive tools to be mined
from TME [91, 92].

Through prediction of common biomarkers of ICls

PD-L1 is one of the most important biomarkers in ICIs.
Assessment of PD-L1 is crucial for treatment stratifica-
tion and predicting immunotherapy outcomes. Com-
bining digital pathological images [93, 94] or radiomics
data [95, 96], Al models have significantly enhanced
the ability to predict PD-L1 expression in solid tumors.
For example, in non-small cell lung cancer, Choi S et al.
developed an analyzer for PD-L1 tumor proportion score
using whole-slide images [97]. Comparing the accuracy
of manual evaluation and Al-assisted evaluation, they
found that Al assistance increased the overall concor-
dance rate among pathologists to 90.2% (compared to
81.4% for manual evaluation) with statistical significance
(P<0.001). In terms of multimodal data integration, Van-
guri R S et al. also integrated AI and pathology with CT
images, demonstrating an AUC of 0.80 in validation set
for their model in predicting ICIs response in lung tumor
[98].

In addition to PD-L1, other biomarkers are also poten-
tially useful for predicting ICIs response with the aid of
Al algorithms [99]. For example, Gong X et al. developed
a machine-learning model and demonstrated that HLA
gene expression is able to predict the immune subtypes of
patients receiving ICIs [100]. Tumor mutational burden is
another key feature that has been extensively studied. To
evaluate tumor mutational burden and predict response
to immune checkpoint blockade, researchers respectively
combined AI algorithms with transcriptomics [101],
radiogenomics [102], and digital pathology [103-105],
demonstrating potential clinical benefits.
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Fig. 5 Artificial intelligence’s promising role in personalized immunotherapy. Al holds significant promise in personalized immunotherapy by contrib-
uting to key aspects of cancer immunotherapy, including predicting immune responses and generating tumor vaccines. This means that Al not only
enhances the precision of widely used immunotherapeutic approaches, such as immune checkpoint inhibitors, but also exhibits great potential in the

development of future individualized immunotherapy strategies

Through prediction of novel biomarkers

Many novel biomarkers have been confirmed with the
assistance of AI [92]. Through genomics data, loss of
heterozygosity status in human leukocyte antigen and
genomic intra-tumor heterogeneity were identified to
be associated with ICIs efficacy by Wang et al. with ML-
based methods in non-small-cell lung cancer patients
[106]. Using epigenomic data, artificial intelligence-
driven approaches have identified a number of DNA
methylation indicators as biomarkers for ICIs in differ-
ent solid tumors [107, 108]. Through radiomics data,
Dercle et al. used random forest algorithm to analysis
575 patients with melanoma treated with ICIs in KEY-
NOTE-002 and KEYNOTE-006 trials. They identified
a radiomic biomarker composed of volumetric growth
(absolute tumor volume difference), tumor volume,
quantitative representation of tumor spatial heterogene-
ity, and quantitative representation of tumor edge phe-
notype, achieving precisely predicting OS (AUC=0.92)
[109].

The application of Al to integrate multimodal data to
predict biomarkers has been a hot topic in recent years
[110]. Through Al-driven multi-modal data integration,
researchers have proposed a number of unique classi-
fications to be used as biomarkers for immunotherapy,
some of which have achieved good results [111]. For
example, Shen et al. used ML-based methods to estab-
lish an immune cell phenotype with three classifications
based on data from multiple sources, and identified that
the LAG-3+CD8+ T-cell population can be a novel

biomarker for poorer OS and PES in patients with mela-
noma and uroepithelial carcinoma(OS: P<0.001; PES:
P=0.004) [112]. Similarly, in bladder cancer, Shuai Ren
et al. used the Graph Neural Networks model to inte-
grate multi-omics data to generate a simple linear scor-
ing model, responseScore, to predict immunotherapy
response and identify key pathways. The model had an
AUC of 0.839 in the validation set [113]. However, it is
important to notice that multi-data integration brings
higher challenges on the quality of input data. In addi-
tion, the validation datasets of these published multi-
modal data integration Al systems are limited, so the
evaluation of these Al procedures needs to be cautious.

