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Abstract

We have developed an efficient strategy for cloning of PCR products that contain an unknown region flanked by a known
sequence. As with ligation-independent cloning, the strategy is based on homology between sequences present in both the
vector and the insert. However, in contrast to ligation-independent cloning, the cloning vector has homology with only one
of the two primers used for amplification of the insert. The other side of the linearized cloning vector has homology with a
sequence present in the insert, but nested and non-overlapping with the gene-specific primer used for amplification. Since
only specific products contain this sequence, but none of the non-specific products, only specific products can be cloned.
Cloning is performed using a one-step reaction that only requires incubation for 10 minutes at room temperature in the
presence of T4 DNA polymerase to generate single-stranded extensions at the ends of the vector and insert. The reaction
mix is then directly transformed into E. coli where the annealed vector-insert complex is repaired and ligated. We have
tested this method, which we call quick and clean cloning (QC cloning), for cloning of the variable regions of
immunoglobulins expressed in non-Hodgkin lymphoma tumor samples. This method can also be applied to identify the
flanking sequence of DNA elements such as T-DNA or transposon insertions, or be used for cloning of any PCR product with
high specificity.

Citation: Thieme F, Engler C, Kandzia R, Marillonnet S (2011) Quick and Clean Cloning: A Ligation-Independent Cloning Strategy for Selective Cloning of Specific
PCR Products from Non-Specific Mixes. PLoS ONE 6(6): e20556. doi:10.1371/journal.pone.0020556

Editor: Sudha Agarwal, Ohio State University, United States of America

Received December 20, 2010; Accepted May 5, 2011; Published June 2, 2011

Copyright: � 2011 Thieme et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Work was funded by Icon Genetics GmbH. Icon Genetics GmbH employs all the authors of this study, therefore, they had a role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: FT, CE, RK and SM are employees of Icon Genetics GmbH. The Icon Genetics GmbH holds a patent for the QC cloning process (WO/2010/
040531). The authors confirm that the data integral to the manuscript will be freely available without restriction for non-profit research use. This does not alter the
authors’ adherence to all of the PLoS ONE policies on sharing data and materials.

* E-mail: marillonnet@icongenetics.de

Introduction

One problem in molecular biology consists of identifying

unknown sequences that flank a region of known sequence.

Examples of applications where such problem is encountered

include the determination of flanking sequences of stably

integrated transgenes (e.g. T-DNA), the sequence flanking a

transposon insertion, or the sequences of the variable regions of an

immunoglobulin. In all cases, PCR cannot be used directly to

amplify a fragment containing the known and unknown sequence

since only the sequence at one end of the fragment to amplify is

known. However, over the years, many protocols have been

developed to bypass this problem and allow the identification of

unknown flanking sequences. Such protocols cover a wide range of

approaches, including inverse PCR [1], Tail PCR [2] and adaptor

PCR [3,4,5] for DNA targets, and 59 RACE for RNA targets

[6,7]. Basically, most of these protocols rely on attaching an

adapter sequence to the end of the unknown sequence and using

PCR for amplification of a fragment containing both known and

unknown flanking sequences using a first primer binding to the

adaptor sequence and a second primer binding to the known

sequence. Since for all of these protocols the adaptor sequence is

not exclusively attached to the desired sequence, many non-

specific products are also amplified in a first PCR. Therefore, one

or two additional PCR amplifications performed using nested

primers binding in the known region are usually necessary to

increase the ratio of specific to non-specific products. Identification

of the unknown sequence can then be done simply by sequencing

the amplified product with a nested gene-specific primer.

However, if several specific products are expected to be amplified

in the same reaction (for example a DNA sample may contain

several transgenes and therefore several different flanking

sequences, or an RNA sample extracted from a B-cell population

will contain a large number of different immunoglobulin variable

regions), direct sequencing will not be useful. Rather, the amplified

products have to be cloned, and recombinant plasmids individ-

ually sequenced.

There are many approaches available for cloning of PCR

products. Standard techniques that rely on digestion of insert and

vector with restriction enzymes are not well suited for cloning

fragments containing unknown sequences since presence of

restriction sites in the unknown region may prevent cloning of

such sequences. A number of techniques that do not require

digestion of the inserts with restriction enzymes have been

developed, including blunt-end cloning, cloning with topoisomer-

ase, recombinase-based cloning and ligation-independent cloning

(LIC) [8,9]. Among these techniques, LIC presents many

advantages. LIC is simple to perform and can be done using

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e20556



common reagents found in any molecular biology laboratory, and

therefore does not require the purchase of a kit, but is nevertheless

very efficient. The principle of the LIC strategy is based on regions

of homology present in the primers used for amplification of the

PCR product and the ends of a linearized cloning vector. Vector

and insert are treated with an exonuclease such as T4 DNA

polymerase or exonuclease III [8,10], leading to formation of

complementary single-stranded DNA overhangs that are able to

anneal with each other. Annealed vector-insert complexes can be

transformed directly in E. coli cells without ligation [8,11].

One limitation for cloning of PCR products containing

unknown flanking sequences is that a substantial fraction of the

products can be non-specific. As described above, one source of

non-specific products consists of sequences amplified with the

adaptor primer only. Other non-specific products can be produced

by non-specific annealing of one or both primers during

amplification. Finally primer-dimers are a source of non-specific

products that can occur during any PCR amplification. Due to the

requirement for specific sequences on both sides of the insert,

ligation-independent cloning should not lead to cloning of the non-

specific products that result from amplification from a single

primer. However, all other non-specific products can theoretically

still be cloned.

To avoid this drawback, we have developed a ligation-

independent cloning strategy, called quick and clean cloning, that

allows cloning of specific products only. Here, we have tested this

method for cloning of immunoglobulin variable regions amplified

from cDNAs of non-Hodgkin lymphoma biopsy samples.

Results

Principle of the QC cloning strategy
Many protocols have been developed to amplify unknown

sequences that flank known sequences using PCR [1,2,3,4,5,6,7].

The PCR products obtained typically contain adaptor sequences

(A, Fig. 1A) attached to the end of a fragment of unknown

sequence (U), followed by a fragment of known sequence (K). The

PCR products are obtained by amplification with a first primer

binding to the adaptor sequence (primer 1) and a second primer

(primer 2) that anneals to part of the known sequence (sequence

K2, arbitrarily defined as the sequence of the known region

homologous to primer 2). In addition to specific products, several

types of non-specific products (ns) can also be amplified (Fig. 1A).

