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Objective:Multiple proteinases are present in the synovial fluid (SF) of an arthritic joint. We
aimed to identify inflammatory cell populations present in psoriatic arthritis (PsA) SF
compared to osteoarthritis (OA) and rheumatoid arthritis (RA), identify their proteinase-
activated receptor 2 (PAR2) signaling function and characterize potentially active SF serine
proteinases that may be PAR2 activators.

Methods: Flow cytometry was used to characterize SF cells from PsA, RA, OA patients; PsA
SFcellswere further characterized by single cell 3’-RNA-sequencing. Active serine proteinases
were identified through cleavage of fluorogenic trypsin- and chymotrypsin-like substrates,
activity-based probe analysis and proteomics. Fluo-4 AM was used to monitor intracellular
calcium cell signaling. Cytokine expression was evaluated using a multiplex Luminex panel.

Results: PsA SF cells were dominated by monocytes/macrophages, which consisted of
three populations representing classical, non-classical and intermediate cells. The classical
monocytes/macrophages were reduced in PsA compared to OA/RA, whilst the
intermediate population was increased. PAR2 was elevated in OA vs. PsA/RA SF
monocytes/macrophages, particularly in the intermediate population. PAR2 expression
and signaling in primary PsA monocytes/macrophages significantly impacted the
production of monocyte chemoattractant protein-1 (MCP-1). Trypsin-like serine
proteinase activity was elevated in PsA and RA SF compared to OA, while chymotrypsin-
like activity was elevated in RA compared to PsA. Tryptase-6 was identified as an active
serine proteinase in SF that could trigger calcium signaling partially via PAR2.

Conclusion: PAR2 and its activating proteinases, including tryptase-6, can be important
mediators of inflammation in PsA. Components within this proteinase-receptor axis may
represent novel therapeutic targets.
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INTRODUCTION

Inflammation is central to the pathogenesis of arthritis. In
psoriatic arthritis (PsA) the cells involved in bone formation
(osteoblasts) and resorption (osteoclasts), synoviocytes and
immune cells (such as macrophages, neutrophils, mast cells, T
cells and B cells) are sources of inflammatory components within
the synovial space (1, 2). A greater understanding of the role of
cytokines such as TNFa and IL-17 has led to the development of
effective therapies. For example, targeting the IL-23–IL-17
pathway is effective in the management of PsA (3). However,
almost 40% of patients fail to show a clinically meaningful
response with these agents (4–6) and pain and inflammation
persist, particularly when these therapies are not introduced
early in the disease course. Thus, it is critical to identify the
underlying pathogenic mechanisms that lead to inflammation,
joint damage, and persistent pain. This insight will generate new
targets for therapies that can halt or reverse progressive joint
damage, provide pain relief and improved the quality of life of
patients with PsA.

Proteolytic activity is crucial to the maintenance of cartilage
and bone integrity in the joint. Excessive activity of proteinases
(7), including matrix metalloproteinases (MMPs) (8, 9) and
cysteine proteinases, such as cathepsins (10), are involved in
bone resorption and the degradation of proteins in the cartilage,
tendons and bone extracellular matrix (ECM) (8, 11, 12).
Elevated levels of MMPs (in particular MMP-3) have been
detected in blood, synovial tissue and synovial fluid (SF)
samples obtained from patients with spondyloarthritis (SpA),
including PsA (13–15). Serine proteinases such as those of the
coagulation and fibrinolysis cascades and those involved in the
complement cascade are another group of enzymes of potential
importance in arthritis (16–21). Our analysis of SF from patients
with PsA has revealed kallikrein-related serine peptidases (22).

Proteinase-activated receptors (PARs) include a family of four
G-protein-coupled receptors with pro-inflammatory functions
(23, 24). Serine proteinases, cysteine proteinases andmetalloproteinases
can activate three of these receptors (PAR1, PAR2 and PAR4),
unmasking a self-activating ligand. Activation of PARs is linked to
joint inflammation, damage and pain in both mouse models and
human arthritides (25–36), but PAR expression and activity in
PsA has not been reported.

The upstream activators of PARs within the human joint have
not been elucidated. Serine proteinases regulate PAR function in
other settings such as colitis and skin inflammation and inhibition
of these proteinases in murine models of arthritis has pointed to
their role as potential PAR activators in human arthritides (23, 37,
38). Most studies on PARs in arthritis have relied on rodent models
of inflammation and studies in patient cohorts are lacking. The aim
of this study was to characterize the immune effector cell
populations in SF of human PsA patients, their PAR expression,
and to identify proteinase mediators that might influence PAR
signaling and function. For the purpose of this study, we focused on
PAR2, known to be implicated in inflammation and pain (7) and its
major activators, serine proteinases. SF cells from rheumatoid
arthritis (RA) patients, a well-known inflammatory arthritis, and
osteoarthritis (OA) patients, a commonly used control characterized
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by less inflammation, were used as reference. First, we characterized
the cell populations present in the SF of individuals with PsA
compared to OA and RA and their expression of PAR2, with a focus
on monocyte/macrophages, known to be a source of several
proteinases in inflammatory arthritis (39). Next, we identified
serine proteinases in PsA SF and their potential impact on
signaling via PAR2. Finally, we sought to investigate a role for
PAR2 in regulating monocyte/macrophage function in PsA.
MATERIALS AND METHODS

Study Subjects
PsA patients (n=56) with available SF samples from the knee
joint were selected from a cohort of patients followed
prospectively at the University of Toronto PsA clinic. All PsA
patients had psoriasis confirmed by a dermatologist and satisfied
the ClASsification for Psoriatic ARthritis (CASPAR) study group
criteria (40). Additional SF samples from the knee joint were
obtained from patients with RA (n=22) and OA (n=30) for
comparison. SF was obtained during routine joint aspirations
(PsA, RA) or arthroscopy (OA). Patients with OA had a grade II-
IV knee OA by the Kellgren-Lawrence classification system (41).
This study was approved by the University Health Network
Research Ethics Board and was conducted according to
principles of the Declaration of Helsinki. All participants
provided written informed consent.

Flow Cytometry and Single Cell
3’-RNA-Sequencing
Cells from SF samples were separated by centrifugation and cells
fromOA patients were labeled immediately due to the low numbers
of cells present. For PsA and RA patients, cells were stored at −80°C
in RPMI medium supplemented with 20% FBS and 10% DMSO
until ready for analysis. Single cell 3’-RNA-sequencing was
performed on samples from patients with PsA (n=3) using the
10X Genomics Chromium platform (42, 43). A total of 1000 cells
were captured for each sample and sequencing was performed to a
depth of 60,000 reads per cell on the Illumina NextSeq 500. The
quality control metrics were obtained using RNA-SeQC (v1.1.7).
The raw FASTQ data files were aligned to the human genome
(GRCh38) using the STAR aligner (STAR v2.5.2b). Gene-barcode
matrices were obtained using the CELLRANGER (v3.0.2) pipeline.
These were further loaded into R (v3.6.1) for the final graphical
output of results and statistical analysis.