Through exploration of TME
TME is the living space surrounding the tumor cells,
including various types of cells, factors and matrix. Al
techniques can accurately predict the status of TME
and improve understanding of factors impacting immu-
notherapy efficacy. Along with the study of TME, some
biomarkers, including neutrophil-lymphocyte ratio and
tumor stemness showed potential predictive effects.
With the help of support vector machine classifiers and
random forests analysis, Raman spectroscopy shows
potential for predicting response to ICIs in TME [114].
The tumor immune microenvironment (TIME), which
represents the immune context of TME, has been proven
to be associated with carcinogenesis, tumor progression,
and identification of potential therapeutic targets [115,
116]. Tumor-infiltrating immune cells in TIME were
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widely researched. Based on biomarkers of tumor-infil-
trating lymphocytes (TILs), Park S et al. used AI models
and whole-slide images to predict the efficacy of ICIs and
defined three immune phenotypes for predicting tumor
response [117]. Similarly, Ao Z et al. developed a TILs
score analyzer with clinical data and machine-learning
algorithms. Using this analyzer, they evaluated the effi-
cacy of drugs and selected an epigenetic drug called
LSD1i which could enhance the therapeutic benefit of
ICIs [118]. Furthermore, understanding T cell exhaustion
(TEX) heterogeneity also helps to evaluate immunother-
apies. Zhang Z et al. developed a machine learning-based
gene signature to model the hierarchical TEX stages and
optimize immunotherapy [119]. Similarly, Using unsu-
pervised deep learning algorithms and analyzing spa-
tial transcriptomics data, Chia-Kuei Mo et al. increased
understanding of TME and proposed enhanced markers
of immune depletion [120].

Using Al to target new tumor antigens

The search for tumor antigens as well as the developing
of tumor vaccines are emerging strategies in immuno-
therapy. Somatic cancer mutations expressed especially
in cancer cells, and these gene products could become
neoantigens after breaking down and be targeted. Recog-
nized by CD4 +or CD8+ T cells without being subject to
central tolerance, neoantigens have great potential as tar-
gets for T cell-based immunotherapies [121]. As neoanti-
gens are mostly unique for each patient, this therapeutic
method is inherently personalized.

Neoantigen identification

Neoantigens are essentially the products of gene muta-
tions in tumor cells. The development of Al techniques
has promoted the discovery of mutations by analyz-
ing high-throughput sequencing data [122-124]. Based
on single data modality, by processing and analyzing
transcriptome data, a machine-learning computational
pipeline named EasyFuse developed by Weber D et al.
to could help to detect cancer-associated gene fusions,
potential sources of highly immunogenic neoantigens
[125]. Integrating multimodal omics data including
genomics, transcriptomics and proteomics data, the
researchers developed an advanced ML-driven compu-
tational framework program called NeoDisc. This proce-
dure was shown to outperform conventional methods in
accurately prioritizing immunogenic neoantigens [126].

Prediction of MHC-antigen binding

Since neoantigens are presented on major histocompat-
ibility complex (MHC) before bonding T cells, predicting
peptide-MHC binding, is as crucial as predicting neoan-
tigens and important in generating tumor vaccines [127].
Using label-agnostic protein sequence data, a transfer
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learning model called MHCRoBERTa was employed to
address this task [128]. Using machine learning meth-
ods, the integrated model called Anthem combined mass
spectrometry with machine learning, and particularly
predicted HLA-I binding [129]. Similarly, Haodong Xu
et al.so generated a DL-based system called ImmuneApp
to predict HLA-I binding [130]. For the accurate predic-
tion of HLA-II binding, Racle J et al. also realized it with
a machine-learning framework [131].