The principle of the quick and clean (QC) cloning strategy is

based on homology between sequences present in both the vector

and the PCR product. However, in contrast to other ligation-

independent strategies, the cloning vector has homology with only

one of the two primers used for amplification, the primer designed

to bind to the adaptor sequence (primer 1, Fig. 1B). The vector

has no homology at all with the second primer (primer 2). Instead,

the vector has homology with a sequence from the known region,

sequence K1, located downstream of K2 (sequence K1 is defined

as the sequence present in the vector, and expected to be present

in the insert). The sequence fragment of the cloning vector

corresponding to the K1 sequence is also referred to as the

‘catching sequence’ (CS). The advantage of this design is that only

specific PCR products can be cloned, since only these contain

region K1. Cloning by homology is performed as for ligation-

independent cloning: a 39 to 59 exonuclease such as T4 DNA

polymerase is used to generate complementary single-stranded

ends for the PCR product and the cloning vector. For QC cloning,

a longer single-stranded overhang needs to be generated than for

LIC since both regions, K1 and K2, in the PCR product need to

be made single-stranded.

Quantification of T4 DNA polymerase exonuclease
activity

Before testing QC cloning, we first quantified T4 polymerase

exonuclease activity to determine conditions that would be suitable

to make regions K1 and K2 single-stranded. As an assay to

measure exonuclease activity, DNA fragments of a control plasmid

digested with SacII and NdeI (3 fragments of size 3.6, 1.6 and

1.1 kb) were treated with T4 DNA polymerase for 10 minutes at

various temperatures (25uC, 20uC, 15uC and 10uC), generating

single-stranded DNA at the ends of each fragment. The fragments

were then incubated with Mung bean nuclease to remove the

single-stranded extensions. The size of the fragments was then

estimated by gel electrophoresis. All incubations resulted in a shift

to a lower size, with stronger shifts obtained with higher

Figure 1. Principle of the QC cloning strategy. (A) PCR products
amplified to identify unknown sequences flanking a region of known
sequence typically consist of an adaptor sequence (A) attached to the
end of the unknown sequence (U) followed by a region of known
sequence (K). The PCR product is amplified with two primers (1 and 2)
that are homologous to the adaptor sequence and to part of the known
sequence (region K2). Non-specific products (ns) and primer dimers can
also be obtained during PCR amplification. (B) The fragment is cloned
by homology with a linearized vector that is homologous to the
adaptor sequence at one end and to a sequence from the known
region (K1, called the CS in the cloning vector) at the other end. Since
sequence K1 does not overlap with sequence K2, non-specific products
and primer dimers cannot be cloned.
doi:10.1371/journal.pone.0020556.g001
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temperatures (Fig. 2). 10 minutes incubation at 25uC resulted in

digestion of approximately 100 to 300 nucleotides (visible as a

smear). Considering that digestion must take place at both ends of

each fragment, a single-stranded region of approximately 50 to

150 nucleotides must be present at each end of the linear

fragments after T4 treatment. Therefore, incubation of 10 minutes

at room temperature should be amply sufficient for QC cloning.

QC cloning can be performed in one tube and one step
As target sequences for cloning, we amplified the variable region

of immunoglobulins expressed in lymph node biopsies from non-

Hodgkin lymphoma patients. The protocol we used for amplifi-

cation is similar to a protocol described previously for performing

59 RACE [12], but requires only one round of PCR (Fig. 3A).

First-strand cDNA is made from total RNA using an oligo-dT

primer and reverse transcriptase. A G-tail is then added at the 39

end of first-strand cDNAs (corresponding to the 59 end of the

transcript) using terminal transferase. A PCR product containing

the entire variable region (the unknown sequence) and part of the

constant region (the known sequence) of the immunoglobulin is

amplified by PCR using an adaptor primer (bap2 pc, consisting of

a 19 nt adaptor sequence, bap2, followed by 14 cytosines) and a

constant region-specific primer (gsp). The cloning vector contains

the bap2 and CS (homologous to K1) sequences on either sides of

a lacZa gene fragment (used for blue-white selection). Digestion

with PstI excises the lacZa gene fragment and produces vector ends

that are accessible to T4 DNA polymerase for exonuclease

digestion (Fig. 3B, C).

A PCR fragment was amplified from non-Hodgkin lymphoma

biopsy sample T019 using primers bap2 pc and GC3F (binds to

the constant region of IgG immunoglobulins), column purified,

and an aliquot of the purified product checked on an agarose gel

(Fig 4A). To perform QC cloning, 2 ml of column-purified PCR

product (5–50 ng), 1 ml of unpurified PstI-digested cloning vector

(pICH31480, 5–20 ng, the digested mix contains both the vector

backbone and the lacZa fragment), 2 ml of 10x T4 ligase buffer,

Figure 2. Quantification of T4 DNA polymerase exonuclease
activity. SacII/NdeI-digested plasmid DNA (3 fragments, lane C) was
treated with T4 DNA polymerase for 10 minutes at 25uC, 20uC, 15uC and
10uC. The T4 DNA polymerase was then inactivated by incubation at
80uC for 5 min. The single-stranded ends generated by the 39 to 59

exonuclease activity T4 DNA polymerase were removed by using Mung
Bean nuclease. The size of the resulting fragments was analyzed by
agarose gel electrophoresis. As a control for the heat inactivation of T4
DNA polymerase, digested plasmid DNA was inactivated at 80uC for 5
minutes immediately after addition of T4 DNA polymerase (lane H).
doi:10.1371/journal.pone.0020556.g002

Figure 3. Strategy for amplification and QC cloning of
immunoglobulin fragments. (A) Amplification of immunoglobulin
fragments from non-Hodgkin lymphoma samples. Total RNA extracted
from biopsy samples (1) is reverse-transcribed into first strand cDNA
using an oligo dT primer (2). The cDNA is column-purified to remove
remaining dNTPs, and G-tailed using terminal transferase and dGTP (3).
(4) The G-tailed cDNA is used as a template for PCR amplification using
a G-tail adaptor primer (bap2 pc) and an immunoglobulin constant
region-specific primer (gsp). The PCR product is column-purified to
remove the remaining dNTPs (5). (B) Preparation of vector for QC
cloning. The cloning vector is linearized using the enzyme PstI. (C) The
column-purified PCR product and the linearized vector are mixed and
treated with T4 DNA polymerase to generate single-stranded ends that
are complementary between the vector and insert (7). The mixture is
directly transformed into chemo-competent E. coli DH10B cells where
the annealed ends of the vector and insert complex are repaired and
ligated (8). (9) After cloning, the plasmid is purified and the insert
sequenced using a vector specific primer (seqpr).
doi:10.1371/journal.pone.0020556.g003
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0.5 ml T4 DNA polymerase (10 units) and 14.5 ml water were

mixed in one tube and incubated for 5 min at 25uC. One mix was

further incubated at 75uC for 20 min to inactivate the T4 DNA

polymerase, while another was kept at 4uC for 20 minutes. The

samples were directly transformed into 100 ml chemo-competent

E. coli DH10B cells and 1/20 of the transformation was plated on

selective medium.