Flow cytometry was used to characterize cell subtypes present
in SF from PsA, RA and OA patients (n=10 in each group) and to
identify PAR2- and CCR2-expressing cell populations. Cells
(when frozen) were thawed rapidly at 37°C and filtered
through a 35 µm cell strainer and labeled using the following
markers or appropriate isotype controls: CD45-pacific blue
(clone 2D1), CD14-PE-Cy7 (clone 63D3), CD16-BV510 (clone
3GB), HLA-DR-PerCP-Cy5.5 (clone L243), CCR2-APC-Cy7
(clone KO36C2) and PAR2-PE (Santa Cruz Biotechnology,
Dallas, TX, USA, clone SAM11). Fluorophore-conjugated
antibodies were purchased from BioLegend (San Diego, CA,
March 2021 | Volume 11 | Article 629726
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USA) or as indicated above. Data were acquired using a BD
FACS Canto II and analysis was performed using FlowJo (v10).
Gating was performed based on a previously described
method (44).

Fluorogenic Proteinase Activity Assay
Proteinase activity was measured in SF samples by measuring
cleavage of fluorogenic substrates for trypsin-like [Boc-Val-Pro-
Arg- Aminomethylcoumarin (VPR-AMC), I-1120.0050, and H-D-
Val-Leu-Lys- Aminomethylcoumarin (VLK-AMC), 4008009.0050,
Bachem Laboratories, Bubendorf, Switzerland] and chymotrypsin-
like [Suc-Ala-Ala-Pro-Phe- Aminomethylcoumarin (AAPF-
AMC), Bachem Laboratories, 4012873.005] proteinases. Assay
buffer [phosphate-buffered saline (PBS), pH=7.5] was combined
with substrate (1 mM for VPR-AMC and VLK-AMC; 2 mM for
AAPF-AMC) and 10 µl of samples (SF or enzyme) in a total
reaction volume of 100 µl in 96-well plates. Fluorescence activity
was measured on a FLUOstar Omega plate reader at excitation of
380 nm and emission of 460 nm (BMG Labtech, Ortenberg,
Germany). Fluorescence release due to substrate cleavage was
monitored for 20 min at 37°C to generate a kinetic curve
[fluorescence units (FU)/min]. Trypsin-like or chymotrypsin-like
proteinase activity was determined relative to a standard curve of
fluorescence release by different concentrations of active trypsin
(Millipore Sigma, Burlington, MA, USA, T0303) or chymotrypsin
(Millipore Sigma, C3142). All samples were run in duplicate and
normalized to total protein levels (in mg). The Pierce BCA Protein
Assay kit was used to measure total protein levels (Thermo Fisher
Scientific, Waltham, MA, USA, 23227).

In-Gel Trypsin Digestion and Identification
of Proteinases by Mass Spectrometry
SF samples from PsA, RA and OA patients (n=2 in each group)
were run on precast PAGEr Tris-Glycine Gold 4–20% gels under
reducing conditions to identify potential serine proteinases based
on size (Lonza, Basel, Switzerland, 59522). Proteins were stained
using Coomassie Brilliant Blue R-250 Staining Solution (Bio-Rad
Laboratories, Hercules CA, USA, 1610436) and individual bands
were excised and digested based on a previously described
protocol (45). Peptides were analysed on the Q Exactive Plus
Mass Spectrometer (Thermo Fisher Scientific). Proteins were
identified using MaxQuant (46), with a false discovery rate
(FDR) of 0.01 as the filtering criteria at both the protein and
peptide level for identification. Differences between groups were
determined using the Perseus software (47). This procedure was
followed by the removal of potential protein contaminants (e.g.
keratin) (48) and serine proteinases were further screened based
on biological function for further investigation.

Visualization of Active Serine Proteinases
in Synovial Fluid and Western Blot Analysis
Following Covalent Labelling With a
Biotinylated Activity-Based Probe Reagent
SF samples from PsA, RA and OA patients (n=2 per group) were
reacted with a biotin-tagged serine proteinase-targeted activity-
based probe, biotin-Pro-Lys-diphenylphosphonate (Bio-PK-
Frontiers in Immunology | www.frontiersin.org 3
DPP4) (49), based on a previously described protocol (50).
Five microliter of SF was incubated in the presence or absence
of 4 µg/ml of soybean trypsin inhibitor (STI; Millipore Sigma,
T9128). Proteins were denatured at 95°C and stored at −20°C
until ready for visualization by western blot analysis. Additional
SF samples without reaction with the activity-based probe were
prepared for analysis on a parallel western blot for detection of a
serine proteinase (tryptase-6) that had been found previously to
be present in the samples using in-gell trypsin digestion and mass
spectrometric analysis.

The activity-based probe-labeled SF sample was diluted 1:5
using Laemmli sample buffer prior to electrophoretic analysis
using a 4–15% Mini-PROTEAN TGX Precast Protein Gel under
reducing conditions (Bio-Rad Laboratories, 4561086). In parallel,
2.5 µl of PsA, RA and OA SF from the same patients (n=2 each)
for whom activity-based probe analyses were done, were
analysed on the same gel with 5 µl of the precision plus
protein standard (Bio-Rad Laboratories, 1610374). The gel was
then transferred to an Immun-Blot PVDF membrane (Bio-Rad
Laboratories, 1620177) and cut for separate probing to detect the
activity-based probe labelled enzymes and tryptase-6. Blots to
detect the biotin-tagged activity-based probe were blocked
overnight at 4°C in 4% casein in Tris-buffered saline
containing 0.1% Tween 20 (TBS-T), washed, and incubated for
1 h in streptavidin-HRP (Jackson ImmunoResearch, West
Grove, PA, USA, 016-030-084) diluted 1:10,000 in 1% casein-
TBS-T. After extensive washing, the activity-based probe-
proteinase complexes were visualized by addition of ECL
prime western blotting reagent (GE Healthcare, Chicago, IL,
USA, 45-002-401) using the ChemiDoc MP imaging system
(Bio-Rad Laboratories). Blots for tryptase-6 were blocked for
1 h at room temperature in 4% casein-TBS-T. This blocking was
followed by overnight incubation at 4°C in rabbit anti-tryptase-6
antibody (Aviva Systems Biology, San Diego, CA, USA,
OAAF06983) diluted 1:1,000 in 1% casein-TBS-T. The blot
was then washed and incubated in goat anti-rabbit HRP
secondary antibody (Thermo Fisher Scientific, 31462) diluted
1:10,000 in 1% casein-TBS-T. Blots were washed and visualized
as described above.

