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Abstract 

Colorectal cancer (CRC) ranks as the third most prevalent cancer worldwide, causing a serious threat to global health 
and social burden. Clostridioides difficile infection (CDI) is one of the most important nosocomial infections and has a 
higher incidence in cancerous population compared with non-cancerous cases. Different risk factors, including gut 
microbiota dysbiosis, extensive surgery, chemotherapy, prolonged hospitalization, and antimicrobial therapy, com-
promise host defenses against CDI and contribute to cancer patients’ susceptibility to this infection. The emergence 
of CDI in patients with CRC creates conditions for therapy escalation and prolonged hospitalization, highlighting 
the need for correct and effective CDI management in these patients. Here, common risk factors associated with CDI 
in patients with CRC are discussed. In addition, different available techniques for the prevention, detection, and treat-
ment of CDI with the lowest impact on gut microbiota diversity are summarized. This review aims to improve 
the understanding of the interplay between CDI and CRC and provide new insights into restoring and maintaining 
gut microbiota balance during CDI management in patients with CRC.  
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Background
Colorectal cancer (CRC) is the third most prevalent 
malignancy and the second deadliest, with 1.8 million 
new cases and 881,000 deaths worldwide in 2018 [1]. 
Importantly, CRC was identified as the cause of 10% of 
new cancer cases and cancer-related deaths globally in 
2020 [2]. CRC is caused by genetic mutations and epige-
netic alterations in colonic cells, leading to the conver-
sion of epithelial cells into adenocarcinomas [2, 3]. In 
this regard, somatic/acquired or inherited genetic muta-
tions and environmental factors, including dietary food 
regimes, physical inactivity, and smoking, are risk factors 
related to the prevalence of CRC [4, 5]. Recently, dys-
biotic microbiota has been identified as a key factor in 
the genesis of cancer progression [6], which is typically 
marked by a decreased level of beneficial microbes and 
an increased level of enteric pathogens [7].  
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Surgery and chemotherapy are the main conventional 
approaches for CRC treatment [8]. Surgery is the primary 
treatment approach for early-stage CRC tumors, whereas 
chemotherapy regimens are administered for advanced 
and metastatic stages [9]. Although the combination of 
these approaches has significantly improved patient sur-
vival, their long-term effectiveness is limited [8]. In addi-
tion, these methods may lead to different gastrointestinal 
[GI] complications, such as mucositis, necrotizing and 
ischemic colitis, and severe diarrhea [10]. An imbalance 
in gut microbiota can also occur due to the use of these 
therapies [11, 12].

Changes in gut microbiota composition create an envi-
ronment conducive to tumorigenesis and tumor pro-
gression through the carcinogenic activities of certain 
bacterial species, production and alteration of gut micro-
biota metabolites, and stimulation of immune system 
responses [13, 14]. An imbalanced microbiota may also 
contribute to the development of GI infectious diseases 
in patients [15, 16].

Recent studies have demonstrated that dysbiosis is 
a precursor to Clostridioides difficile infection (CDI) 
[17–20]. This infection is known as the most impor-
tant hospital-acquired infection, and its prevalence has 
recently increased in the USA, with an overall incidence 
rate of approximately 121.2 cases per 100,000 accord-
ing to the Centers for Disease Control and Prevention 
(CDC)’s surveillance report [21, 22]. The relationship 
between CRC and CDI has been investigated in several 
studies, demonstrating higher CDI rates and more severe 
outcomes in CRC patients compared with non-cancer 
patients [23–26]. In addition, individuals with CRC fre-
quently experience surgery, chemotherapy, antimicrobial 
treatment, and extended hospital stays, which these fac-
tors predispose to gut dysbiosis and CDI [27]. However, 
most available data on CDI rates are collected from non-
cancer individuals, and the precise prevalence and risk 
factors of CDI in patients with CRC are not fully under-
stood. In addition, studies on the incidence of C. difficile 
in patients with cancer are mostly limited by insufficient 
sample-size, and there are no comprehensive epidemio-
logical studies on CDI outcomes in cancer populations 
[27]. Previous studies have demonstrated that CDI may 
cause complications in cancer patients, such as extended 
hospitalization time, severe diarrhea, and altered 
response to therapy [28, 29]. Accordingly, understand-
ing the interplay between CRC and CDI is important for 
enhancing patient care, improving clinical decision-mak-
ing, and providing more effective treatment management 
during infectious events. This review discusses the risk 
factors for CDI development in patients with CRC and 
introduces promising potential strategies for preventing, 
detecting, and treating this infection in these patients.

C. difficile infection (CDI)
CDI is a global infectious disease caused by a gram-posi-
tive spore-forming anaerobic bacillus, which is transmit-
ted via the oral-fecal route [20]. CDI has been categorized 
as endogenous or exogenous: endogenous CDI origi-
nated via C. difficile strains already carried by patients, 
whereas the development of exogenous infection is asso-
ciated with C. difficile acquisition from infected individu-
als, contaminated environments, and healthcare workers 
[30]. C. difficile spores have a high tolerance to unford-
able conditions and even the acidity of the stomach. The 
ingestion of spores can lead to CDI infection in individu-
als with a disrupted or altered gut microbiota and/or 
immunosuppressed [31].

The CDI spectrum of symptoms includes mild-to-
moderate diarrhea, and more severe manifestations, such 
as pseudomembranous colitis (PMC) and toxic mega-
colon, which may be life-threatening for patients, espe-
cially elderly individuals [20, 32]. The pathogenesis of C. 
difficile is associated with the production of several vir-
ulence factors, such as toxins and surface proteins [33]. 
The toxin A (TcdA) and toxin B (TcdB) are key virulence 
factors of C. difficile. These toxins belong to the family of 
clostridial glycosylating toxins and are encoded within 
the pathogenicity locus (PaLoc) [32, 33]. In addition, 
hypervirulent strains can produce a binary toxin or C. 
difficile transferase (CDT), which facilitates CDI devel-
opment in patients [34]. These toxins can be internal-
ized into epithelial cells, resulting in cell death and loss of 
intestinal barrier function [32]. The pathogenic effects of 
toxins may be further boosted by triggering host immune 
responses, such as the induction of acute inflammation 
and neutrophil infiltration, leading to further damage to 
epithelia cells [33].

The main risk factors for CDI development are antibi-
otic therapy, long-term hospitalization, advanced age (> 
65 years), chemotherapy, use of gastric acid suppressors, 
such as proton pump inhibitors (PPIs), immunosuppres-
sive therapy, renal insufficiency, or prior gastrointestinal 
surgery [35, 36]. Most of these risk factors lead to dysbio-
sis in the gut microbiota composition [7, 12, 20, 37, 38].

Although different novel therapies have been intro-
duced for treating CDI, including fecal microbiota trans-
plantation (FMT), antibody therapy, and phage therapy, 
the most common method for treating this infection for 
many years has been antibiotic therapy, including met-
ronidazole, vancomycin, and fidaxomicin [39–41]. The 
updated treatment guidelines by the Infectious Diseases 
Society of America (IDSA) and the Society for Health-
care Epidemiology of America (SHEA) in 2017 recom-
mend metronidazole only for patients with a first episode 
of non-severe CDI where vancomycin or fidaxomicin 
are unavailable. In addition, although fidaxomicin and 
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vancomycin have been introduced as acceptable therapy 
for CDI, fidaxomicin has a preferential choice over van-
comycin for initial CDI [42]. Notably, antibiotic therapy 
may disrupt the composition of the gut microbiota and 
provide a suitable environment for C. difficile recoloni-
zation [20]. There are shreds of evidence demonstrating 
that antimicrobial treatment regimens increase the risk 
of relapse up to eight to ten times, and the risk remains 
three times higher for four weeks after discontinuing 
therapy [20, 43], leading to an increase in the rate of 
recurrence in patients with CDI.

Risk factors for the development of C. difficile 
infection in colorectal cancer patients
Several studies have indicated a potential risk of CDI 
development in CRC patients [23, 26, 44]. CRC patients 
are at a higher risk of CDI due to combination of fac-
tors, including dysbiotic gut microbiota, colorectal sur-
gery, prolonged exposure to chemotherapeutic regimens, 
antibiotic therapy, aging, prolonged hospitalization, and 
altered levels of bile acids in the intestine [45]. All of these 
factors contribute to dysregulating the mucosal immune 
responses in CRC patients and to decreasing diversity in 
the gut microbiota composition, favoring possible coloni-
zation by pathogenic or opportunistic bacteria, and cre-
ating an environment conducive to CDI [27, 46].