Sixty seven white and no blue colonies were obtained for the

experiment with heat inactivation, and 173 white and no blue

colonies were obtained for the experiment without heat inactiva-

tion. Eight white colonies for each transformation were screened

by colony PCR with vector primers. In both cases, seven out of

eight clones contained an insert of the expected size (Fig. 4C, D).

The shorter products were also specific, but contained 59

truncated immunoglobulin fragments (see below). This first

experiment tells us that the one-tube QC cloning protocol allows

cloning of PCR products, and that the heat inactivation step is not

required. Therefore, heat inactivation was omitted in the following

experiments.

Catching sequences of various lengths can be used for
QC cloning

To test the influence of the length of the CS on the efficiency of

QC cloning, the T019 PCR product described above was cloned

in two cloning vectors, pICH31477 with a CS of 23 nucleotides

and pICH31480 with a CS of 52 nucleotides (Fig. 5A). QC

cloning was carried out for 0, 5, 10, 20 and 30 minutes at 15uC. A

temperature of 15uC rather than 25uC was selected for this

experiment in order to reduce the speed of exonuclease digestion,

and test whether such limiting conditions would also be able to

make the entire 52 nt CS single-stranded (a total of 52+34 nt), as

required for cloning. After exonuclease digestion, the samples were

directly transformed into 100 ml chemo-competent E. coli DH10B

cells, and 1/20 of the transformation was plated on selective

medium. Maximum yields of 880 and 290 clones were obtained

with 30 minutes incubation with vector pICH31480, and with 20

minutes incubation with vector pICH31477, respectively (Fig. 5B).

Colony PCR performed on eight white colonies per transforma-

tion using vector primers (Fig. 5C) showed that all constructs

obtained contained inserts of the expected size. Therefore, CSs of

various lengths can be used for QC cloning. The 52 nucleotide CS

requires a longer incubation time as compared to the shorter 23

nucleotide CS to produce the maximum number of white colonies.

QC cloning can be carried out efficiently at room
temperature

To find the optimal temperature and incubation time

combination for QC cloning, the T019 GC3F PCR product was

cloned in pICH31480 (Fig. 5A) using incubation times of 0, 5, 10,

20, 30 and 60 minutes at 4uC, 15uC and 25uC. The samples were

then directly transformed into 100 ml E. coli DH10B and 1/20 of

the mixture was plated on selective medium. The highest number

of positive clones was obtained with an incubation of 10 min at

25uC (423 clones), whereas incubation for more than 20 minutes

delivered only few clones (Fig. 5D). It is possible that production

of too long single-stranded sequences may lead to extensive

secondary structure in both the insert and vector, which may

inhibit annealing of vector and insert. In addition, incubation at

25uC for a long time may also lead to complete digestion of the

insert. A maximum of 249 clones were obtained after 60 minutes

incubation at 15uC. Incubation at 4uC delivered only a

background level of 0 to 3 clones at each time point, possibly

resulting from T4 DNA polymerase exonuclease activity occurring

during the pipetting steps that were not carried out on ice. Eight

clones per experiment were analyzed by colony PCR and all

except one (15uC, 60 minutes) were found to contain an insert of

the expected size (Fig. 5E). Therefore, QC cloning can be set up

on ice with little or no exonuclease activity occurring, and then

carried out at 25uC for 10 minutes.

Comparison of the specificity of blunt-end cloning, LIC
and QC cloning

To compare the specificity of QC cloning, LIC and blunt-end

cloning, a mix containing three defined PCR products, including a

specific product (an immunoglobulin fragment) and two artificially

constructed non-specific products (ns1 or ns2, Fig. 6A), was used

for cloning. For preparation of the mix, all three DNA fragments

were amplified separately using primers bap2 and cga3.1, column-

purified and mixed in equimolar amounts (Fig. 6B). The PCR

product mix was then cloned into pJET1.2 (blunt-end cloning

vector), pICH31477 (LIC vector) and pICH31464 (QC cloning

vector). pJET cloning was carried out according to the

manufacturer’s protocol for 10 minutes at room temperature.

To use comparable conditions, both LIC and QC cloning

reactions were set up as described above and incubated in a

PCR block for 5 minutes at 25uC. Both reactions were

transformed directly into chemo-competent E. coli DH10B cells.

For each cloning, more than 500 clones were obtained. 18 colonies

Figure 4. Test of QC cloning performed with or without heat
inactivation. (A) PCR product amplified from G-tailed cDNA prepared
from biopsy sample T019 using primers bap2 pc and GC3F. (B)
Structure of the vector and of the PCR product. (C, D) The PCR product
was cloned into pICH31480 using T4 DNA polymerase treatment for 5
minutes at 25uC (A, adaptor; U, unknown sequence; K, known sequence;
CS, catching sequence), followed by heat inactivation 20 min at 75uC
(C) or incubation at 4uC (D). Eight randomly chosen clones were
analyzed by colony PCR using vector primers. The products amplified
by colony PCR were separated on a 1% agarose gel supplemented with
ethidium bromide and visualized under UV light. The expected insert
size is indicated by an arrow.
doi:10.1371/journal.pone.0020556.g004
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per cloning reaction were analyzed by colony PCR using vector

primers (Fig. 6C–E). With the blunt-end cloning vector pJET1.2,

all three PCR products were cloned, however, with a preference

for the shorter fragments (Fig. 6C). For the LIC vector

pICH31477 all three PCR products were also cloned. However,

in contrast to blunt-end cloning, LIC lead to cloning of a higher

proportion of larger inserts (Fig. 6D). As expected, QC cloning

resulted in cloning of the immunoglobulin fragment only (Fig. 6E).