Designing of personalized tumor vaccines

By simulating interactions with the immune system, Al
contributes to the design and optimization of vaccines.
It helps guide researchers in selecting the most promis-
ing personalized vaccines for further development and
improves the efficiency and effectiveness of the vaccine
development process [132]. Powderly JD et al. and Xu
Y et al. designed mRNA vaccines and peptide vaccines
with the help of Al respectively, and conducted phase I
clinical trials in different cancer areas [133, 134]. In addi-
tion, adjuvants play a crucial role as an essential compo-
nent in the development of effective cancer vaccines that
enhance the body’s immune response to cancer cells and
improve the effectiveness of cancer vaccines [135]. Al
is involved in the development of tumor vaccine adju-
vants in five ways: preliminary design, virtual screening,
property prediction, and reuse [136]. For example, Sajjad
Haider et al. successfully predicted three potent CXCL12
inhibitors that could potentially act as adjuvants using a
ligand-based virtual screening tool [137].

Promoting the use of long non-coding RNA in
immunotherapy with Al

Long non-coding RNA (IncRNA), which regulates tran-
scription, epigenetic modifications, and other post-tran-
scriptional mechanisms, is closely associated with cancer
immunity regulation and the TME [138]. Al helps to
elucidate its various mechanisms and its role in tumor
immunotherapy. It is documented in several types of can-
cer that IncRNA interacts with RNA-binding protein, and
the use of machine learning methods revealed details of
the mechanism and the potential of RNA-based thera-
peutics [139]. Given the importance of TILs in immuno-
therapy mentioned above, Zhou M et al. and Zhang N et
al. respectively explored the tumor-infiltrating immune
cell-associated IncRNA in low-grade glioma and tumor-
infiltrating B lymphocytes [140]. Integrating machine
learning algorithms and clinical profiles, they found that
the tumor-infiltrating immune cell-associated Inc signa-
ture could select potential beneficiaries of immunother-
apy. Liu Z et al. used an integrative procedure of machine
learning to validate the clinical significance of IncRNA
in colorectal tumors [141]. They constructed a consen-
sus immune-related IncRNA signature to predict clinical
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outcomes, finding that the low-risk group benefited more
from bevacizumab, whereas the high-risk group was
better suited for fluorouracil-based chemotherapy. A
consensus machine learning-derived IncRNA signature
developed by Liu Z et al. reached a similar conclusion
[142]. It was even further found to play a role in tumor
recurrence prediction.

Limitations and challenges of Al in oncology

While AI has been widely studied in tumor management
and has potentially shown a game-changing impact in
this field, barriers remain in translating algorithms and
research into clinical applications that require further
discussion and investigation.

Quality and bias

Data bias could exist at every step of the process for Al
applications [143, 144]. The greatest source of data used
for training AI models is electronic health records from
clinical activities, but unstructured and inconsistent
records limit their usability, necessitating structured
data organization [145]. Moreover, while data heteroge-
neity across institutions is common, evaluating external
cohorts is crucial. Although more studies recently use
training data from multiple centers, the representative-
ness of the target is still limited by biases that cannot be
eliminated in gender, ethnicity, research interest, fund-
ing etc., potentially resulting in poor generalization of
models and even increasing of health-care discrimination
[146].

Interpretability and transparency

AT algorithms, especially black-box deep-learning mod-
els, often generate outputs without explaining the inter-
mediate steps, resulting in a lack of interpretability [147].
This limitation in intelligibility challenges the collabora-
tion between different clinicians or between AI systems
and clinicians, partially limiting their real-world medi-
cal utility [148]. It is crucial for clinicians to understand
Al models and relate them to human medical knowl-
edge. In the era of precision oncology, this contributes
to improved diagnostic accuracy and efficiency [149].
Biological network models in natural systems have the
potential to enhance the cognition of how Al system
works and improve its transparency [150]. Meanwhile,
greater involvement of clinicians in data collection, bias
mitigation, and technology application is needed to
establish an efficient human-computer hybrid system
rather than applying Al in isolation [151].