Tryptase-6 ELISA Quantification, Pull-
Down Activity Measurement and Antibody
Affinity Chromatography Isolation
Total tryptase-6 levels were measured in SF from PsA, RA and
OA individuals (n=10 per group) using a commercially available
ELISA (Aviva Systems Biology, OKCD02115). Samples were
diluted 1:10 using the standard diluent provided with the kit.

Active tryptase-6 was detected in the SF samples using a pull-
down assay adapted from a previously described protocol,
whereby enzyme captured by plate-immobilized antibody
retains its measurable enzymatic activity to cleave substrate in
the supernatant (51). Trypsin-like serine proteinase activity was
measured by cleavage of fluorogenic substrates (0.25 mM VPR-
AMC or 0.5 mM VLK-AMC) using a FLUOstar Omega plate
reader (BMG Labtech) set at 380 nm for excitation and 460 nm
for emission at 37°C over a 60 min time interval. The slopes of
March 2021 | Volume 11 | Article 629726
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the resulting kinetic plots (FU/min) were normalized to either
total protein (mg) or total tryptase-6 (ng).

Total tryptase-6 was isolated from PsA SF samples (n=2) for
treatment of cells in the assays described below using the catch and
release reversible immunoprecipitation (IP) antibody affinity
chromatography system, according to the manufacturer’s
instructions (Millipore Sigma, 17-500). Samples were incubated
with either anti-tryptase-6 or anti-rabbit IgG antibody (Cell
Signaling Technology, Danvers, MA, USA, 7074S) as a negative
control. To confirm enzymatic activity of the IP tryptase-6 eluate, 10
µl of eluate was incubated with 1 mM of VPR-AMC and assay
buffer (PBS, pH=7.5) in 96-well plates in duplicate. Fluorescence
release was measured as done above for the pull-down assay. All
samples were run in duplicate and background fluorescence (buffer
only) was subtracted. The resulting fluorescent activity was
normalized to total protein levels in the eluate. For calcium
signaling experiments, the FU/min/ng of tryptase-6 in the volume
used is indicated. To confirm the presence of tryptase-6, the eluate
and SF from the same patients were visualized by Western blot
analysis as described above.

Calcium Cell Signaling Assay
Cultured PAR-responsive human embryonic kidney (HEK)-293
cells were used to establish the ability of SF samples to activate
PAR2, as described elsewhere (52). HEK-293 cells were cultured
to confluence in DMEM medium containing high glucose and L-
glutamine (Millipore Sigma, D5796) supplemented with 10% fetal
bovine serum (FBS, Thermo Fisher Scientific, 12484028) and 100U/
ml penicillin/streptomycin (Thermo Fisher Scientific, 15140122).
Cells were plated in black 96-well plates at 40,000 cells per well and
left to stabilize overnight in a 37°C/5% CO2 incubator. The calcium-
regulated fluorescent intracellular calcium indicator, Fluo-4 AM
(Thermo Fisher Scientific, F36206) was used to monitor real-time
elevations of intracellular calcium following activation or inhibition
of PAR2, according to the manufacturer’s instructions. The PAR2
activating peptide, 2-furoyl-LIGRLO-NH2 (2fLI) and the selective
PAR-2 inhibitor, I-191 [International Publication No. WO 2015/
048245A1 (PCT/US2014/057390)], were used (53–55).
Fluorescence was normalized to the signal generated by the
calcium ionophore A23187 used at a concentration of 2 µM
(Millipore Sigma, C7522). Calcium ionophore was used as a
positive control to reflect calcium signaling by Fluo-4-loaded cells,
as done previously (56). Data were acquired on a FLUOstar Omega
plate reader at 37°C with excitation at 494 nm and emission at 516
nm (BMG Labtech, Ortenberg, Germany).

Calcium signaling in CRISPR-eliminated HEK-293 PAR2
knockout cells, generated in keeping with a previously published
procedure (57), was monitored as described elsewhere (58).
Fluorescence was normalized to the response caused by 2 µM
calcium ionophore. Data were generated using a Perkin-Elmer
spectrophotometer with excitation at 480 nm and emission at 530
nm with recordings every 0.5 sec for 1 min.

Human macrophage-related THP-1 cells (ATCC, Manassas,
VA, USA) were used to test PAR2 signaling in a monocyte/
macrophage cell model. Cells were seeded at 50,000 cells per well
in black 96-wells and cultured in RPMI media (Thermo Fisher
Scientific, 11875093) supplemented with 10% FBS, 1 mM sodium
Frontiers in Immunology | www.frontiersin.org 4
pyruvate (Thermo Fisher Scientific, 11360070), 100 U/ml
penicillin/streptomycin and 25 nM of phorbol 12-myristate 13-
acetate (PMA, Millipore Sigma, P8139) for 72 h to induce
differentiation of cells into macrophages. Calcium signaling
after activation with 2fLI and PsA SF-derived tryptase-6 and/or
inhibition with I-191 was measured as described in HEK-
293 cells.

Primary monocytes/macrophages were obtained from fresh SF
and blood samples from PsA patients. Due to the difficulty of
obtaining sufficient number of fresh SF samples, blood samples from
PsA patients not receiving treatment with biologic therapy were
used to complement the experiments from fresh SF samples.
Peripheral blood mononuclear cells (PBMCs) were isolated from
heparinized blood by Ficoll-Hypaque gradient density separation.
CD14+ monocytes/macrophages were obtained from SF cells and
PBMCs by magnetic-activated cell sorting (MACS) using positive
selection for CD14, according to the manufacturer’s instructions
(Miltenyi Biotec, Bergisch Gladbach, Germany, 130-050-201).
Blood cells were further processed to select for the PAR2-
expressing monocytes/macrophages by staining cells with PAR2-
PE antibody (Santa Cruz Biotechnology) coupled with indirect
labelling and separation of cells by positive selection using anti-PE
microbeads (Miltenyi Biotec, 130-105-639). Cells were plated at
100,000 cells/well in poly-D-lysine coated black 96-well plates in
RPMI medium containing L-glutamine supplemented with 10%
human AB serum (Thermo Fisher Scientific, ICN2930949) and 100
U/ml penicillin/streptomycin for 48 h before performing calcium
signaling experiments.