Comparison of the specificity of blunt-end cloning, LIC
and QC cloning on immunoglobulin fragments of sample
T044

The next experiment was performed to compare the specificity of

QC cloning, LIC and blunt-end cloning for cloning of a PCR

fragment amplified from a non-Hodgkin lymphoma biopsy sample

(T044, amplified using primers bap2 pc and cga3.1, Fig. 7B). The

PCR product was amplified with a relatively low Tm of 32uC to

decrease the specificity of the amplified PCR product. The PCR

product was then cloned into pICH31477 (LIC) and pICH31464

(QC cloning) and into pJET1.2 (blunt-end cloning). The 23

nucleotide sequence at the end of pICH31477 is identical with

the sequence of primer cga3.1 (Fig. 7A). Blunt-end cloning of the

PCR product into pJET1.2 resulted in a high number of clones, but

colony PCR of 12 randomly chosen clones showed the presence of

only inserts smaller than the expected size for full-length

immunoglobulin fragments (Fig. 7C). LIC and QC cloning

produced 500 and 246 clones, respectively. It is possible that a

lower number of clones was obtained using QC cloning since only a

fraction of the amplified products were specific and therefore

cloneable. Colony PCR on clones obtained from both cloning

experiments showed the presence of inserts of the size expected for

full length products (Fig. 7D, E).

Inserts of 48 clones obtained with LIC and QC cloning were

sequenced. For the LIC inserts, sequences of 45 clones were

obtained, 26 (57.8%) of which contained immunoglobulin sequenc-

es. Twelve of these (26.7% of the total) contained full-length variable

region sequences, while 19 (42.2%) contained non-specific sequenc-

es unrelated to immunoglobulins. For QC cloning, sequences of 47

clones were obtained, 100% of which corresponded to immuno-

globulin sequences. Out of the 47 sequences, 30 (63.8%) contained

full-length variable regions. These results showed the efficiency and

specificity of the QC cloning method even when PCR leads to

amplification of mixtures of specific and non-specific sequences.

Use of QC cloning for cloning of Gamma, Mu, Kappa and
Lambda immunoglobulin fragments

To test QC cloning with a variety of targets, we cloned the

variable regions of the heavy and light chains of immunoglobulins

Figure 5. Test of CS length, reaction temperature and
incubation time. (A) To analyze the influence of the catching
sequence length on cloning efficiency, the T019 GC3F PCR product was
cloned into pICH31477 (23 nucleotide CS) and pICH31480 (52
nucleotide CS). Cloning was performed using an incubation at 15uC
for 0, 5, 10, 20 and 30 minutes (A, adaptor; U, unknown sequence; K,
known sequence; CS, catching sequence) (B). (C and E) Eight randomly
chosen clones from reactions with the incubation times that yielded the
most clones were analyzed by colony PCR using vector primers. The
PCR products were separated on a 1% agarose gel supplemented with
ethidium bromide and visualized under UV light. The expected insert
size is indicated by an arrow. (D) To determine the optimal incubation
temperature and time, the T019 GC3F PCR product was cloned into
pICH31480 (52 nucleotide CS) using incubation temperature of 4uC,
15uC and 25uC for 0, 5, 10, 20, 30 and 60 minutes.
doi:10.1371/journal.pone.0020556.g005
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expressed in two non-Hodgkin lymphoma biopsy samples: T109,

which contains a tumor-associated immunoglobulin of the isotype

IgG,L (heavy chain Gamma, light chain Lambda), and T069, with

the isotype IgM,K (heavy chain Mu, light chain Kappa). The

fragments containing the variable regions of the heavy and light

chains were amplified using the adaptor primer bap2 pc (in all

cases) and the constant primers GC3F, LC1N, Mu1F and KC2F

specific for the immunoglobulin fragments of classes Gamma,

Lambda, Mu and Kappa, respectively (Fig. 8A). Each of the PCR

products were then cloned in corresponding QC cloning vectors

(pICH31480 for the Gamma fragment and three other QC vectors

with CSs of 49 or 50 nt specific for each immunoglobulin chain

type). In parallel, the PCR products from all four amplifications

were also cloned blunt-end into pJET1.2 as a control, to provide

an overview of the composition of all amplified products, specific

and non-specific.

In order to assess the quality of the cloning reactions, 12

randomly chosen clones from each cloning were analyzed by

colony PCR using vector primers (Fig. 8B–E). For all four targets,

a higher proportion of clones containing inserts of the expected

size was obtained by QC cloning (6–11 out of 12) than by blunt-

end cloning (0–5 out of 12). To analyze the cloned inserts in more

detail, additional randomly chosen pJET1.2 and QC clones from

each cloning reaction were picked and sequenced (Table 1). Out

of 169 sequenced pJET1.2 clones, 27 (16%) contained the desired

full-length immunoglobulin variable regions, 88 (52%) contained

59 truncated immunoglobulin variable region fragments and 49

(29%) contained non-specific inserts (15 [9%] primer dimers, 34

[20%] sequences not corresponding to immunoglobulins) and 5

(3%) were empty vectors.

For QC cloning 107 (98%) out of 109 sequences obtained

contained immunoglobulin sequences, 70 (64%) of which were

full-length, and 37 (34%) 59 truncated. Only one insert sequence

(1%) did not correspond to an immunoglobulin sequence, but had

partial homology to the CS, explaining its occurrence. One

sequence corresponded to an empty vector (‘‘religated’’ at the PstI

Figure 7. Comparison of blunt-end cloning, ligation-indepen-
dent cloning and QC cloning on sample T044. (A) To compare the
efficiency of the three cloning methods, a PCR product amplified from
G-tailed cDNA prepared from sample T044 was cloned using blunt-end,
LIC and QC cloning (A, adaptor; U, unknown sequence; K, known
sequence; ns, non-specific; CS, catching sequence). (B) PCR product
amplified from T044 G-tailed cDNA using primers bap2 pc and cga3.1.
(C, D, E) 12 randomly picked clones for each cloning strategy were
analyzed by colony PCR using vector primers. The size of the expected
immunoglobulin fragment is indicated by an arrow and a dashed line.
doi:10.1371/journal.pone.0020556.g007

Figure 6. Comparison of blunt-end cloning, ligation-indepen-
dent cloning and QC cloning using a mix of defined PCR
products. (A) To compare efficiency of the three cloning methods, a
mixture of three PCR products, two unspecific (ns1 and ns2) and one
immunoglobulin fragment, was cloned (A, adaptor; U, unknown
sequence; K, known sequence; ns, non-specific; CS, catching sequence).
(B) PCR product mix amplified using primers bap2 pc and cga3.1. The
arrow indicates the immunoglobulin fragment. (C, D, E) 12 randomly
chosen clones for each cloning strategy were analyzed by colony PCR
using vector primers. The immunoglobulin insert size is indicated by an
arrow and a dashed line. (C) Unspecific blunt-end cloning into pJET1.2.
(D) ligation-independent cloning into pICH31477 using a CS identical to
cga3.1. (E) QC cloning into pICH31464.
doi:10.1371/journal.pone.0020556.g006

Quick and Clean Cloning

PLoS ONE | www.plosone.org 6 June 2011 | Volume 6 | Issue 6 | e20556



site). It should be noted here that the cloning experiments

described here were carried out for testing the cloning procedure

and its efficiency, and therefore, older biopsy material which

contained partially fragmented mRNAs was used. When fresh

biopsy material is used, more than 85% of the clones obtained

with QC cloning contain full-length variable region fragments

(2049 analyzed sequences have been cloned so far from 72

different PCR products; these sequences represent a total of 1755

full-length variable regions; data not shown). These results show

both the specificity of QC cloning and the higher efficiency for

cloning larger inserts as compared to other cloning strategies such

as blunt-end cloning. PCR products derived from 59 truncated

transcripts can still be cloned with QC cloning, since these are

nevertheless specific (they contain the constant region correspond-

ing to the CS).