Gut microbiota dysbiosis
A healthy gut microbiome includes many bacterial spe-
cies that help maintain gut homeostasis (Fig. 1A). Altered 
intestinal microbiota has been identified as a critical fac-
tor CRC development and progression (Fig.  1B) [47]. 
There is growing evidence about the dysbiotic state of 
the microbiota in patients with CRC, specified with 
an increase in the abundance of Proteobacteria and a 
decrease in the abundance of Firmicutes, Bacteroidetes, 
and Actinobacteria. Particularly, an increased abun-
dance of different bacterial species, such as Fusobacte-
rium nucleatum, Escherichia coli, Enterococcus faecalis, 
enterotoxigenic Bacteroides fragilis, Streptococcus bovis, 
Gemella species, Parvimonas, Peptostreptococcus anaero-
bius, Anaerobutyricum hallii, C. difficile, and Heliobacter 
pylori has been reported in the gut microbiota of CRC 
patients [48, 49]. In addition, there is evidence that sup-
ports the carcinogenic role of some of these bacteria, 
such as enterotoxigenic B. fragilis, E. coli producing coli-
bactin, F. nucleatum, and toxigenic C. difficile [50–54]. 
Conversely, decreased abundance of different bacterial 
species, such as Bifidobacterium, Roseburia, and Clostrid-
ium butyricum, has also been reported in patients with 
CRC [55]. Furthermore, changes in microbial metabo-
lites, such as bile salt hydrolases (BSH), short-chain fatty 
acids (SCFAs), amino acids, and lipopolysaccharides, can 

affect CRC progression and impact on diarrhea develop-
ment in CRC patients [56].

Notably, gut microbiota dysbiotic state and dysregula-
tion of microbial metabolites in CRC patients facilitate C. 
difficile colonization and provide an environment condu-
cive to CDI occurrence. In fact, alteration in gut microbi-
ota composition, including an increase in the abundance 
of Proteobacteria (especially Enterobacteriaceae] and 
a decrease in the abundance of Firmicutes (especially 
Lachnospiraceae and Ruminococcaceae), Bacteroidetes 
(especially Bacteroides), and Actinobacteria (especially 
Bifidobacterium), are risk factors for C. difficile coloniza-
tion [57–59], which can also be found in the microbiota 
composition of patients with CRC. Therefore, dysbiosis 
in the gut microbiota composition is a crucial factor for 
CDI development in patients with CRC.

Colorectal surgery
Colorectal surgery is considered the primary treat-
ment for CRC. It has been documented that colectomy 
and gastric or esophageal surgery, as well as ileostomy 
closure after rectal cancer, may increase the risk of CDI 
in hospitalized patients [37, 60]. Previous studies have 
demonstrated that the rate of CDI in patients undergo-
ing colorectal surgery is nearly three times greater than 
in non-surgical patients [38, 61, 62], and CDI might be 
more common in CRC patients undergoing colorectal 
resection [24, 38]. In addition, the intestinal microbiota 
composition significantly differs between pre- and post-
surgery CRC patients. In two recent studies, a decreased 
abundance of Bacteroidetes and Firmicutes and an 
increased abundance of Proteobacteria and Fusobacte-
riota have been observed in post-operative compared 
to pre-operative CRC patients [12, 63, 64]. At the genus 
level, an increased abundance of Escherichia, Klebsiella, 
Shigella, and Faecalibacterium has been observed in CRC 
patients undergoing radical surgery compared to pre-
operative patients, as well as a decreased abundance of 
Streptococcus and Lactobacillus [12, 65]. These observa-
tions suggest that gut dysbiosis induced by surgery may 
facilitate gut colonization by C. difficile; therefore, man-
aging CDI in post-operative CRC patients is paramount.

Consumption of chemotherapy drugs
Different chemotherapeutic drugs are recommended 
for the treatment of CRC. The three major regimens of 
chemotherapy for advanced CRC include: the FOLFOX 
regimen (folinic acid in combination with 5-fluoroura-
cil (5-Fu), oxaliplatin), the FOLFIRI regimen (5-Fu in 
combination with irinotecan), and the CapeOx regi-
men (capecitabine in combination with oxaliplatin) [11]. 
The use of chemotherapy can cause various side effects 
in patients. It has been observed that 40% of patients 
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undergoing standard-dose chemotherapy and 60–100% 
of patients undergoing high-dose chemotherapy experi-
ence malnutrition caused by intestinal mucositis, nausea, 
abdominal pain, vomiting, and diarrhea [66, 67]. In addi-
tion, chemotherapeutic regimens, such as FOLFOX, anti-
metabolites, alkylating agents, and platinum complexes, 
can activate toll-like receptor (TLR) signaling pathways 
and subsequently elevate inflammatory cytokines and 
reduce mucosal regeneration [7]. Alteration of the gut 
microbiota is a crucial side effect of chemotherapy [68]. 
This method can directly or indirectly exert high-impact 
side effects on the microbiota composition, such as 

malnutrition, hepatotoxicity, gastrointestinal toxicity, and 
mucositis [68, 69]. Clinical studies have demonstrated 
that the intestinal microbiota shift may be peculiar for 
the different chemotherapy regimens used, although it is 
generally characterized by a decrease in the Firmicutes 
(e.g., Ruminococcus, Blautia and Lachnospira) and Act-
inobacteria (e.g., Bifidobacterium) abundance, and an 
increased abundance in Proteobacteria (e.g., Staphylococ-
cus, Enterobacter and Escherichia) [11, 68, 70, 71]. Patho-
logical changes in the gut microbiota, such as intestinal 
mucositis and severe diarrhea, have also been reported in 
patients receiving systemic chemotherapy [11, 72, 73].

Fig. 1  Schematic representation of the composition of the gut microbiota in healthy and disease states. A A healthy gut microbiota is composed 
by a high taxonomic diversity of bacterial species, helping the maintenance of gut homeostasis. B In CRC patients, a dysbiotic gut is caused 
by various factors, such as antibiotic therapy and chemotherapy, resulting in the enrichment of pathobionts, such as F. nucleatum, enterotoxigenic 
B. fragilis, C. difficile, and E. coli. These bacteria induce DNA damage and activate different antigen-presenting cells (APCs), including macrophages, 
DCs, neutrophils, and T cells, which produce pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-23, and TNF-α), and signaling pathways related 
to inflammation and cancer progression, such as the NF-κB and Wnt/β-catenin signaling pathway. Activation of these signaling pathways and DNA 
damage contribute to tumorigenesis. C Gut microbiota dysbiosis increases the susceptibility to C. difficile. The adherence of C. difficile to intestinal 
epithelium activates APCs increases levels of cytokines, such asIL-6, IL-8, and TNFα, and contributes to neutrophil influx, which determine 
pseudomembrane formation, that characterizes C. difficile colitis. In addition, internalization of toxin TcdA and toxin TcdB activate signaling pathways 
related to inflammation and the release of inflammatory cytokines. TcdB may also play a role in tumorigenesis through activating Wnt/β-catenin 
signaling. APCs antigen-presenting cells; BFT Bacteroides fragilis toxin; B. fragilis, Bacteroides fragilis; C. difficile, Clostridioides difficile; CDI, Clostridioides 
difficile infection; CRC, colorectal cancer; DCs dendritic cells, IL interleukin; E. coli, Escherichia coli; F. nucleatum, Fusobacterium nucleatum, NF-κB 
nuclear factor κB, TcdA toxin A, TcdB, toxin B, TNF-α tumor necrosis factor alpha, Wnt wingless-related integration site
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Although antibiotic therapy is commonly cited as the 
primary risk factor for CDI, chemotherapy can also con-
tribute to CDI development in the absence of antibiot-
ics [74, 75]. Several studies have demonstrated that side 
effects induced by chemotherapy have adverse conse-
quences and reduce colonization resistance against C. 
difficile and other enteric pathogens in cancer patients 
[76–78]. Altered gut microbiota in patients who have 
undergone chemotherapy is an important factor associ-
ated with an increased incidence of CDI in patients with 
CRC [79]. The low diversity of the microbiota composi-
tion in patients under chemotherapy provides a conduc-
tive environment for C. difficile colonization and CDI 
development [7, 79]. In addition, chemotherapeutic 
agents, such as 5-Fu and methotrexate, can induce PMC 
formation, which is a characteristic manifestation of CDI 
development [80, 81]. Kamthan et al. demonstrated that 
the incidence of C. difficile-associated diarrhea (CDAD) 
in patients receiving chemotherapy without any antimi-
crobial therapy was approximately 5.7% [82]. Zheng et al. 
found that patients with metastatic lymph nodes, receiv-
ing adjuvant chemotherapy, experienced higher C. dif-
ficile colonization rates (22.3%) compared with patients 
with not metastatic lymph nodes that not receiving 
adjuvant chemotherapy (10.8%), supporting that chemo-
therapy may increase the rate of CDI in patients [83]. 
Notably, potent anti-diarrheal agents, such as octreotide, 
are not recommended for patients experiencing chemo-
therapy-induced diarrhea with fever or bloody stool due 
to concerns about infectious colitis. In fact, these drugs 
may increase the cytotoxic effects of the C. difficile toxin, 
leading to clinical deterioration [84]. Furthermore, it has 
been documented that the chemotherapeutic paclitaxel 
may induce intestinal inflammation and exert antimi-
crobial activity on enteric bacteria, providing a niche for 
C. difficile overgrowth [84]. In addition, prior antibiotic 
use may exacerbate paclitaxel-induced diarrhea [84], 
promoting dysbiosis and boosting the destructive effect 
of paclitaxel, which may induce severe CDI. However, 
the importance of paclitaxel as a risk factor for C. diffi-
cile-associated colitis remains unclear. Further research 
is required to clarify the interplay between the types of 
chemotherapeutic drugs used and the incidence of CDI.