Multiplex Cytokine Assay and ELISA
Fresh blood-acquired PAR2-expressing monocytes/macrophages
were isolated from PsA patients (n=8) as described above and
seeded at 100,000 cells per well in 24-well plates in RPMI media
containing 10% human AB serum and 100 U/ml penicillin/
streptomycin. Cells were cultured for 48 h in the presence or
absence of 100 µM of 2fLI. Due to the low levels of cytokines
released from unstimulated cells (59), 2.5 ng/ml of LPS
(Millipore Sigma, L2630) was added during the last 4 h to
induce cytokine expression. LPS is a TLR4 agonist that is
recognized as a potent activator of monocytes/macrophages
(60). Conditioned medium and harvested cells were stored at
-80°C until analysis. Samples were screened for the expression of
20 chemokines/cytokines (MCP-1, MIP-1a, MIP-1b, CXCL1,
CXCL2, CXCL10, G-CSF, GM-CSF, IFNa, IFNg, IL-1b, IL-4, IL-
6, IL-8, IL-10, IL-12p70, IL-17/IL-17A, IL-17E, PD-L1, TNFa)
using the Luminex Performance Human XL Cytokine Discovery
Magnetic Panel, according to the manufacturer’s instructions
(R&D Systems, Minneapolis, MN, USA, FCSTM18-20).

Additional blood-derived PAR2-expressing monocytes/
macrophages were isolated from PsA patients (n=6) for
measurement of monocyte chemoattractant protein-1 (MCP-1)
in the presence or absence of 2fLI and I-191. Cells were isolated
and stored at −80°C until ready for analysis. Cells were thawed
rapidly at 37°C and cultured untreated or in the presence of 100
µM 2fLI, 30 µM I-191 or both for 48 h and stimulated with LPS
during the last 4 h. Total MCP-1 levels were measured in
conditioned medium using the Human MCP-1 Quantikine
March 2021 | Volume 11 | Article 629726
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ELISA, according to the manufacturer’s instructions (R&D
Systems, DCP00).

Statistical Analysis
The Kolmogorov–Smirnov normality test was performed for all
analyses, and values were predominantly found not to be
normally distributed. When comparing multiple groups, the
Kruskal-Wallis test with Dunn’s multiple comparisons test or
Mann Whitney U test were used. When comparing paired
values, the Wilcoxon matched-pairs signed rank test was used.
Statistical analysis was performed using GraphPad Prism
(version 8.0.1). For all the statistical tests, p<0.05 was accepted
as significant.
RESULTS

Characterization of Monocyte/
Macrophage Cell Subtypes in Synovial
Fluid
To identify the cell populations in PsA SF, single cell 3’-RNA-
sequencing of cells from PsA SF samples (n=3) was performed
using the 10X Genomics platform (42, 43). Twelve main clusters
of cells were predicted (Figure 1A) and the most abundant
clusters had a predominance of monocytes/macrophages gene
Frontiers in Immunology | www.frontiersin.org 5
expression (differential heatmap shown in Figure 1B). Neutrophil
transcriptomic signatures could not be detected due to low
cell viability.

The total monocyte/macrophage populations in SF as well as
their expression of PAR2 were compared between PsA, RA and
OA patients by flow cytometry (n=10 each). Overall monocyte/
macrophage populations were similar between patient groups, but
differences were identified in subset populations within PsA and
RA. CD14+C16- classical monocytes/macrophages were elevated
in RA compared to PsA SF (p=0.030), while CD14+CD16+
intermediate monocytes/macrophages were more predominant
in PsA compared to RA SF (p=0.038, Figure 2A). PsA or RA
monocyte/macrophage subset populations were not significantly
different compared to OA SF. When we compared the expression
of PAR2 within the cell populations, OA patients had elevated
levels of PAR2 in the total monocyte/macrophage group
compared to both PsA (p=0.014) and RA (p=0.046), evident
particularly in the intermediate monocyte/macrophage subset
(p=0.008 vs. PsA; Figure 2B). No significant differences in
PAR2 expression between monocyte/macrophage subsets were
observed in PsA patients (Figure 2C).

Identification of Serine Proteinases
in Synovial Fluid
Investigations of serine proteinase activity in samples from PsA
patients have not yet been performed. This unmet need, together
A B

FIGURE 1 | Single cell RNA sequencing. The clustering of predicted cell subpopulations from SF cells of 3 PsA patients identified 12 different cell populations, with
the most dominant being monocytes/macrophages (A). The monocytes/macrophages were comprised of four subpopulations, three of which were large
(macrophages 1, 2 and 3) with expression levels of unique cell markers and transcriptomic signatures. The expression of top differentially expressed genes within the
monocyte/macrophage subpopulations is shown in (B).
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with our finding that serine proteinases which signal through
PAR2 can be present in PsA SF (22) and combined with the
availability of various tools for detecting total serine proteinase
activity, led us to focus on this group of proteinases for further
study. The presence of serine proteinase activity in SF samples
from patients with PsA, RA and OA was confirmed by a
fluorogenic proteinase substrate activity assay. A significantly
higher level in trypsin-like activity of serine proteinases with a
preference for lysine (VLK-AMC substrate) was found in SF
from patients with PsA (median 13.51 nM/mg total protein,
range 6.58–32.84, p <0.0001) and RA (median 15.57 nM/mg total
protein, range 7.73–24.73, p=0.0002) compared to OA (median
4.21 nM/mg total protein, range 2.89–7.28). No significant
differences in trypsin-like activity of serine proteinases with a
preference for arginine (VPR-AMC substrate) were found
between patient groups (Figure 3A). Chymotrypsin-like
activity was higher in RA (median 23.70 nM/mg total protein,
range 16.29–37.03) compared to PsA SF (median 14.55 nM/mg
total protein, range 8.59–22.10, p=0.005), with OA SF levels
Frontiers in Immunology | www.frontiersin.org 6
(median 21.93 nM/mg total protein, range 11.40–29.21) not
significantly different to either RA (p=0.718) or PsA SF levels
(p=0.129; Figure 3B). Representative standard curves of active
trypsin and chymotrypsin for each substrate are shown in
Figure 3C.

Next, serine proteinases that might prove to be active in the
SF were identified by in-gel trypsin digestion of all gel bands
identified by Coomassie blue staining to capture as much of all
proteinase forms present, followed by identification using mass
spectrometry analysis. After filtering out data for known
common contaminants (e.g. keratin), a total of 756 proteins
were identified, 42 of which were potentially biologically active.
There were proteinases identified which were unique to each
patient group, and 25 proteinases overlapped between all three
groups. The full list of identified proteinases containing
proteinase domains and listed as biologically active in the
homo sapiens MEROPS database (61) is shown in Table 1.
There were 3 proteinase-related proteins that were unique to
PsA patients, including the cysteine proteinase bleomycin
A