QC cloning can be performed using Klenow polymerase
Klenow polymerase is known to have a weaker exonuclease

activity than T4 DNA polymerase. Therefore, it is expected that

Klenow polymerase could be used as an alternative to T4 DNA

polymerase in case more controllable exonuclease digestion

conditions are needed. The T4 DNA polymerase exonuclease

activity assay described above was used to quantify Klenow

polymerase exonuclease activity under various conditions. SacII/

NdeI-digested plasmid DNA was incubated 30, 60, 90, and 120

minutes in the presence of Klenow polymerase at 25uC and 37uC.

We found that no significant exonuclease activity could be

detected at room temperature (25uC) (Fig. 9A). In contrast,

single-stranded regions are formed at 37uC with incubations

ranging from 30 to 120 minutes. This observation shows that

almost no exonuclease activity will occur while pipetting (standard

laboratory conditions of 20 to 25uC), while exonucleolytic activity

will be obtained when the reaction is incubated at 37uC.

To determine the optimal incubation time and CS length for

Klenow QC cloning, immunoglobulin fragments of sample T019

amplified using primer bap2 pc and GC3F were cloned into

pICH31477 (23 nt CS) and pICH31480 (52 nt CS) (Fig. 5A).

Klenow QC cloning was carried out for 0, 30, 60, 90, and 120

minutes at 37uC. The samples were directly transformed into

100 ml E. coli DH10B and the entire transformation was plated on

selective medium. The number of white colonies increased with

incubation time (Fig. 9B). All colonies tested by colony PCR

contained an insert of the expected size for both cloning vectors

(Fig. 9C). QC cloning can therefore be performed using Klenow

polymerase, but requires a significantly longer incubation as

compared to T4 DNA polymerase.

Discussion

Ligation-independent cloning was first described two decades

ago [8] and is now increasingly used for a number of applications

[13,14,15,16,17,18,19]. LIC offers many advantages: (1) it does

not require cleavage of insert DNA with restriction enzymes, and

therefore can be used to clone libraries of unknown sequences, (2)

it is highly efficient, in part because empty vector cannot religate

without insert, but also because annealing of long single-stranded

DNA ends (of more than 12 nucleotides) allows direct transfor-

mation in E.coli cells without the need for an in vitro ligation step

[11,20]. The initial LIC protocol required the use of specific

sequences at the ends of the vector and insert that lacked a specific

nucleotide, and also required incubation of vector an insert

separately with T4 DNA polymerase in the presence of the specific

deoxynucleotide missing in the sequence; such protocol was

designed to restrict the length of DNA ends made single stranded

[8,20]. Since the first publication, a number of improvements have

been made. Yang et al. [10] showed that T4 DNA polymerase

treatment can be performed without the addition of any nucleotide

in the reaction mix, thereby removing the requirement to use

specific sequences lacking one of the 4 nucleotides. Since the

single-stranded extension might be longer than the 12–15

nucleotides of the overlap region, the annealed vector-insert

complex was treated with T4 DNA polymerase using all 4

deoxynucleotides to fill the single-stranded gaps. In a separate

work, Li and Evans [11] also performed an exonuclease treatment,

this time using Exonuclease III rather than T4 DNA polymerase,

and, as in the work of Yang et al, treatment was performed in the

absence of any nucleotide. However, they did not fill the gaps left

at the junction sites, and showed that bacterial cells were able to

both trim away non-hybridized overhang sequences and fill and

repair the gaps. Later, Li and Elledge [21] showed that a strategy

Figure 8. Cloning of Gamma, Mu, Kappa and Lambda
immunoglobulin fragments by blunt-end and QC cloning. (A)
PCR products amplified from G-tailed cDNA prepared from non-
Hodgkin lymphoma biopsy sample T019 (isotype Gamma, Lambda) and
T069 (isotype Mu, Kappa). Amplification was performed using primer
bap2 pc and primers GC3F, LC1N, Mu1F and KC2F as indicated. The PCR
products were cloned using QC cloning (B and D) or blunt-end cloning
(C and E). 12 randomly chosen clones for each reaction were analyzed
by colony PCR using vector primers. The expected size of full-length
inserts is indicated by a dashed line and an arrow.
doi:10.1371/journal.pone.0020556.g008
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called sequence and ligation independent cloning (SLIC), that is

performed with T4 DNA polymerase on DNA fragments with

overlapping ends consisting of any native sequence could be used

to assemble up to 9 PCR-amplified fragments into a vector.

We have further optimized parameters of this cloning method.

First, and unlike other described LIC protocols, the entire

procedure is performed in one tube and in one step: PCR product

and linearized vector are pipetted into one tube together with T4

DNA polymerase, incubated 10 minutes at 25uC and directly

transformed into competent cells. This streamlined protocol is

nevertheless still very efficient, and we found that adding an extra

step to inactivate T4 DNA polymerase before transformation did

not increase cloning efficiency. Furthermore, we tested whether

the E. coli large Klenow fragment could be used for exonuclease

digestion instead of T4 DNA polymerase. As expected, we found

that Klenow could indeed be used for ligation-independent

cloning. Interestingly, the exonuclease activity of Klenow is too

low to work at room temperature, and incubation needs to be

performed at 37uC. This can be useful, since it makes it easier to

set up many cloning mixes without having to worry that

exonuclease starts working before finishing pipetting for all

samples. However, for most applications, the use of T4 DNA

polymerase is still preferable as cloning can be done faster.

More importantly, we have shown here that use of a vector

designed to not have any homology with one of the primers used

for amplification of the insert can be used to develop a protocol,

called QC cloning, that allows cloning of specific products only.