Antibiotic therapy
Antibiotic therapy is a significant risk factor for CDI 
development, especially with broad-spectrum antibiot-
ics such as cephalosporin, clindamycin, fluoroquinolo-
nes, and penicillin. Broad-spectrum antibiotics alter the 
gut microbiome, dysregulate bile acid metabolism and 
bacterial metabolites, and provide ideal conditions for C. 
difficile germination and outgrowth [18, 85, 86]. In addi-
tion, recent insights have indicated that the excessive 

use of broad-spectrum antibiotics can lead to the emer-
gence of antibiotic-resistant bacterial strains, such as 
Escherichia coli, Klebsiella pneumoniae, and Acinetobac-
ter baumannii, due to horizontal gene transfer by mobile 
genetic elements like plasmids and transposons [87–91]. 
The emergence of these strains requires the use of more 
potent antibiotics, which in turn leads to a heightened 
risk for CDI. In addition, the increased abundance of 
these bacteria may boost dysbiosis [92, 93] and conse-
quently facilitate C. difficile colonization.

Antibiotics may be administered to patients with 
CRC for different purposes, such as managing sep-
sis or surgical infections and enhancing chemotherapy 
results [94, 95]. The use of antibiotics, such as prophy-
laxis, in patients with CRC who have undergone surgery 
for tumor removal is considered a standard of care for 
reducing surgical site infection and overall mortality and 
improving surgical outcomes [96]. Nonetheless, a higher 
risk of CDI following prolonged consumption of antibi-
otic prophylaxis has been reported [97]. Notably, the use 
of single-dose metronidazole has been suggested as an 
effective treatment for reducing post-operative diarrhea 
and CDI in patients who underwent ileostomy reversal 
surgery [98]. However, preclinical and clinical studies 
have demonstrated that both metronidazole and vanco-
mycin affect the microbiome, bile acid metabolism, and 
host physiology [86, 99, 100].

Several studies have suggested that combining anti-
biotics with chemotherapy could be a potential thera-
peutic option to improve treatment efficacy. Imai et  al. 
demonstrated that combining antibiotics with oxaliplatin 
enhanced the treatment effectiveness in advanced CRC 
patients [94]. Oxaliplatin treatment does not affect the 
diversity of the gut microbiota but causes a significant 
increase in the gram-negative microbiota at the genus 
level [101].

The administration of antibiotics like moxifloxacin or 
azithromycin in conjunction with chemotherapy could 
increase the efficacy of treatment [102, 103] but can neg-
atively impact the gut microbiota of cancer patients and 
may cause intestinal overgrowth of pathogenic strains, 
including toxigenic C. difficile strains [104, 105]. In addi-
tion, the use of both chemotherapeutic drugs and anti-
biotics may contribute to an increase in drug-resistant 
strains of the microbiota, raising concerns about a higher 
infection rate [106]. Nonetheless, prophylaxis is still rec-
ommended for post-operative cancer patients due to its 
effectiveness in clinical studies [107].

Elderly population and hospitalization
Current epidemiological research has shown that age 
> 50 years is a significant risk factor for CRC [108]. 
Furthermore, elderly individuals (> 65 years) have an 
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increased risk of acquiring C. difficile, probably because 
of more usage of PPIs, antibiotics, hospitalization, and 
exposure to healthcare-associated infections [109, 110]. 
In addition, these patients may experience a higher risk 
of morbidity and mortality due to CDI compared with 
younger individuals [109, 111].

Age-related alterations in physiology and immunity 
could be involved in the alteration of the gut micro-
biota diversity, which is strongly associated with CDI 
[112, 113]. Several studies have reported changes in the 
gut microbiota related to age [114–116]. In particular, 
elderly hospitalized patients often exhibit decreased 
microbial diversity in their intestinal microflora, 
characterized by a decrease in the abundance of Bac-
teroidaceae, Lachnospiraceae, Ruminococcacae, Bifido-
bacterium, Lactobacillus, and Faecalibacterium, and 
an increase in the abundance of Enterococcaceae and 
Enterobacteriaceae [117, 118], which may compromise 
the gut environment for C. difficile growth. Interest-
ingly, Yoem et  al. have demonstrated that an age ≥ 60 
represents a risk factor for C. difficile-associated colitis 
among post-operative CRC patients [62], highlighting 
the importance of an appropriate CDI management in 
elderly patients with CRC.

Prolonged hospitalization is another risk factor for 
increased CDI rates. Previous studies have indicated 
that the rate of CDI among certain hospitalized can-
cer patients is approximately twofold higher than that 
in general hospital patients because of longer hospital 
stays and extensive antibiotic consumption [119, 120]. 
Additionally, a higher rate of surgical procedures leads 
to longer hospital stays for recovery and subsequently 
contributes to an increase in the rate of CDI. Calu et al. 
observed that the incidence of CDI development in 
CRC patients with an age of > 60 years and hospitaliza-
tion was lengthened by about 53.8% [38]. In contrast, 
Fang et  al. found that cancer patients ≥ 50 years old, 
with less than 10 days of hospitalization, had a C. diffi-
cile-positive rate of about 12.7%, while cancer patients 
≤ 50 years old, with at least 10 days of hospitalization, 
exhibited a high rate of C. difficile-positive cases, reach-
ing up to 35% [121]. These data suggest that patients 
with CRC experiencing longer hospitalization may be 
more susceptible to C. difficile acquisition, regardless of 
age. A systematic review demonstrated that, in general 
populations, older age was significantly associated with 
CDI incidence in hospitalized patients and was a likely 
risk factor for mortality. However, in specific popula-
tions, such as patients with cancer, age was often not 
related to CDI risk [111], indicating the higher impor-
tance of hospitalization than aging for CDI develop-
ment. However, further evidence is required to clarify 
this aspect.