B

C

FIGURE 2 | Identification of specific monocyte/macrophage subtypes and their expression of PAR2 in SF of PsA, OA and RA patients. Flow cytometry was used to
determine the total (A) and PAR2-expressing (B) monocytes/macrophages from SF of PsA, OA and RA patients (n=10 each). Classical (CD14+CD16-) monocytes/
macrophages are elevated in RA compared to PsA (p=0.030) while intermediate (CD14+CD16+) cells are higher in PsA compared to RA (p=0.038). PAR2
expression is increased in OA compared to PsA (p=0.014) and RA (p=0.046) patients and is expressed predominantly in cells with an intermediate phenotype
(p=0.008). No significant differences are observed in PAR2 expression between cell subpopulations of PsA SF cells (C). Populations were compared using the
Kruskal-Wallis test with Dunn’s multiple comparisons test. Asterisks are used to indicate significant differences between groups, where *p<0.05 and **p<0.01.
March 2021 | Volume 11 | Article 629726

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Abji et al. Macrophage Signaling in Psoriatic Arthritis
hydrolase [BLMH], the pseudoprotease sequence-containing
sonic hedgehog protein [SHH] and the aspartic acid proteinase
cathepsin D (CTSD). Overall, the majority of the identified
entries were serine proteinases which were primarily involved
in the coagulation and complement cascade. The remaining
serine proteinases identified were evaluated according to their
potential biological function, particularly in relation to
monocytes/macrophages given their prevalence in PsA SF.
Tryptase-6 (PRSS33), originally termed EOS, was of particular
interest due to its predicted molecular weight falling in the range
of known tryptic enzymes, its presence in all patient samples and
a previous report which first identified tryptase-6 as a novel
serine proteinase expressed predominantly by macrophages (62).

Tryptase-6 Is an Active Serine Proteinase
in Synovial Fluid
Our next step was to determine if tryptase-6 was present in SF as
an active enzyme. To this end, we used western blot analysis
using a tryptase-6-targeted antibody and an antibody affinity
Frontiers in Immunology | www.frontiersin.org 7
column to capture and isolate active enzyme from the SF
samples. A serine proteinase-targeted biotinylated activity-
based probe that selectively reacts with the active serine in
trypsin-like proteinases was also used to identify active serine
proteinases in the SF samples. Upon covalent reaction with the
proteinase, this probe enables the visualization of the active
biotinylated enzyme by an avidin-based western blot
procedure. The activity-based probe labelling was done in the
absence and presence of soybean trypsin inhibitor (STI) to
determine if the proteinases in SF were active and not binding
to the activity-based probe non-specifically. The western blot
analysis was done with a polyclonal antibody specific for
tryptase-6 which reacts with an epitope in the N-terminal
region of tryptase-6 (within amino acids 30–70), allowing
potentially for the detection of both active and non-active
forms of the enzyme (62). Western blots analysis was done
using OA, RA and PsA SF samples (n=3), with representative
blots for the enzyme detected by the tryptase-6 antibody shown
in Figure 4A. Based on molecular weight, antibody reactivity was
A

B

C

FIGURE 3 | Serine proteinase activity in SF from PsA, RA and OA patients. Serine proteinase activity using fluorogenic substrates for trypsin-like proteinases with a
preference for arginine (VPR) or lysine (VLK) (A) and chymotrypsin-like proteinases (B) is shown. Fluorescence release was monitored for 20 min of a kinetic cycle
and the slope of the resulting curve was extrapolated relative to a standard curve of fluorescence release by known concentrations of either trypsin or chymotrypsin
and normalized to the total protein concentration of the sample. Representative standard curves are shown in (C) for each substrate. Groups were compared using
the Kruskal-Wallis test with Dunn’s multiple comparisons test. Asterisks are used to indicate significant differences between groups, where **p<0.01 and ***p<0.001.
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observed for all three patient-derived samples in the 25 kDa
region, as expected for the active form of tryptase-6 (Figure 4A).
Antibody reactivity was also seen for all three samples in the
higher molecular mass region of the gel (50 to 70 kDa: Figure
4A). These proteins may represent an enzyme dimer or a larger
inactive enzyme form bound to a proteinase inhibitor. A biotin
signal localizing a proteinase tagged by the biotinylated serine
proteinase-selective activity-based probe was also observed in the
25 kDa region of the gel similar to an enzyme with the mobility
of tryptase-6 (Figure 4B). The signal in the 25 kDa region of the
gel was clearly reduced by STI in samples from the RA and PsA
patients; less so in the sample from the OA individual. An
activity-based-probe-labelled enzyme with a reduced signal in
the presence of STI was also observed in the 200 kDa range for
the RA and PsA samples; and an STI-inhibited enzyme with a
mass > 250 kDa was also observed in the RA sample (Figure 4B).
The biotinylation of many other activity-based-probe-labelled
Frontiers in Immunology | www.frontiersin.org 8
enzymes was not affected by STI (Figure 4B), pointing to a wide
spectrum of active enzymes not susceptible to STI inhibition.
The tryptase-6 antibody also visualised a 25 kDa protein eluted
from the antibody affinity beads that captured the protein from
the PsA-derived SF samples (Figure 4C). This result indicated
that the tryptase antibody affinity column could interact with
enzymatically active enzyme which could be eluted for further
analysis (compare histograms in the upper panel of Figure 4C
with the blots in the lower panel).

After detecting active tryptase-6 in the affinity column-isolated
SF samples, we used a more targeted and quantitative approach to
compare total immunoreactive and enzymatically active levels of
tryptase-6 in SF from PsA, RA and OA patients (n=10 each). As
shown in Figure 5A, the total levels of tryptase-6 measured by the
ELISA were higher in RA (median 115 ng/ml, range 87.6–175.5)
compared to OA SF (median 70.1 ng/ml, range 50.3–87.9,
p=0.002), but not PsA-derived samples (median 91.6 ng/ml,
TABLE 1 | List of proteins with proteinase sequences identified in SF of PsA, OA and RA patients.