Interestingly, this was achieved without reducing the cloning

efficiency that is normally obtained with standard LIC vectors. We

have tested this protocol on an artificial mix of PCR products

containing one third of specific products and two third of non-

specific products and found that only specific products were

cloned. We have also tested this cloning procedure on lymph node

biopsy samples of non-Hodgkin lymphoma patients to identify the

variable regions of immunoglobulins, and found that here as well,

virtually only specific sequences were cloned. This feature makes it

more efficient to identify the tumor-associated idiotype (the

variable region of the specific immunoglobulins present on tumor

cells), since, because all white colonies contain a specific insert,

screening for colonies before sequencing is no longer necessary.

Furthermore, the ability to clone exclusively specific products

removes the need for nested PCRs that are normally required to

increase the ratio of specific to non-specific products. This in turn

reduces the chance for biasing the population of amplified

sequences, which might happen if for example a polymorphism

is present in the target sequence of one of the nested primers.

We have also performed a more general comparison of the

efficiency of three different cloning methods: blunt-end cloning,

ligation-independent cloning and QC cloning. Interestingly, we

found that standard blunt-end cloning leads to preferential cloning

of small products, while both LIC and QC cloning are able to

clone larger products more efficiently. This can be explained by

the fact that with ligation-independent cloning, DNA fragments

are digested at both ends by T4 DNA polymerase. At some point,

some of the small fragments may become completely digested.

Another explanation may be that with blunt-end cloning, once one

end of the vector has been ligated to an insert, the ends of the

resulting linear fragment are more likely to religate for smaller

inserts that for large ones since the ends are less distant from each

other. For ligation-independent and QC cloning, the two

homologous regions at, or near, the ends of the vector and insert

allow efficient annealing of the ends, and may therefore provide

conditions less limiting on insert size for annealing of both ends of

the vector-insert complex. In addition, with LIC and QC cloning,

vector-insert complexes that may be annealed at only one end can

easily anneal at the other end later after transformation in E.coli,

provided that the two ends exhibit a region of homology. In

contrast, with blunt-end cloning, linear fragment that consists of a

vector molecule ligated with an insert at one end only cannot be

religated in E.coli. Whatever mechanism is involved, this feature of

ligation-independent cloning methods is very useful as it allows to

increase the ratio of clones obtained that contain full-size inserts.

For example, in case of amplification of the variable region of

antibodies, products containing a complete variable region have a

size of around 700 nt (depending of course on where primers are

located in the constant region). However, smaller products can be

obtained that contain 59 truncated variable region fragments.

These fragments can be formed either by reverse transcription of

59 truncated transcripts, or when reverse transcription fails to

proceed through the entire length of the transcript (for example

because of RNA secondary structure). These incomplete first

strand cDNAs will be tailed by terminal transferase as efficiently as

Table 1. Summary of sequencing data obtained for immunoglobulin fragments cloned by QC cloning or pJET blunt-end cloning.

Sequenced/obtained Full-length Truncated Primer dimer Non-specific products Empty vector

QC cloning

T019 GC3F 32/30 24 (80%) 6 (20%) - - -

T019 LC1N 24/24 12 (50%) 10 (42%) - 1 (4%) 1 (4%)

T069 Mu1F 32/32 14 (44%) 18 (56%) - - -

T069 KC2F 24/23 20 (87%) 3 (13%) - - -

pJET cloning

T019 GC3F 48/46 5 (11%) 11 (24%) 6 (13%) 23 (50%) 1 (2%)

T019 LC1N 48/37 4 (11%) 26 (70%) 2 (5%) 4 (11%) 1 (3%)

T069 Mu1F 48/40 - 25 (63%) 7 (18%) 7 (18%) 1 (3%)

T069 KC2F 48/46 18 (39%) 26 (57%) - - 2 (4%)

Summary

pJET blunt- end cloning 192/169 27 (16%) 88 (52%) 15 (9%) 34 (20%) 5 (3%)

QC cloning 112/109 70 (64%) 37 (34%) - 1 (1%) 1 (1%)

doi:10.1371/journal.pone.0020556.t001
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full length cDNAs, and the PCR products derived from them will

be cloneable, whether using blunt-end cloning or ligation-

independent cloning. Fortunately, the push toward cloning of

larger sequences that is observed with both ligation-independent

cloning methods allows cloning the full size fragments more

efficiently. Our experimental studies using biopsy samples showed

this beneficial aspect of both ligation-independent cloning

methods. It should be noted that in this study the biopsy material

that was used had been stored for several years at 280uC, leading

to a high amount of partially degraded or fragmented transcripts.

However, even under these suboptimal conditions, more than

60% of the cloned fragments were full length. If fresh biopsy

material is used, the amount of cloned full-length variable regions

is well above 85% (data not shown).

We have investigated the length of the catching sequence and

found that long CSs of 50 nucleotides can be used and even allow

more efficient cloning. This result was not necessarily expected

since with a 50 nucleotide long CS, a region of .70 nucleotides

(50 nucleotides of the CS plus the primer region plus any sequence

present between these two sequences) has to be made single

stranded on one side of the insert. Not surprisingly, this requires

using a slightly longer incubation time for optimal efficiency than

when smaller catching sequences are used. Although using small

20 nucleotide long catching sequences works well under normal

conditions, being able to use 50 nucleotides is advantageous since

one can never be sure that polymorphisms are not present in the

region of the insert DNA homologous to the catching sequence.

For example, when antibody variable regions are cloned from

patient biopsies, a catching sequence from the constant region is

used. However, even the constant region of antibodies contains

polymorphisms that vary between different patients, and even a

database search will not be able to identify all possible

polymorphisms. A polymorphism of one nucleotide in a sequence

homologous to a 12 nucleotide catching sequence may prevent

cloning of a product containing such sequence. In contrast, using a

50 nucleotides CS will allow any homologous sequence to be

cloned, since a stretch of 12 conserved nucleotides will always be

available. Long catching sequences might also be useful for other

applications of QC cloning; for example, QC cloning might be

used for cloning sequences from gene families. In that case, use of

longer catching sequences will improve the chance of cloning

homologues.