Bile acids metabolism
Bile salts play a pivotal role in the C. difficile life cycle. 
The bile salt cholate and the conjugated bile salts gly-
cocholate and taurocholate trigger the germination of 
C. difficile spores, promoting CDI [122, 123]. Bile acid 
profiles may be affected by the components of the gut 
microbiota [19]. The primary bile acids, such as cholic 
acid (CA) and chenodeoxycholic acid (CDCA), are typi-
cally conjugated to glycine or taurine and mostly (~ 95%) 
recycled in the liver, whereas the remaining enter the 
colon and are deconjugated and converted into second-
ary bile acids by the bacterial microbiota [124]. Among 
the gut microbiota components, the Firmicutes phylum, 
specifically the Lachnospiraceae and Ruminococcaceae 
families, has a positive correlation with secondary bile 
acids and plays an important role in bile acid metabo-
lism, whereas members from the Enterobacteriaceae and 
Lactobacillaceae families have a negative correlation with 
secondary bile acids [125, 126]. Bacterial species with 
7α-dehydroxylating activity, such as Clostridium scind-
ens, can transform unconjugated primary bile acids into 
secondary bile acids, including deoxycholic acid (DCA) 
and lithocholic acid (LCA) [124]. In addition, B. fragilis, 
Bacteroides vulgatus, Clostridium perfringens, Lactoba-
cillus, Bifidobacterium and Listeria monocytognes can 
also affect bile acid metabolism by producing BSH, which 
can conjugate both primary and secondary bile acids 
[127]. The use of broad-spectrum antibiotics decreases 
the microbiota diversity, resulting in reduced conversion 
of primary bile acids to secondary bile acids, with a sub-
sequent increase in C. difficile growth and spore germi-
nation [122].

Bile acids may have a crucial impact on CRC initiation 
[128, 129]. High concentrations of bile acids damage the 
colonic epithelial cells and trigger the production of reac-
tive oxygen species, leading to genetic instability and can-
cer stem cell-like formation [129]. Primary and secondary 
bile acids can interact with specific receptors, such as the 
Farnesoid X Receptor (FXR), which can activate signaling 
pathways related to inflammation and tumorigenesis. A 
pervious study found an increased level of secondary bile 
acid-producing bacteria in high-risk populations for CRC 
[130]. Cong et al. demonstrated that the gut microbiota 
could act as a negative regulator for CD8 + T cell effec-
tor function by altering the concentration of DCA. They 
reported that Bacteria harboring secondary bile acid bio-
synthetic genes, such as C. scindens, suppressed the CD8 
+ T cells effector function and promoted tumor growth 
in mice [131], demonstrating the key role of gut micro-
biota in bile acid metabolism and cancer development 
[132]. In addition, previous studies have reported that 
gut microbiota-mediated bile acid metabolism can affect 
the tumor microenvironment by affecting T helper cells 
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and regulatory T cells (Treg cells) [133, 134]. There is evi-
dence of the involvement of bile acids in CRC progres-
sion by activating the epidermal growth factor receptor 
(EGFR) pathway, resulting in cell proliferation, p53 inhi-
bition, invasion, and angiogenesis [135, 136]. In addition, 
some conditions, such as bile acid diarrhea (BAD), due 
to overproduction of bile acids or dysfunction or resec-
tion of the terminal ileum, increase colon concentrations 
of dihydroxy bile acids, triggering peristalsis and watery 
diarrhea, with an increased overall risk of cancer [137]. 
All these data suggest that bile acid metabolism dysregu-
lation in patients with CRC may favor CDI development.

C. difficile colonization in patients with colorectal 
cancer
Several studies have investigated C. difficile colonization 
among patients with cancer [138, 139]. There are several 
data about C. difficile colonization in patients with CRC, 
with rates comprised between 33 and 35% (Table 1) [23, 
83, 140]. These data suggest that weakening of the bar-
rier of the gut microbiota due to cancer, together with a 
longer disease course and more aggressive treatment in 
patients with metastasis, might be a risk condition lead-
ing to C. difficile colonization. In addition, C. difficile col-
onization in CRC patients, especially during the adjuvant 
chemotherapy, seems to lead to more severe CDI able 

to compromise the ongoing chemotherapy itself [23]. 
Therefore, C. difficile colonization in pre-operative CRC 
patients might represent a risk for further cancer ther-
apy, and further investigations are needed to clarify this 
aspect and the relationship between C. difficile coloniza-
tion and CDI in cancer patients.

Incidence of C. difficile infection in patients 
with colorectal cancer
A history of cancer or malignancy per se is considered 
a risk factor for CDI. Therefore, it is not surprising that 
C. difficile is the most common pathogen associated 
with diarrhea in patients with cancer [27]. The incidence 
of CDI in recent years has been increasing despite the 
efforts to prevent this infection [79]. In a recent study, 
the incidence of CDI was estimated to be 1–2% in the 
hospitalized population and about 7–14% in adults with 
cancers [141], while the CDI incidence in cancer patients 
under chemotherapy is estimated to be approximately 7% 
[45]. Data from several studies indicated that CDI inci-
dence rates in patients with CRC are comprised between 
3.6% and 66.7% [26, 38, 60, 62, 140] (Table  1). Notably, 
Magat et al. found a higher level of anti-TcdB antibodies 
in the plasma samples from pre-operative CRC patients 
compared with healthy controls. These results demon-
strate that the abundance of toxigenic C. difficile may be 

Table 1  Clostridioides difficile rate of colonization and C. difficile infection (CDI) incidence in CRC patient

CDI Clostridioides difficile infection, CRC​ colorectal cancer, ELFA enzyme-linked fluorescent assays, ELISA enzyme-linked immunosorbent assay, GDH glutamate 
dehydrogenase, LN metastasis, lymph node metastasis, MLST multilocus sequence typing, RT-qPCR quantitative reverse transcription polymerase chain reaction, TcdA 
toxin A, TcdB toxin B

Study (n. of 
reference)

Sample size Sample type Study platform Participants C. difficile 
colonization rate (n. 
of strains)

% of CDI 
incidence (n. 
of strains)

Ong et al. 2024 [140] 522 Stool RT-qPCR for GDH, TcdA, 
and TcdB

Post-operative CRC 
patients

6.7% (35) 5.17% (27)

Kim et al. 2021 [60] 1270 Stool RT-qPCR and ELFA 
for TcdA and TcdB

Post-operative rectal 
cancer patients

– 3.6% (46)

Magat et al. 2020 [26] 39 Plasma ELISA for anti-TcdB IgG Pre-operative CRC 
patients

– 66.7% (26)

Calu et al. 2019 [38] 360 Retrospective study ELISA for TcdA 
and TcdB

Post-operative CRC 
patients

– 7.77% (28)

Zheng et al. 2017 [23] 205 Stool RT-qPCR and MLST Pre-operative CRC 
patients

16.1% (33)
- Positive lymph 
node (LN) metastasis 
patients (22.3%)
LN negative (10.7%)

–

Zheng et al. 2016 [83] 206 Stool RT-qPCR Pre-operative CRC 
patients

16.0% (33)
- Patients > 60 years 
old (18.2%)
- Patients < 60 years 
old (12.2%)

–

Yeom et al. 2010 [62] 219 Stool ELISA for toxins CRC patient – 6.8% (15) 
with C. 
difficile-asso-
ciated colitis
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associated with CRC progression [26]. In addition, higher 
CDI incidence rates have also been reported in postop-
erative CRC patients compared with controls [38, 60, 62]. 
However, few studies have investigated the incidence of 
C. difficile in patients with CRC [27], and more compre-
hensive epidemiological studies are needed to determine 
the importance of different risk factors involved in CDI 
development in CRC populations.

Colorectal cancer risk following C. difficile infection
There is evidence supporting that C. difficile is a plausible 
promoter of human CRC (Fig.  1C). Drewes et  al. found 
that C. difficile strains derived from human colon cancer 
induced tumorigenesis in tumor-susceptible mouse mod-
els [50]. The results showed that tumor formation relied 
on C. difficile TcdB, which induced the activation of the 
Wnt–β-catenin pathway. This pathway plays critical roles 
in embryonic development, adult tissue homeostasis, 
and production of reactive oxygen species. In addition, 
β-catenin is a major regulator of cell proliferation and 
contributes to the formation of epithelial-mesenchymal 
transition (EMT), which is a well-known feature of can-
cer cell invasion, metastasis, and therapy resistance [142]. 
Previous studies have demonstrated that both TcdA and 
TcdB can activate NF-κB signaling pathway [33, 143]. 
NF-κB activity promotes tumor cell proliferation, sup-
presses apoptosis, and attracts angiogenesis [144]; there-
fore, these toxins may be involved in cancer development 
through activation of this signaling pathway.