Security and privacy

Data security and privacy are also being challenged in the
age of AL. Many Al systems, especially those connected
to networks, face potential security risks, including
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malicious hacking that could compromise patient data
privacy. Data breaches could lead to severe conse-
quences, including the possibility of algorithm tamper-
ing to favor certain stakeholders. To address these risks,
robust security measures, along with comprehensive
laws and regulations, are essential for ensuring the safe
deployment of Al applications.

Regulation and ethics

The regulatory framework for Al in healthcare is still
evolving. Although some AI tools have been approved
for clinical use by regulatory bodies like the FDA, the
process of approving Al algorithms remains complex
and time-consuming. The major ethical problem in this
field is determining who should take responsibility for Al
decision-making. Undeniably, clinicians providing medi-
cal advice, manufacturers of Al products, employers of
clinicians, and health systems are all stakeholders in Al
applications and should be held accountable if Al leads to
suboptimal or adverse outcomes [152]. Under the current
liability system, clinicians may hesitate to use Al espe-
cially when facing its opaqueness. Therefore, specialized
adjudication systems together with special compensation
systems funded by relevant people’s taxes or fees might
be able to replace the traditional liability system in medi-
cal disputes involving Al [152].

Future prospects and conclusions

Al in oncology holds great prospects and has the poten-
tial to transform cancer treatment by enabling more
precise, personalized and efficient interventions. Firstly,
understanding the cancer biology will always be a focus
and a challenge in the field of oncology, and integrating
and analyzing an increasing number of multimodal data-
sets is the most effective means of addressing this issue.
As the field of AI develops, it is becoming more and
more capable of integrating data through ever-refined
algorithms [153, 154]. Besides today’s most commonly
used datasets from modern medical activities, includ-
ing genomics data, imaging genomics data, TME-based
data, and electronic health records, it is even possible to
integrate potentially exploitable datasets such as facial
and tongue visual diagnosis data generated from tradi-
tional Chinese medicine diagnosis and treatment [155].
This could better reveal the complex patterns of tumor
behavior and treatment response and facilitate personal-
ized tumor therapy. It is worth noting that most of the
existing data used to train Al systems are derived from
clinical studies. While this somewhat reduces bias, it
undoubtedly makes Al systems less externally accessi-
ble. Therefore, compared to the limited amount of data
originating from clinical studies, the larger and more
complex real-world data is “an ocean” of lesser-explored
data waiting to be integrated and utilized by Al [156]. In



Wang et al. Journal of Translational Medicine (2025) 23:120

addition, the impact of Al on equality in oncology goes
in both directions [157]. The ideal AI system is instead
one of the best ways to address equality in oncology if its
impact on health equality is considered in the early stages
of its development, including integrating different datas-
ets, addressing algorithmic bias, ensuring fair validation
across different demographic and geographic contexts,
and prioritizing fair outcomes. This is mainly in terms of
removing implicit bias from clinicians’ subjective assess-
ments [158]. Al provides tools to reduce disparities in
cancer care by increasing access to diagnostics, treat-
ments, and clinical trials across populations. In short,
individualized patient information is used as the most
important basis for decision-making. At the same time,
AI has the potential to tailor tools for resource-limited
settings, such as portable imaging devices and simplified
diagnostic approaches, from which lower-income popu-
lations can still have access to advanced cancer treat-
ments. Finally, the value of large-scale language models
(such as ChatGPT and systems based on it) in oncology
remains to be developed [154]. They can provide simpli-
fied communication and knowledge acquisition, enhance
opportunities for patient engagement, and thus improve
the efficiency of the entire cancer care process. In conclu-
sion, it is undeniable that Al algorithms have great poten-
tial in tumor treatment, and promote the management of
tumors in the era of precision medicine. However, gaps
remain between AI models and their clinical implemen-
tation. With research fervor in this area extremely high,
However, gaps remain between AI models and their
clinical implementation. Large-scale prospective clinical
trials are expected, and in particular, AI-driven cancer
precision medicine should not be pursued cautiously to
maintain cost-effectiveness. Future research should focus
on improving security and interpretability to enhance
coordination between Al and clinicians, making Al more
applicable.
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