One requirement for QC cloning is the construction of a

specific vector for each new target. Such requirement is not

difficult to satisfy since QC cloning vectors are easy to make, for

example using ligation-independent cloning (any other alternative

cloning technique, such as described in Engler et al. [22], would

also work). For construction using ligation-independent cloning,

only one new primer needs to be designed for each new vector (for

example, nospclon1 shown in Figure 10), as the second primer

corresponding to the adaptor sequence (primer igclon1) will be the

same for all vectors. The new primer has to contain a 59 sequence

with homology to the vector backbone chosen for making the QC

cloning vector (sequence D), then the CS, followed by a restriction

site (PstI in the example given) and finally by a sequence

homologous to a fragment containing a lacZa marker or any

other favored marker or counter-selectable cassette. The PCR

product is amplified and cloned in one tube and one step into a

linearized vector backbone. To use the new vector, compatible

primers for the amplification of the target sequence have to be

designed. The CS does not have to be positioned exactly

immediately after the primer used for amplification of the target

sequence. For example, we have tested vectors in which the primer

used for the amplification and the CS were separated by 10, 20 or

even 30 nucleotides, and QC cloning did still work. This is useful

since the same vector can be used for cloning PCR products

amplified with different primers, as long as these primers are

located not too far from the sequence homologous to the CS.

As an application, the QC cloning approach is currently used in

the manufacturing process of personalized vaccines against non-

Hodgkin lymphoma. QC cloning is used to identify the unique

immunoglobulin variable regions present on the surface of the

tumor B-cell lines. The variable regions are then subcloned to

make chimeric full length antibody constructs, which are used for

production of the recombinant immunoglobulins by transient

expression in Nicotiana benthamiana. The recombinant immuno-

Figure 9. Test of QC cloning using Klenow DNA polymerase. (A)
Test of Klenow exonuclease activity determined using the same assay
used for T4 DNA polymerase. (B) To test QC cloning using Klenow DNA
polymerase, the PCR product T019 GC3F was cloned into pICH31477 (23
nucleotide catching sequence) and pICH31480 (52 nucleotide catching
sequence). Incubation was performed at 37uC for 0, 30, 60, 90, and 120
minutes. (C) Eight randomly chosen clones from 120 min time points
were analyzed by colony PCR using vector primers. The size of the
expected full-length fragment is indicated by an arrow.
doi:10.1371/journal.pone.0020556.g009
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globulin is then used as an antigen to elicit an immune response

against the tumor cells [23].

The quick and clean cloning method that is presented here can

also be used to clone and identify the flanking sequence of DNA

elements such as transposons or T-DNA insertions. In such cases,

an amplification procedure suitable for DNA templates has to be

used, but the same QC cloning principle as described here for

PCR products containing antibody variable sequences can be

applied. Finally, it should be noted that the QC cloning procedure

is not limited to the cloning of unknown flanking sequences, but

can also be used for cloning of any other PCR product. For

example, QC cloning may be useful for cloning and identification

of gene family members; the use of QC cloning would be

advantageous since the use of degenerate primers for amplification

of several family members may result in mixtures of specific and

non-specific products. QC cloning vectors can then be designed to

catch a specific population from the pool of amplified sequences.

Methods

Ethics statement
Human non-Hodgkin lymphoma biopsy samples kindly pro-

vided by Maurizio Bendandi, Laboratory of Immunotherapy of

the Center for Applied Medical Research (University of Navarra,

Spain) were used as the starting material for cloning the

immunoglobulin variable regions. Research use of the provided

biopsy material has been approved by the Investigational Review

Committee of University of Navarra Hospital (Comite’ de

Investigacion Clinica de la Clinica Universitaria de Navarra) with

written informed consent being on file. The clinical samples have

been analyzed anonymously.

Construction of QC cloning vectors
For the construction of pICH31480, the lacZa fragment was

amplified by PCR from pUC19 with the primers Igclon1 (59-GGA

GGG TTG AAG ACT T GTC CAG AGC CGT CCA GCA A
CTG CAG GCA GCT GGC ACG ACA GGT TTC-39) and

Igclon4 (59-GAT CCT AGA TGT GGA AGA CTT TAC CAC
GAC ACC GTC ACC GGT TCG GGG AAG TAG TCC TTG
ACC AGG CAG CCC AGG G CTG CAG CGC GCG TTT

CGG TGA TGA-39). The 39-part of both primers (underlined) is

specific for the lacZa cassette. This sequence is preceded by a PstI

recognition site (italics). The middle part (bold dotted line) contains

the homologous sequences for QC cloning, bap2 in Igclon1 and

the CS in Igclon4, a 52 bp region of the first exon of the IgG

constant region. The 59-end of each primer is homologous to the

ends of a linearized vector used for cloning, in this case

pICH29965 (carbenicillin resistance, pUC19 origin, no lacZa).

The lacZa PCR product and the BpiI-digested (Fermentas, St.

Leon-Rot, Germany) vector pICH29965 were column purified

(NucleoSpin Extract II, Macherey-Nagel, Düren, Germany). To

perform the QC cloning 2 ml PCR product, 1 ml BpiI-digested

vector, 2 ml 10x T4 DNA polymerase buffer, 0.5 ml T4 DNA

polymerase (New England Biolabs, Ipswich MA, USA; 3 units/ml)

and 14.5 ml water were mixed and incubated for 5 minutes at

room temperature. The mix was transformed in chemically

competent E. coli DH10B cells and plated on media containing

40 mg/ml X-Gal (Sigma-Aldrich, Munich, Germany) and 250 mg/

ml carbenicillin (Duchefa, Haarlem, The Netherlands). Positive

clones were detected using blue/white selection, with blue colonies

containing the desired vector construct. The region containing the

bap2 and the CS sequence was confirmed by sequencing before

use.

All other QC cloning vectors were prepared following a similar

protocol, but primer Igclon4 was replaced by other primers with

different CSs.

Processing of non-Hodgkin lymphoma samples
The protocol from Osterroth et al. [12] was modified. RNA was

isolated from non-Hodgkin lymphoma single-cell suspensions

using the RNeasy kit (Qiagen, Hilden, Germany). 0.5–1.0 mg

RNA was reverse transcribed into cDNA using the SuperScript III

reverse transcriptase kit and Oligo dT20 (Invitrogen, Carlsbad,

California, US). The resulting cDNA was not treated with

RNaseH, but column-purified (MN Extract II kit, Macherey-

Nagel) prior G-tailing using terminal transferase (New England

Biolabs). The amplification of antibody fragments from G-tailed

first-strand cDNA was carried out using a G-tail-specific primer

(bap2 pc: GTC CAG AGC CGT CCA GCA A CC CCC CCC

CCC CCC) and immunoglobulin-specific primers derived from

the respective constant region (for IgM, Mu1F: CTT GGA AGG

CAG CAG CAC CTG; for IgG, GC3F: GGT GTG CAC GCC

GCT GGT CAG and cga3.1: CAC GAC ACC GTC ACC GGT

TC; for IgK, KC2F: GTG ACA CTC TCC TGG GAG TTA C;

and for IgL, LC1N: CGG TGC TCC CTT CAT GCG TGA C).