Interestingly, TcdB can induce senescent cells; there-
fore, CDI could cause an accumulation of these cells that 
are characterized by long survival and that could push 
pre-neoplastic cells in the colon toward the complete 
neoplastic transformation in CRC by the senescence-
associated secretory phenotype (SASP) [145]. Interest-
ingly, a recent retrospective study reported that CRC 
incidence rate remained uniform over the entire study 
period (between 1990 through 2012) in patients nega-
tive for C. difficile, whereas it increased (about 2.7 fold) 
in patients positive for C. difficile within the first 4 years 
after C. difficile diagnosis, providing new evidence sup-
porting that C. difficile is associated with an increased 
risk of CRC [146]. In contrast, another retrospective 
study (2010–2020) reported a decreased incidence of 
CRC in patients with a history of CDI compared with 
patients without a history of CDI, except for those obese 
cases for which the opposite was observed, suggesting 
that obesity, combined with CDI, might lead to increased 
inflammation in the intestine and increased risk of malig-
nancy [147]. However, further research is warranted to 
explore the tumorigenesis role of toxigenic C. difficile 
strains.

Managing patients with colorectal cancer and C. 
difficile infection
CDI may be critical in CRC patients, especially during 
the administration of chemo drugs, resulting in the dis-
continuation of chemotherapy [67]. Prevention and rapid 
and accurate diagnosis of CDI are crucial for preventing 
infection and applying control strategies, particularly in 
patients at high risk for C. difficile acquisition.

Prevention
C. difficile transmission from person to person occurs 
via the oral-fecal route [20]. Symptomatic CDI patients 
are the main source of transmission, causing widespread 
contamination of the environment near the patients 
[148]. CDI prevention is a critical point for patients with 
cancer because this infection significantly increases the 
risk of mortality, prolonged hospitalization, and diarrhea, 
which is the most common symptom of CDI and leads to 
dose reductions in chemotherapeutic or radiotherapeu-
tic regimens [28, 29]. There are several well-established 
guidelines to prevent CDI, most of which focus on pre-
venting the transmission of C. difficile spores and reduc-
ing the susceptibility of patients to CDI [149]. Based on 
the CDC guidelines, practicing good hand hygiene is the 
best way to prevent the spread of C. difficile from one 
person to another [150]. The guidelines strongly recom-
mend isolation of patients with CDI in private rooms 
[149]. In addition, regularly cleaning and disinfecting 
equipment and the environment of patients with CDI 
can kill the C. difficile spores and help reduce the risk of 
CDI [150]. Another approach is the implementation of a 
detection system that helps in the immediate diagnosis of 
C. difficile and is considered as an alert system to prevent 
CDI transmission [149]. The guidelines also propose sev-
eral recommendations for reducing the susceptibility of 
patients to CDI, such as reduction of the unnecessary use 
of antibiotics and PPIs and administration of probiotics 
to increase in the diversity of the gut microbiota. Opioids 
and antimotility agents are recommended to be stopped 
in cancer patients with CDI because they may contribute 
to toxic megacolon [151, 152]. Furthermore, when CDI is 
associated with chemotherapy, switching to an alterna-
tive regimen usually leads to symptomatic improvement 
within 72 h [153]. Further studies are needed to deter-
mine a comprehensive protocol for the prevention of C. 
difficile in patients with CRC.

Diagnosis
Currently, several methods with different sensitivity and 
specificity are recommended for CDI diagnosis, includ-
ing toxigenic culture (TC), cell cytotoxicity neutraliza-
tion assay (CCNA), enzyme immunoassays (EIA) for 
TcdA and TcdB, glutamate dehydrogenase (GDH), and 
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nucleic acid amplification tests (NAATs) [43]. C. difficile 
culture techniques are highly sensitive but relatively slow. 
EIAs and NAATs are high-specificity tests for detecting 
TcdA/B but they have low sensitivity. GDH is a sensitive 
test for C. difficile detection but does not differentiate 
between toxigenic and non-toxigenic strains [154–156]. 
In general, and in particular, for oncologic patients, there 
are recommendations to use a diagnostic algorithm that 
combines more tests: a two-step algorithm, with the 
highly sensitive test used first, followed by confirmation 
using a highly specific test, or a three-step algorithm, that 
adds a NAAT test as a final step in unclear results [154, 
157, 158].

Interestingly, Kamboj et al. found that the selection of 
diagnostic tests is extremely important for CDI diagnosis 
in cancer patients. In fact, the introduction of molecular-
based testing methods for CDI in the Cleveland Clinic 
(Ohio) and Memorial Sloan Kettering Cancer Center 
(MSKCC) (New York) resulted in the duplication of the 
CDI rates in these patients [119]. In addition, immune 
checkpoint inhibitors (ICIs), a revolutionary cancer 
therapy that enhances antiantitumor activity by blocking 
negative regulators of T-cell function, are associated with 
immune-mediated diarrhea and colitis (IMDC) [159]. 
Therefore, due to overlapping symptoms, it may be dif-
ficult to interpret C. difficile-positive stool in the context 
of IMDC, leading to a potential underestimation of this 
infection. Accordingly, molecular-based testing methods 
in combination with a highly sensitive test can be recom-
mended for CDI diagnosis in CRC patients. In addition, 
cytotoxicity assays can be used to detect the C. difficile 
toxins in fecal samples and monitor active disease.

Assessment of severity of C. difficile infection
According to the SHEA/IDSA guidelines, severe CDI is 
defined as a white blood cell (WBC) count > 15,000 cells/
µL or a serum creatinine level ≥ 1.5 mg/dl [158]. These 
criteria have some limitations for cancer patients, who 
are usually neutropenic and have higher creatinine levels 
than the non-cancer population [74, 160]. For these rea-
sons, several authors have proposed scales for severity 
markers in cancer patients. Zar et al. have proposed that 
CDI may be considered severe if cancer patients present 
with two or more of the following characteristics: age 
> 60 years, temperature ≥ 38.3 °C, an albumin level < 2.5 
mg/dL, or a peripheral WBC ≥ 15,000 cells/µL within 48 
h of hospitalization, endoscopic evidence of pseudomem-
branous colitis, or being in the intensive care unit (ICU) 
[161]. Differently, Belmares et al. have suggested that CDI 
may be considered severe if cancer patients show three 
or more of the following points: temperature ≥ 38.0°C, 
ileus (either clinically or radiographically), systolic BP 
< 100 mmH, leukocytosis with WBC ≥ 15,000/µL (one 

point)/WBC > 30,000/µL (two points), and abdominal 
CT scan one abnormal finding (one point)/≥ two abnor-
mal findings (two points) [162]. Since these two detailed 
scales are expensive, including colonoscopy and CT scan, 
respectively, Yoon et al. have predicted CDI mortality in 
cancer patients considering severe neutropenia (absolute 
neutrophil count ≤ 500/µL) as associated with a worse 
outcome [163]. A prospective cohort study including 553 
patients reported no statistically significant difference 
in 30-day all-cause mortality between cancer patients 
and those without cancer and concomitant CDI [164]. 
Notably, Yepez Guevara et  al. demonstrated that cancer 
patients may experience more severe CDI episodes due 
to infection with virulent ribotypes, such as 027 [165]. 
Furthermore, cancer patients with CDI may experience 
an increased risk of treatment failure or recurrence com-
pared with non-cancerous patients due to immunosup-
pression [45, 166]. Data on CDI recurrence (rCDI) rates 
among cancer patients remain scarce and are limited 
because of the small sample size and inadequate analysis 
of recurrent risk factors. A recent observational popula-
tion-based cohort study comparing rCDI rates between 
patients with and without a cancer diagnosis found an 
increased risk of mortality in patients with cancer or a 
history of cancer as a secondary outcome [167]. Scap-
paticci et al. estimated the recurrence rate in hematology 
patients to be approximately 41% [141]. However, further 
studies considering large numbers of patients are needed 
to determine the rate of rCDI in patients with cancer.

There is discordant evidence of CDI severity in CRC 
patients. Some authors have reported more severe clini-
cal symptoms of CDI in CRC patients than in healthy 
controls, as well as higher rates of complications, such as 
extended pre-operative hospital stay, admission to ICU, 
increased readmission rate, and mortality, compared 
with non-CDI patients [25, 168]. In contrast, Polpichai 
et  al. found that CDI in CRC patients was associated 
with a longer length of hospitalization, increased inci-
dence of peritonitis, bowel perforation, paralytic ileus, 
and colectomy, but was also associated with a lower risk 
of mortality, sepsis, septic shock, acute kidney injury, and 
mechanical ventilation, compared with patients without 
CRC [168]. These data may be partially due to the treat-
ing physicians’ vigilance on early diagnosis and treatment 
of CDI in patients with CRC, which may contribute to 
the observed decreased mortality and end-organ damage 
in these patients, and surgical intervention that may con-
tribute to better outcomes as well.