Gene Name Full Name Type UniProt ID MEROPS ID1 Human Disease

CTSD Cathepsin D Aspartic P07339 A01.009 PsA
CASP14 Caspase-14 Cysteine P31944 C14.018 RA, OA
CTSZ Cathepsin X Cysteine Q9UBR2 C01.013 PsA, RA
GGH Gamma-glutamyl hydrolase Cysteine Q92820 C26.001 PsA, OA, RA
CTSS Cathepsin S Cysteine P25774 C01.034 PsA, OA, RA
CTSB Cathepsin B Cysteine P07858 C01.060 PsA, OA, RA
SHH Sonic hedgehog protein Cysteine Q62226 C46.002 PsA
BLMH Bleomycin hydrolase (animal) Cysteine Q13867 C01.084 PsA
CPB2 Carboxypeptidase B2 Metallo Q96IY4 M14.009 PsA, OA, RA
LAP3 Cytosol aminopeptidase Metallo P28838 M17.001 PsA, RA
MMP8 Neutrophil collagenase Metallo P22894 M10.002 RA
MMP3 Matrix metallopeptidase-3 Metallo P08254 M10.005 PsA, RA
MMP1 Interstitial collagenase Metallo P03956 M10.001 RA
MMP2 Matrix metallopeptidase-2 Metallo P08253 M10.003 PsA, OA, RA
MMP9 Matrix metalloproteinase-9 Metallo P14780 M10.004 RA
NPEPPS Puromycin-sensitive aminopeptidase Metallo P55786 M01.010 RA
ANPEP Aminopeptidase N Metallo P15144 M01.001 PsA, OA, RA
ACE Angiotensin-converting enzyme Metallo P12821 M02.001 RA
CFD Complement factor D Serine P00746 S01.191 PsA, OA, RA
PRTN3 Myeloblastin Serine P24158 S01.134 PsA, RA
ELANE Elastase-2 Serine P08246 S01.131 RA
CTSG Cathepsin G Serine P08311 S01.133 RA
PRSS33 Tryptase-6 Serine Q8NF86 S01.075 PsA, OA, RA
CFH Complement factor H Serine P08603 M43.UNB PsA, OA, RA
F9 Coagulation factor Ixa Serine P00740 S01.214 PsA, OA, RA
PROC Vitamin K-dependent protein C/Protein C (activated) Serine P04070 S01.218 PsA, OA, RA
CTSA Lysosomal protective protein Serine P10619 S10.002 RA
HABP2 Factor VII-activating peptidase Serine Q14520 S01.033 PsA, OA, RA
CFI Complement factor I Serine P05156 S01.199 PsA, OA, RA
F12 Coagulation factor XIIa Serine P00748 S01.211 PsA, OA, RA
F2 Thrombin Serine P00734 S01.217 PsA, OA, RA
F11 Coagulation factor Xia Serine P03951 S01.213 PsA, OA, RA
HGFAC Hepatocyte growth factor activator Serine Q04756 S01.228 PsA, OA, RA
KLKB1 Plasma kallikrein Serine P03952 S01.212 PsA, OA, RA
C1S Complement component activated C1s Serine P09871 S01.193 PsA, OA, RA
LTF Lactoferrin Serine P02788 S60.001 PsA, OA, RA
MASP1 Mannan-binding lectin-associated serine peptidase-3 Serine P98064 S01.132 PsA, OA, RA
C1R Complement component activated C1r Serine P00736 S01.192 PsA, OA, RA
C2 Complement component C2a Serine P06681 S01.194 PsA, OA, RA
CFB Complement factor Bb Serine P00751 S01.196 PsA, OA, RA
DPP4 Dipeptidyl-peptidase IV Serine P27487 S09.003 PsA, RA
PLG Plasmin Serine P00747 S01.233 PsA, OA, RA
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range 61.8–129.4, p=0.248). Using a pull-down assay, active
tryptase-6 in SF was quantified by its incubation with varying
concentrations of the fluorogenic substrates for serine proteinases
with a preference for arginine (VPR-AMC) and lysine (VLK-
AMC). Tryptase-6 activity increased when both substrates were
added, with the resulting substrate cleavage curve shown for VPR-
AMC in Figure 5B. The specific activity levels of tryptase-6
Frontiers in Immunology | www.frontiersin.org 9
measured with the VPR-AMC substrate for SF samples from the
PsA, RA, and OA patients are shown normalized to total protein
levels (Figure 5C) and tryptase-6 levels (Figure 5D). No
significant differences were observed between the three patient
groups. Taken together, these results confirm that active tryptase-6
is present in arthritic SF samples at comparable levels of
enzyme activity.
A B C

FIGURE 4 | Synovial fluid tryptase-6 aligns with active serine proteinases from PsA, OA and RA patients. Tryptase-6 was detected by western blot analysis of
individual SF samples from PsA, OA and RA patients (A). In parallel, trypsin-like serine proteinase activity was identified in SF samples from the same individuals after
covalent labelling with a biotinylated ABP probe for trypsin-like serine proteinases in the presence or absence of the trypsin inhibitor, STI (4 µg/ml), and visualization
by western blot detection using streptavidin-HRP (B). An ABP-labelled band at the predicted molecular weight of active tryptase-6 (~25 KDa), for which labelling was
reduced in the presence of STI was observed (arrow, B). A column-based antibody affinity chromatography procedure was used to isolate tryptase-6 from PsA SF
samples (n=2). The activity of the isolated enzyme and its identity were confirmed by its ability to cleave the substrate, VPR-AMC, and by western blot detection with
a tryptase-6 antibody, respectively (C).
A C

B D

FIGURE 5 | Total and active tryptase-6 levels detected in SF from PsA, OA and RA patients. Total and active tryptase-6 levels were determined by a commercially
available ELISA and a pull-down activity assay, respectively in PsA, OA and RA SF samples (n=10 per group). As shown in (A), total levels of tryptase-6 were
elevated in RA (median 115.6 ng/ml, range 87.6-175.5) compared to OA SF (median 70.08 ng/ml, range 50.3–87.9, p=0.002, Mann Whitney U test). The activity of
pulled down-tryptase-6 from PsA SF towards VPR-AMC generated the substrate cleavage curve shown in (B). Tryptase-6 activity from SF samples, after
normalization to either total protein levels (C) or total tryptase-6 (D), did not reveal any significant differences between groups. Asterisks are used to indicate
significant differences between groups, where **p<0.01.
March 2021 | Volume 11 | Article 629726

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Abji et al. Macrophage Signaling in Psoriatic Arthritis
Tryptase-6 Triggers Calcium Signals in
HEK-293 Cells Partially via PAR2
The next goal was to investigate whether active tryptase-6 could
stimulate a calcium signaling response in intact cells and to
determine whether this response was mediated by PAR2. Initially
the widely-used PAR-responsive cell line, HEK-293, was used.
Treatment of HEK-293 cells with the PAR2 peptide agonist
(2fLI) caused a concentration-dependent increase in calcium
signaling with an EC50 of 0.14 µM (Figure 6A). As shown in
Figure 6B, the PAR2-selective inhibitor, I-191, successfully
blocked the PAR2 calcium response when cells were pre-
treated with increasing concentrations of I-191, followed by
0.15 µM of 2fLI. The IC50 for the ability of I-191 to block
PAR2 signaling was 2.1 nM (Figure 6B). Thus, stimulation of
wild-type HEK cells with 0.15 µM of 2fLI (Figure 6C) was
inhibited 99% by 10 nM of I-191 (Figure 6D). Treatment of the
Frontiers in Immunology | www.frontiersin.org 10
same wild-type HEK cells with 10.0 FU/min/ng tryptase-6
isolated from the PsA SF by antibody affinity chromatography
caused an increase in intracellular calcium (Figure 6E) which
was inhibited 34% by 10 nM of I-191 (Figure 6F). In addition,
calcium signaling upon stimulation with tryptase-6 was assessed
in CRISPR-eliminated PAR2 knockout HEK-293 cells (Figure
7). The PAR2-null cells were not responsive to the potent
selective PAR2 peptide agonist, 2fLI (5 µM), but were still
sensitive to 2.5 µM of the receptor-selective PAR1 agonist,
TFLLR-amide (Figure 7, tracing A). In these PAR2-null/
PAR1-expressing HEK cells, treatment with 5.8 FU/min/ng of
PsA SF-derived tryptase-6 caused an elevation of intracellular
calcium that was desensitized to the second challenge with tryptase-
6. The tryptase-6-desensitized cells no longer responded to a PAR1-
associated response caused by stimulation with 0.5 U/ml of
thrombin (open circle, first tracing in Figure 7B). In contrast, a
A B