The variable region was amplified using KOD Hot Start DNA

polymerase (Merck, Darmstadt, Germany) with the following

Figure 10. Construction of QC cloning vectors. QC cloning
vectors can be prepared by amplification of a DNA fragment containing
a visible selectable marker (a lacZa fragment was used here) with two
primers with 59 extensions containing the bap2 sequence (blue box)
and the catching sequence (CS, red box). The primers also contain
extensions C and D with homology with any cloning vector of choice.
The PCR product is cloned by ligation-independent cloning in a
linearized vector (here pICH36833) with DNA ends homologous to
sequences C and D. DNA from blue colonies are sequenced to make
sure that no mutations are present in the sequence of bap2 and the CS.
doi:10.1371/journal.pone.0020556.g010

..........................................................................

.......................................

............................................

......

Quick and Clean Cloning

PLoS ONE | www.plosone.org 10 June 2011 | Volume 6 | Issue 6 | e20556



parameters: 95uC for 2 min, followed by 40 to 45 cycles of 95uC
for 20 sec, 58uC for 10 sec, and 70uC for 20 sec, followed by a final

incubation at 70uC for 20 sec. The PCR products were analyzed

by agarose gel electrophoresis and column-purified (MN Extract II

kit, Macherey-Nagel) to remove primers and the remaining

dNTPs prior cloning.

QC cloning
Cloning vectors were isolated from 1 ml stationary phase E. coli

DH10B using the Nucleospin Plasmid QuickPure kit (Macherey-

Nagel). 3 ml of the purified vector DNA (50–200 ng/ml) were

digested in a 30 ml reaction with PstI (New England Biolabs) for

2 h at 37uC, heat inactivated for 20 minutes at 80uC and analyzed

by agarose gel electrophoresis. To perform cloning, 2 ml column-

purified PCR product (5–50 ng/ml), 1 ml unpurified PstI-digested

cloning vector (5–20 ng/ml), 2 ml 10x T4 ligase buffer (New

England Biolabs) or NEB buffer 2 (both buffers were tested and

are suitable for QC cloning), 0.5 ml T4 DNA polymerase (New

England Biolabs, 3 units/ml) and 14.5 ml water were mixed and

incubated in a PCR block for 5–60 min at 4uC, 15uC or 25uC.

Reactions were chilled on ice for 1 minute and directly

transformed into 100 ml of chemo-competent E. coli DH10B cells.

Clones were selected on LB agar plates supplemented with 40 mg/

ml X-Gal (Sigma-Aldrich) and 250 mg/ml carbenicillin (Duchefa).

Blue-white selection was used to identify white clones containing

inserts, while blue clones contained undigested cloning vector. To

analyze the cloned sequences, randomly chosen clones were tested

by colony PCR using vector primers. Additionally, clones were

sequenced using a vector primer.

Generation of PCR products for comparison of cloning
methods

To compare QC cloning, LIC and blunt-end cloning, a mix

containing three defined PCR products, a specific immunoglob-

ulin fragment and two artificially constructed non-specific

products, was generated. The template for each PCR product

was first cloned blunt-end in a standard vector which harbors a

spectinomycin resistance gene. Each cloned template was flanked

by bap2 and cga3.1 sequences, which were then used as primer

binding sites for amplification from the plasmid template. The

PCR products were column-purified and mixed in equimolar

amounts.

Blunt-end cloning into pJET1.2
Blunt-end cloning of PCR fragments was carried out using the

CloneJET PCR Cloning Kit (Fermentas, St. Leon-Rot, Ger-

many). Reactions were chilled on ice for 1 minute and

transformed into 100 ml of chemo-competent E. coli DH10B

cells. Clones were selected on LB agar plates supplemented with

250 mg/ml carbenicillin (Duchefa). To analyze cloning efficiency,

randomly chosen clones were tested by colony PCR and

sequencing.

Colony PCR
Colony PCR was carried out using Hot Start Taq polymerase

(Fermentas). Vector primers kanseqf (TGG AAA AAC GCC AGC

AAC GC) and kanseqr (TGT CTC ATG AGC GGA TAC AT)

were used for QC cloning vectors and pJET1.2 forward and

reverse (see manufacturer’s protocol) for pJET1.2 clones. PCR

fragments were analyzed by agarose gel electrophoresis.

Sequencing
Clones were sent to Eurofins MWG Operon (Martinsried,

Germany) for plasmid isolation and sequencing. Primers kanseqf

and pJET1.2 reverse were used for sequencing the insert of QC

cloning vectors and pJET1.2, respectively.

Bioinformatic analysis
Vector insert sequences were analyzed using BLAST [24].

Additionally, immunoglobulin variable region sequences were

analyzed using IMGT/V-Quest [25].

In vitro assay for quantification of T4 and Klenow DNA
polymerase exonuclease activity

To quantify exonuclease activity, linear DNA was incubated

with T4 or Klenow DNA polymerase. The DNA used was a

SacII/NdeI-digested plasmid (pICH10990), and consists of three

fragments of 3595, 1563 and 1158 bp. 2.5 ml digested vector

(,150 ng) was treated with 1.5 units T4 DNA polymerase (New

England Biolabs) in NEB buffer 2 for 10 minutes at 25uC, 20uC,

15uC and 10uC or 2.5 units Klenow polymerase (New England

Biolabs) in NEB buffer 2 for 30, 60, 90 and 120 minutes at 25uC
and 37uC. The incubation was followed by inactivation of the

polymerase at 80uC for 5 minutes. Then, Mung Bean nuclease

buffer and 10 units of Mung Bean nuclease (New England

Biolabs) were added to the reaction mix. The reaction was

incubated for 20 minutes at 25uC to remove single-stranded DNA

overhangs. The treated DNA was then analyzed by agarose gel

electrophoresis.

Klenow QC cloning of immunoglobulin fragments
To perform Klenow QC cloning, 2 ml column-purified PCR

product (5–50 ng/ml), 1 ml unpurified PstI-digested cloning

vector (5–20 ng/ml), 2 ml 10x NEB buffer 2, 2 ml Klenow

polymerase (New England Biolabs, 5 units/ml) and 13 ml water

were mixed and incubated in a PCR thermo cycler for 30–

120 min at 37uC. Reactions were chilled on ice for 1 minute and

directly transformed into 100 ml of chemo-competent E. coli

DH10B cells.
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