Treatment
Treatment plays a vital role in managing CDI in patients 
with CRC. Antibiotic therapy during the early stages of 
infection may prevent CDI progression and gut injury 
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development. Nevertheless, the use of broad-spectrum 
antibiotics can disrupt the gut microbiota, leading to a 
higher risk of recurrent CDI and potentially affecting 
cancer progression [50, 51]. Hence, the use of approaches 
that cause minimal damage to the microbiome compo-
sition and restore gut microbiota diversity may provide 
long-term efficacy for controlling infection or even help 

treat CRC. So far different approaches have been intro-
duced for CDI, which exhibit high effectiveness and spec-
ificity with minimal side effects compared with standard 
therapies (Table  2). In recent years, most studies have 
focused on the application of specific antibiotics, anti-
body therapy, probiotics, and FMT [39, 42, 169–171], as 
detailed in the following sections.

Table 2  Efficacy and microbiota impact of standard and emerging therapies for C. difficile infection (CDI) and recurrent CDI (rCDI)

Treatment type Clinical stage Disease type Intervention Sustained 
cure rate

Recurrence rate Impact on gut 
microbiota

References

Vancomycin (Stand-
ard therapy)

Approved in 1986 CDI 125 mg for 10 days 
(4 times a day)

64.1% 23–25% - Decreased abun-
dance of Bacteroides, 
Prevotella, Clostrid-
ium coccoides, 
and Clostridium 
leptum
- Increased abun-
dance of Escherichia 
coli, Klebsiella pneu-
moniae, Klebsiella 
oxytoca

[172, 173]

Fidaxomycin (Stand-
ard therapy)

Approved in 2011 CDI 200 mg for 10 days 
(twice daily)

74.6% 11–15% - Decreased abun-
dance of Anaer-
obutyricum spp., 
Anaerostipes spp.,
Coprococcus spp., 
Bifidobacterium spp., 
and Enterococcus 
spp.
- Increased abun-
dance of Bacteroides 
spp., and Escherichia 
spp.

[172–175]

Bezlotoxumab (Anti-
body therapy)

Approved in 2016 rCDI 10 mg/Kg of body 
weight

64% 17% – [176]

REBYOTA (FMT) Approved in 2022 rCDI Single-dose contain-
ing 150 mL of micro-
biota suspension 
(about 107 CFU/mL)

70.6% No recurrence 
after 6-month 
follow-up

- Decreased 
abundance of Gam-
maproteobacteria 
and Bacilli
- Increased abun-
dance of Bacteroidia 
and Clostridia

[58]

VOWST (FMT) Approved in 2023 rCDI Daily administration 
of capsule for 4 days

88% 12% - Decreased abun-
dance of proinflam-
matory Enterobacte-
riaceae
- Increased abun-
dance of Firmicutes 
(Ruminococcaceae 
and Lachno-
spiraceae)

[177]

Ridinilazole (Narrow-
spectrum antibiotic)

Phase III CDI 200 mg for 10 days 
(twice daily)

73.0% 8.1% - No activity 
against gram posi-
tive bacteria
- Low activity 
against Eggerthella 
lenta, Bifidobacterium
spp, Peptostrepto-
coccus anaerobius, 
and Finegoldia 
magna

[178, 179]
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Specific antibiotics
Narrow-spectrum antimicrobial agents have the poten-
tial to control C. difficile, which helps conserve the com-
mensal gut microbiota and subsequently reduce the risk 
of recurrence [180].

In 2018, the IDSA/SHEA guidelines no longer recom-
mend metronidazole as a first-line treatment that can be 
used only when other first-line agents are not available 
[158]. A retrospective study on patients with hemato-
logic malignancies and bone marrow transplants treated 
for CDI showed no significant difference among patients 
treated with metronidazole alone, vancomycin alone, or 
combination therapy [181].

The emergence of antibiotic-resistant bacterial strains 
has led to novel strategies that specifically target a bac-
terial species or strain, including clustered regularly 
interspaced short palindromic repeats (CRISPR), phage 
therapy, and narrow-spectrum antibiotics [40, 180, 182]. 
Regarding CDI treatment, in recent years, fidaxomicin, 
a narrow-spectrum antibiotic, has been introduced as a 
recommended first-line treatment for CDI, showing bet-
ter outcomes in reducing recurrence risk than vanco-
mycin [171]. Although patients with cancer responded 
more slowly to CDI treatment compared with non-can-
cer patients, resolution of diarrhea was more rapid with 
fidaxomicin than with vancomycin. In addition, fidax-
omicin has shown higher cure rates and fewer recur-
rences in cancer population with CDI than vancomycin 
[166]. Moreover, fidaxomicin had less impact on gut 
microbiota composition and the loss of C. difficile coloni-
zation resistance compared with vancomycin [183].

Another novel narrow-spectrum agent is ridinilazole, 
which has been introduced for CDI treatment and is 
currently in a phase III trial [178]. Ridinilazole is highly 
effective in treating CDI in phase I and II clinical trials, 
superior preservation of the intestinal microbiota, and 
lower risk of CDI recurrence compared with vancomycin. 
The mechanism of action of ridinilazole is thought inter-
fering with cell division. This antibiotic specifically tar-
gets clostridia without affecting other fecal bacteria [184, 
185]. A previous study demonstrated that ridinilazole 
could help maintain bile acid metabolism and reduce the 
risk of recurrence associated with bile acid dysregulation 
[184]. There are no data on the application of ridinilazole 
for treating CDI in cancer population, and more evidence 
is needed to clarify the efficacy of this antibiotic in target-
ing CDI in cancer patients.

There are different preclinical studies on the effect of 
narrow-spectrum antimicrobial agents on CDI. A new 
type of tetracycline antibiotic called omadacycline has 
shown encouraging outcomes in combating C. difficile 
[186]. Recently, various bacteriocins have been identi-
fied as narrow-spectrum agents whose mode of action is 

closely related to the bacterial strains [187]. Thuricin CD, 
produced by Bacillus thuringiensis strains, targets C. dif-
ficile strains and shows comparable antimicrobial activity 
to fidaxomicin, vancomycin, and metronidazole, whereas 
it has no significant effect on gut microbiota composition 
in a human colon model [175, 188]. However, the efficacy 
of these agents should be examined in clinical studies.

Antibody therapy
Bezlotoxumab is a monoclonal antibody targeting the 
toxin B of C. difficile, that was approved by the FDA in 
2016 and exhibits high efficacy in decreasing the inci-
dence of rCDI in randomized clinical trials [189]. In a 
phase III clinical trial, bezlotoxumab showed a signifi-
cantly lower rate of rCDI (around 40%) compared with 
placebo [176]. In addition, the use of Bezlotoxumab is 
recommended as an adjunct therapy to vancomycin for 
treating patients at high risk of recurrence or after a first 
recurrence [176, 190]. Recently, bezlotoxumab has shown 
promising results in reducing the rate of CDI recurrence 
in immunocompromised CDI patients and CDI patients 
with ulcerative colitis [191, 192]. There are no reports 
on the effectiveness of bezlotoxumab for treating CDI 
in patients with CRC, and only one study demonstrated 
that the use of bezlotoxumab reduced the rate of rCDI in 
cancer population [193]. However, this product has been 
removed from the US market due to commercial consid-
erations. Intravenous immunoglobulin (IVIg) was pre-
viously used in clinical trial phases for treating patients 
with multiple rCDI, but it is now not recommended in 
the treatment guidelines [194, 195]. However, some clini-
cians continue to administer IVIg for severe rCDI cases 
[195]. Numerous in  vitro and in  vivo studies have been 
conducted on the use of anti-toxin antibodies to manage 
toxigenic C. difficile strains, which should be evaluated in 
clinical experiments [39].