C D

E F

FIGURE 6 | PAR2 and tryptase-6 trigger calcium signals in HEK-293 cells. Calcium signaling assay using the fluorescent indicator, Fluo-4 AM, was used to confirm
the signaling potential of PAR2 and determine whether tryptase-6 can elicit a calcium response via PAR2 in HEK-293 cells. The concentration-effect curve for the
PAR2 agonist 2fLI with an EC50 of 0.14 µM (A) and the concentration–inhibition curve for the PAR2 inhibitor I-191 with an IC50 of 2.1 nM (B) are shown. Stimulation
of cells with 0.15 µM of 2fLI (C) was inhibited 99% by 10 nM of I-191 (D). Stimulation of cells with 10.0 FU/min/ng tryptase-6 isolated by antibody affinity
chromatography from PsA SF caused an elevation of intracellular calcium (E) and 10 nM of I-191 caused a 34% inhibition of this signal (F). Calcium traces are
shown with agonists (2fLI and tryptase-6) added at time zero with or without pre-treatment with I-191 (x-axis=time post addition of agonist, y-axis=units of
fluorescence due to calcium release).
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robust response to thrombin was observed for the cells not pre-
treated with tryptase-6 (right-hand tracing, open circle, Figure 7B).
Thus, tryptase-6 was able to prevent thrombin’s ability to activate
PAR1 either by signal desensitization or by removing the PAR1
tethered ligand so as to “disarm” PAR1. The ability of tryptase-6 to
activate MAPKinase signaling was also assessed in HEK-293 cells
by western blot analysis. In keeping with the calcium signaling data,
western blot detection of activated phospho-MAPKinase caused by
tryptase-6 was able to demonstrate the activation of MAPKinase in
both PAR2-expressing and PAR2-null HEK cells (data not shown).
These results indicate that tryptase-6 stimulates both calcium and
MAPKinase signaling in HEK-293 cells not only via PAR2 but also
via a PAR2-independent mechanism. Therefore, in the
microenvironment of the SF containing tryptase-6, multiple
receptors on monocytes/macrophages or other cell types in
principle can be activated by this proteinase, including PAR2.

Tryptase-6 Triggers Calcium Signals
in THP-1 Cells and Primary Monocytes/
Macrophages Partially via PAR2
In keeping with the data obtained for the HEK-293, THP-1 cells
were used to establish the ability of tryptase-6 to activate calcium
signaling in monocytes/macrophages via PAR2. THP-1 cells
were partially differentiated into macrophages using PMA to
increase endogenous PAR2 expression (63, 64). Concentrations
of 50 to 200 µM of 2fLI produced small but reliable increases in
Frontiers in Immunology | www.frontiersin.org 11
intracellular calcium in the cells. In Figure 8A, 150 µM of 2fLI
induced calcium release that was inhibited 12% by 1 µM of the
potent PAR2-selective inhibitor I-191 (Figure 8B). Calcium flux
by stimulation with 44.8 FU/min/ng tryptase-6 eluate (Figure
8C) was also inhibited 15% by I-191 (Figure 8D). Similarly,
treatment of peripheral blood-derived PAR2-expressing
monocytes/macrophages from PsA patients with 100 µM of
2fLI caused an increase in intracellular calcium (Figure 8E),
which was inhibited 8% by 1 µM (Figure 8F) and 27% by 2 µM of
I-191 (Figure 8G). Treatment of cells with 89.6 FU/min/ng
tryptase-6 isolated from PsA SF also caused an elevation of
intracellular calcium (Figure 8H) that was inhibited 13% by 1 µM
of I-191 (Figure 8I). In PsA SF-isolated monocytes/macrophages,
200 µM of 2fLI caused an increase in intracellular calcium (Figure
8J), which was inhibited 51% by 1 µM of I-191 (Figure 8K).
Treatment of cells with 44.8 FU/min/ng tryptase-6 derived from
PsA SF also caused an elevation of intracellular calcium (Figure
8L) that was inhibited 40% by 1 µM of I-191 (Figure 8M). These
data indicate that tryptase-6 mediates calcium signaling in PsA
monocytes/macrophages in part via PAR2. Furthermore, PsA SF
monocytes/macrophages seem more responsive to PAR2
activation, including calcium signalling responses triggered by
tryptase-6, compared to peripheral monocytes/macrophages.

PAR2 Modulates Monocyte/Macrophage
MCP-1 Production
Blood-derived PAR2-expressing monocytes/macrophages from
PsA patients (n=8) were incubated for 48 h in the presence or
absence of 100 µM of the receptor-selective PAR2 agonist, 2fLI,
to determine the impact of PAR2 activation on cytokine expression.
The expression/secretion of chemokines/cytokines in conditioned
medium is shown in Figure 9A. 2fLI treatment caused an increase
in MCP-1 levels (median 3,748 pg/ml, range 3,504–3,815 pg/ml)
compared to untreated samples (median 1,346 pg/ml, range 661–
2,342 pg/ml, p=0.008). CXCL10 levels were reduced in the presence
of 2fLI (median 3.6 pg/ml, range 3.1–9.5 pg/ml) compared to
untreated cells (median 7.4 pg/ml, range 4.7–32.4 pg/ml,
p=0.016). Of note, CXCL1 levels (median 832 pg/ml, range 389–
8,706 pg/ml, p=0.078) and IL-8 levels (median 6,468, range 6,060–
6,942 pg/ml, p=0.055) were also higher in 2fLI treated cells
compared to untreated cells (median 549 pg/ml, range 404–2,588
pg/ml and median 6,168, range 4,319–6,526 pg/ml, respectively).
The expression of IFNg, IL-17E and IL-4 were below the limits of
detection for all samples and are not shown.