Probiotics
Restoring gut microbiota and microbial-secreted metab-
olites is a promising strategy for combating CDI and CRC 
(Fig. 2). Probiotics are potential agents for treating vari-
ous diseases by restoring the gut microbiota or influenc-
ing the host immune system. Probiotics can help prevent 
and treat different diseases through various mechanisms, 
such as enhancement of gut barrier functions, inhibition 
of colonization of pathogenic bacteria, and immunomod-
ulation [196]. Furthermore, current clinical studies on 
probiotic therapy have demonstrated the effectiveness of 
probiotics in improving surgical or chemotherapy out-
comes in cancer patients, most of which have focused 
on the impact of lactobacilli and bifidobacteria [197, 
198]. A randomized study (NCT03782428) found that 
the oral administration of a probiotic cocktail, including 
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strains of lactobacilli and bifidobacteria, decreased the 
production of proinflammatory cytokines such as TNF-
α, IL-17A, IL-17C, IL-22, and IL-12, and prevented post-
surgical complications in CRC patients [199]. The use 
of probiotic formulations, such as OMNi-BiOTiC R© 
10 AAD, as adjuvant therapy to reduce diarrhea associ-
ated with FOLFIRI-based chemotherapy in patients with 
metastatic CRC is under investigation in a phase II trial 
(NCT03705442). Additionally, the efficacy of the combi-
nation of VE800 (an 11-strain probiotics) with nivolumab 
in patients with metastatic CRC is currently in a phase I/
II trial (NCT04208958) [200]. Some of these clinical tri-
als have focused on the role of metabolites produced by 
microbiota in the treatment of CRC. For example, the 
results of a clinical trial (NCT03072641) indicated that 
the use of a mixture of B. lactis and Lactobacillus acido-
philus increased the abundance of butyrate-producing 
bacteria in the mucosal and fecal samples of patients with 
CRC [201].

The most common probiotics used for treating CDI 
have been investigated as a supplementary treatment. A 
randomized controlled trial of probiotic capsules con-
taining L. acidophilus NCFM, Lactobacillus paracasei 
Lpc-37, B. lactis Bi-07, and B. lactis Bl-04 improved diar-
rhea outcomes and the incidence of diarrhea in adult CDI 
patients compared with placebo. This probiotic therapy 
did not affect the rate of rCDI compared with placebo 
[202]. Furthermore, a randomized clinical trial showed 
that combining antibiotic therapy with probiotic therapy 
prevented diarrhea and CDI in ICU patients [203]. A 

systematic review with meta-regression analysis dem-
onstrated that probiotics can decrease the risk of CDI in 
hospitalized patients by more than 50% when used after 
the initial antibiotic dose [204].

The use of probiotics in patients with cancer is a con-
troversial topic. Osterlund et al. reported that colon can-
cer patients receiving active 5-Fu chemotherapy treated 
with daily Lactobacillus supplementation showed a 
decrease in the diarrhea grade, abdominal pain, and hos-
pital stay [205]. Similarly, Benchimol et al. reported that 
treatment with metronidazole and probiotics resolved 
CDI in a patient with leukemia [206]. Differently, Cohen 
et al. reported that 0.5% of hematopoietic stem cell trans-
plantation (HSCT) patients treated with lactobacillus 
developed bloodstream infection mainly due to this bac-
terium [207]. Therefore, there are questions concern-
ing the safety, timing, and dose of probiotics for use in 
patients with cancer that need to be investigated.

Fecal microbiota transplantation (FMT)
FMT has been introduced as a direct method for 
restoring the composition of gut microbiota. FMT is 
a procedure that delivers minimally manipulated fecal 
microbiota from a healthy donor to a recipient with a 
specific disorder [41]. FMT is an FDA-approved proce-
dure for the treatment of rCDI with an effectiveness of 
approximately 90% and is recommended to treat rCDI 
patients non-responding to fidaxomicin or vancomycin 
[208]. This method successfully restores the diversity 
of the gut microbiota and the metabolic landscape and 

Fig. 2  Schematic representation of gut microbiota modulation using probiotic therapy or FMT. The gut microbiota of patients with CRC 
or CDI have low bacterial diversity, which leads to a decrease in beneficial bacterial metabolites such as SCFAs and an increase in drug-resistant 
bacterial strains. This state can elevate the inflammation, tumorigenesis, and overgrowth of opportunistic bacteria like C. difficile. Restoring gut 
microbiota using probiotic administration or FMT helps increase in diversity of bacterial species, resulting in improving the balance of microbiota 
and mucosal barriers and restoring gut homeostasis. In addition, modulation of gut microbiota can increase the antitumor activity and efficacy 
of immunotherapy. CDI Clostridioides difficile infection, CRC​ colorectal cancer, SCFAs short-chain fatty acid, FMT fecal microbiota transplant
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regulates bile acid metabolism [209]. However, there are 
concerns about the long-term safety of FMT in terms of 
the risk of the transfer of antibiotic-resistant genes and 
pathogens from donor to recipient, and this needs to 
be investigated further [210]. For example, colibactin-
producing pks + E. coli promotes colon tumorigenesis 
in a mouse model, and colibactin-specific mutational 
signatures identified in human organoids match those 
observed in 5–10% of human CRC tumors [211]. Nooij 
et  al. investigated changes in the prevalence and abun-
dance of potentially carcinogenic pks + E. coli after FMT 
and found that the pks status of patients treated with 
FMT depended on the pks status of the donor (P = 0.046) 
[212]. Although current screening protocols for FMT 
donors are safe, routine screening for pks is not required. 
However, because it is unknown how long pks+ E. coli 
may persist in cured rCDI patients and over what time 
frame this may contribute to CRC, further studies are 
needed to evaluate the cancer risk due to pks+ E. coli in 
patients with rCDI and other patients.

Two live biotherapeutics, namely Rebyota™ (fecal 
microbiota live-jslm; RBX2660; RBL) and VOWST (fecal 
microbiota spores, live-brpk; SER-109], were approved 
in 2022–2023 by the US Food and Drug Administration 
(FDA) for the treatment of rCDI [41]. Rebyota is a fro-
zen mixture of microbes from human feces that is deliv-
ered to the recipient via enema. The phase III trial of 
Rebyota demonstrated the efficacy of this drug in reduc-
ing the rate of rCDI after antibiotic treatment compared 
with placebo (70.6% vs. 57.5% success rate, respectively) 
[58]. Vowst is a consortium of viable purified Firmicutes 

spores that are administered orally over 3 consecutive 
days following bowel preparation and taken on an empty 
stomach. The results of the phase III trial of Vowst dem-
onstrated that the administration of Vowst after standard 
antibiotic therapy was superior in reducing recurrence 
compared with placebo (88% and 60% success rate, 
respectively) [213].

Several clinical studies are exploring the use of FMT 
in treating patients with CRC, especially those who have 
received CRC immunotherapy, to enhance the efficacy 
of therapy (Table 3). Zhao et al. demonstrated that com-
bining FMT with tislelizumab and fruquintinib enhances 
survival in refractory microsatellite-stable (MSS) meta-
static CRC, supporting the effectiveness of FMT in treat-
ing this group of patients [214].

Data available indicate that FMT as a treatment for 
CDI in immunocompromised patients, including patients 
with cancer, have comparable efficacy and safety to those 
for patients with a healthy immunity system, although 
further randomized trials including these patient popu-
lations would be necessary [215]. In particular, FMT in 
patients with cancer appears to be a safe and effective 
treatment for CDI, with no instances of bacteremia or 
Cytomegalovirus (CMV) seroconversion due to FMT 
[216]. These data are of considerable importance con-
sidering that higher rCDI rates have been reported in 
cancer patients compared to non-cancer patients [141, 
164]. The effectiveness of FMT on rCDI in patients with 
hematologic cancer receiving chemotherapeutic agents 
was observed by Hefazi et  al., who reported an effec-
tive rate of 86% without serious side effects or infectious 

Table 3  FMT protocols for CRC patient under clinical trials

CRC​ colorectal cancer, FMT fecal microbiota transplant, mCRC​, metastatic colorectal cancer; MSI-H/dMMR, microsatellite instability-high/mismatch repair deficient; 
NCT number, National Clinical Trial number;−1, Programmed cell death protein 1; PD-L1, programmed death-ligand 1

NCT number Sponsor Sample size Immunotherapy agent (s) Stage Administration/recipients

NCT04729322 M.D. Anderson Cancer Center 15 Nivolumab and Pembrolizumab Phase II - Pretreatment with metronidazole, 
vancomycin, and neomycin
- Colonoscopic FMT followed 
by capsule administration 
up to 6 months
- MSI-H/dMMR CRC patient; who 
failed at least 2-dose anti-PD-1/
PD-L1

NCT05279677 Chinese Academy of Medical 
Sciences

30 Sintilimab and Fruquintinib Phase II - Microbiota capsules for 8 cycles
- Chemo refractory mCRC patients

NCT04208958 Vedanta Biosciences, Inc 56 Nivolumab Phase II/I - Pretreatment with vancomycin
- Daily VE800 (11 commensal bacte-
rial strains) every 4 weeks
- Advanced or mCRC patients

NCT04130763 Peking University 10 – Phase I - Microbiota capsules for 3 days
- mCRC patients, who failed at least 
2-dose anti-PD-1/PD-L1

NCT06205862 Shenzhen Hospital of Southern 
Medical University

466 (estimated) Phase II - Colonoscopic FMT
- Recurrence of CRC patients
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complications [170]. Additionally, Ali et al. reported FMT 
as an effective treatment for rCDI in cancer patients, even 
in those receiving cancer treatment or immunosuppres-
sive therapy, although the authors observed a long-term 
benefit from FMT in only 74% of cases, probably due to 
multiple coexisting risk factors such as malignancy itself, 
cancer therapies used, immunocompromised condition, 
and frequent antibiotic use [217].

Discussion
Cancer patients face a higher risk of developing CDI 
because of factors like aging, undergoing surgery, chemo-
therapy, antibiotic therapy, and hospitalization. These 
risk factors are associated with an alteration of gut micro-
biota composition, generally characterized by higher lev-
els of Proteobacteria and Fusobacteriota and lower levels 
of abundance of Bacteroidetes, such as Bacteroides, and 
Firmicutes, such as Ruminococcaceae [218], which pro-
vides a favorable environment for the germination of C. 
difficile spores and CDI development [219]. An imbal-
ance in the gut microbiota also results in an alteration of 
the metabolites produced by intestinal bacteria, which 
can also affect C. difficile colonization and infection [126, 
136, 220]. For example, the production of SCFAs, such 
as butyrate, propionate, and acetate, by Bacteroides and 
Ruminococcaceae can stimulate the secretion of secretory 
IgA and inhibit C. difficile adherence and growth. These 
metabolites also exert protective effects against CRC 
progression [221]. Furthermore, an imbalance in the gut 
microbiota results in the alteration of bile acid metabo-
lism and enrichment of primary bile acids, promoting 
the growth of C. difficile cells [126, 136]. Interestingly, 
the alteration in abundance Lachnospiraceae and Rumi-
nococcaceae families that confirmed the low abundance 
in CRC, had a positive correlation with the concentration 
of secondary bile acids and resistance to C. difficile [18]. 
Therefore, the depletion of these bacteria plays a critical 
role in the development of CDI in CRC patients [222].

The severity and recurrence rate of CDI can be higher 
in the cancer population compared to other patients, 
thereby affecting overall survival [25]. Nonetheless, 
research on the role of C. difficile in cancer development, 
the prevalence of C. difficile, and the rCDI rate in cancer 
patients remains relatively scarce, and current studies are 
limited to research with a small sample size; therefore, 
more comprehensive research is required to elucidate the 
exact relationship between C. difficile and CRC. In addi-
tion, careful management of CDI in oncology patients is 
critical to minimize complications.

In patients with CRC, an appropriate diagnostic algo-
rithm that combines two or three different assays with 
high specificity and sensitivity for C. difficile is strongly 
recommended [154, 223] to determine whether a positive 

result represents a colonization or an active infection by 
C. difficile, since pre-operative CRC patients and those 
with advanced disease are frequently C. difficile colo-
nized [23]. Current guidelines for diagnosing and treating 
CDI are based on disease severity [224]. However, due 
to the peculiar characteristics of cancer patients, differ-
ent scales of CDI severity markers have been proposed 
[161–163]. There is discordant evidence on the severity 
of CDI in patients with CRC [25, 137] that requires fur-
ther investigation and analysis of data from a larger num-
ber of patients.

A low impact of CDI treatment on the gut microbiota 
of CRC patients is necessary because microbiota dys-
biosis may play a role in the promotion or progression 
of CRC, as well as in the increase of rCDI rates [56, 57]. 
In general, a selection of appropriate antibiotics and a 
proper dosage may not only be effective for treating CDI 
but also for preventing CDI development [37]. Currently, 
the use of fidaxomicin has been recommended for treat-
ing CDI in patients with CRC, and further research is 
needed to explore the utility of more selective antibiot-
ics targeting C. difficile, which specifically modulate the 
abundance of this bacterium in patients with cancer, such 
as ridinilazole. It should be noted that the emergence of 
antibiotic-resistant strains highlights the urgent need for 
global antibiotic stewardship and infection control efforts 
[225]. Hence, the detection of new antibiotic resistance 
patterns of bacteria may help clinicians choose treatment 
approaches and develop novel strategies for controlling 
pathogens.

Among the available treatments, gut microbiota modu-
lation by probiotics or FMT can be an effective approach 
for treating CRC patients with CDI and improving CRC 
outcomes. The use of probiotics has shown favorable 
results for treating CRC and CDI [199, 202, 203]. How-
ever, further research is needed to determine the optimal 
strain and dosage for ensuring the prevention and treat-
ment of CDI in patients with CRC and their ability to 
prevent and treat CDI in these patients. Moreover, it is 
important to consider the potential of probiotic strains 
to restore gut microbiota composition when selecting 
for therapeutic purposes. The effects of several bacterial 
species, such as B. fragilis, on gut microbiota restoration 
have previously been demonstrated [226]. Further studies 
are needed to explore the potential of probiotics to spe-
cifically promote gut microbiota in the future.

FMT is a highly effective technique for restoring the gut 
microbiota and treating rCDI [191, 208]. FMT appears to 
be a safe and effective treatment for CDI in patients with 
cancer, without serious side effects or infectious compli-
cations [215–217], representing an effective approach for 
treating CDI, rCDI, and improving outcomes in patients 
with CRC or metastatic CRC [191, 208]. In addition, 
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FMT can help regulate bile acid metabolism and restore 
SCFA levels in patients post-FMT [227]. Notably, SCFAs 
can play critical roles in bile acid metabolism and exert 
protective effects against CDI by regulating bile acid 
metabolism [228].

FMT has been successfully used as a supplement to 
immunotherapy, helping improve outcomes in patients 
with CRC or metastatic CRC [214]. The use of immu-
notherapeutic agents such as pembrolizumab and 
nivolumab (programmed cell death 1 (PD1)-blocking 
antibodies), has shown high efficacy in metastatic CRC 
patients with mismatch-repair-deficient and microsat-
ellite instability-high (dMMR–MSI-H) [229], and data 
about the application of FMT for CRC treatment are 
limited to this group [196]. However, randomized clini-
cal studies with larger sample sizes and diverse patient 
populations are needed to further explore the efficacy of 
FMT, the consequences of its usage, and its effectiveness 
in treating CRC patients with CDI.

In conclusion, CDI may be a complication in CRC 
patients due to sharing similar risk factors, affecting the 
duration of hospitalization, increasing the recurrence 
rate, altering the response to therapy, and increasing 
mortality. Therefore, early diagnosis and treatment of 
CDI are essential for reducing the burden of CDI-related 
complications in these patients, especially in popula-
tion at high risk of C. difficile acquisition, such as those 
undergoing prolonged hospitalization. Further epidemio-
logical studies on the precise prevalence and clinical cor-
relates of C. difficile in the CRC population are needed to 
manage these complications. Additionally, comprehen-
sive protocols are needed to establish effective preventive 
interventions and monitor the incidence of C. difficile in 
patients undergoing cancer therapy. A diagnostic algo-
rithm that combines two or three assays with high speci-
ficity and sensitivity should also be considered to detect 
C. difficile in cancer patients. Among the available treat-
ments, microbiota manipulation may represent a hopeful 
strategy for the recovery of gut microbiota and man-
agement of CDI in patients with CRC, although future 
studies are needed to provide more evidence about the 
mechanisms of action of this approach and its effective-
ness in treating CDI in patients with CRC.
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