Due to the significant increase in MCP-1 levels observed
following 2fLI treatment, MCP-1 was measured from the
conditioned medium of blood-derived PAR2-expressing
monocytes/macrophages from PsA patients (n=6) in the presence
or absence of 100 µM 2fLI, 30 µM I-191 or both (Figure 9B). MCP-
1 levels were significantly elevated by the potent PAR2-selective
peptide agonist, 2fLI (median 2,272 pg/ml, range 962.7–3,147 pg/
ml, p=0.031) and reduced by I-191 (median 432.7 pg/ml, range
306.8–556.3 pg/ml, p=0.031) compared to untreated cells (median
738.5 pg/ml, range 586.1–1,206 pg/ml). When 2fLI was combined
with I-191 (median 640.1 pg/ml, range 481.6–1,141 pg/ml), the
levels were reduced to a similar level as for the untreated cells
A

B

FIGURE 7 | Tryptase-6 triggers calcium signals in PAR2 knockout HEK-293
cells. The calcium signaling assay [fluorescence emission at 530 nm, as a
percentage of the signal generated by the calcium ionophore A23187 (%)]
was used to determine whether tryptase-6 can trigger calcium signaling via
PAR2-independent pathways. Tracing (A): The absence of a response to the
potent PAR2-selective agonist, 2fLI (open triangle) but presence of a
response to the selective PAR1 peptide agonist, TFLLR-amide (open square)
confirmed the absence of functional PAR2 and the presence of functional
PAR1 in the HEK-293-PAR2-null cells. Tracing (B): Volume equivalent to 5.8
FU/min/ng of PsA SF-derived tryptase-6 (solid circle) elicited a robust calcium
response (dark circle), that was desensitized by the second consecutive
exposure to tryptase-6 (second solid circle, Tracing B). These tryptase-6-
treated cells no longer responded to the PAR1 activator, thrombin (0.5 U/ml,
open circle, first tracing panel B). Cells not treated with tryptase-6 showed a
strong calcium signal caused by thrombin (right-hand tracing, panel B).
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FIGURE 8 | PAR2 and tryptase-6 trigger calcium signals in THP-1 cells and PsA PAR2+ monocytes/macrophages. Calcium signaling assay using the fluorescent
indicator, Fluo-4 AM, was used to confirm the signaling potential of PAR2 and determine whether tryptase-6 can elicit a calcium response via PAR2 in THP-1 cells
and primary monocytes/macrophages from PsA patients. Stimulation with 2fLI in THP-1 (150 µM, A) or primary blood PAR2+ monocytes/macrophages (100 µM, E)
was inhibited 12% (B) and 8% (F) by 1 µM of I-191, respectively. In blood cells, 2 µM of I-191 inhibited this signal by 27% (G). Stimulation of THP-1 cells (C) and
primary cells (H) with volume equivalent to 44.8 or 89.6 FU/min/ng tryptase-6 isolated with the antibody affinity column from PsA SF, respectively, caused an
elevation of intracellular calcium. Treatment with 1 µM of I-191 caused a 15% (D) and 13% (I) inhibition of this signal, respectively. Similarly, in primary SF
monocytes/macrophages, 2fLI (200 µM, J) and volume equivalent to 44.8 FU/min/ng tryptase-6 (L) caused a calcium flux that was inhibited 51% (K) and 40%
(M) by 1 µM of I-191, respectively. Calcium traces are shown with agonists (2fLI and tryptase-6) added at time zero with or without pre-treatment with I-191 (x-
axis=time post addition of agonist, y-axis=units of fluorescence due to calcium release).
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(p=1.00). In these cells, the expression of MCP-1 was marginally
reduced compared to 2fLI alone (p=0.063) but still significantly
elevated compared to I-191 alone (p=0.031).

PAR2+CCR2+ Monocytes/Macrophages
are Elevated in PsA Synovial Fluid Cells
Due to the elevated expression of MCP-1 after 2fLI treatment of
PAR2+ monocytes/macrophages, we used flow cytometry to
determine the expression of the receptor for MCP-1, CCR2, in
monocyte/macrophage subsets and in SF cells of PsA patients and
compare its expression to patients with OA and RA (n=10 each). In
Figure 10A, the total PAR2 and CCR2-expressing monocytes/
macrophages are elevated in PsA as compared to RA patients
(p=0.018) but no differences in PAR2+ CCR2-expressing cells
were observed in the monocyte/macrophage subsets between
patient groups. Within PsA patients (Figure 10B), the proportion
of intermediate (CD14+CD16+) PAR2+CCR2+ monocyte/
macrophages were elevated compared to the classical (CD14+
CD16-) PAR2+CCR2+ population (p=0.001).
DISCUSSION

Our data are the first to compare the differential presence of
inflammatory cells (with a focus on monocyte/macrophage
subtypes) and the presence of serine proteinases that could in
principle regulate cell function by modulating the activity of
proteinase-activated receptor 2 in PsA SF cells. We found that
there were 3 main monocyte/macrophage sub-populations in
PsA SF that expressed PAR2 and identified proteinases in PsA SF
with the potential to regulate PAR2 signaling. Of particular note
was the presence of the serine proteinase tryptase-6, known to be
expressed predominantly by macrophages (62), which could in
principle signal via both PAR2-dependent and PAR2-
independent mechanisms to activate calcium signaling. We
also observed increased levels of MCP-1 from PsA patient-
derived monocytes/macrophages in response to PAR2 activation
and increased CCR2-expressing SF monocytes/macrophages in
Frontiers in Immunology | www.frontiersin.org 13
PsA, highlighting a potential mechanism of PAR2-mediated
recruitment of monocytes/macrophages to the PsA joint.

Several SF proteinases, with particular attention paid to
MMPs and cysteine proteinases, have been singled out as
playing an important role in arthritis (7), mainly because of
their ability to degrade joint cartilage. Serine proteinases released
from joint tissue and immune cells or entering the synovial space
from blood have also been suggested for their potential
importance in arthritis (7). More recently, attention has turned
to the ability of these proteolytic enzymes to trigger inflammatory
receptor signals through PARs in the joint space (7). Studies with
PAR2-null mice have shown that PAR2 can play an important
role in murine models of arthritis with some evidence also
supporting a role for PAR2 in human OA and RA. In murine
models, F2r-/- mice that lack PAR1 have reduced degradation of
cartilage and expression of cytokines and MMP13 in SF (65),
while swelling was reduced after PAR2 blockade in a model of
joint inflammation (30). Inhibition of PAR2 can also alter the
release of pro-inflammatory cytokines in cultured synovial tissue
cells from RA and OA patients (33, 66). Our study is the first to
examine the possible role of PAR2 and its possible activating
proteinases in PsA.

As summarized, one of themain findings of our work was that the
most abundant cell clusters of inflammatory cells in PsA SF were
monocytes/macrophages with three main phenotypes representing
classical, non-classical and intermediate cells. Although the frequency
of total monocytes/macrophages did not vary between groups, RA
patients had an increased frequency of classical monocytes/
macrophages compared to PsA patients, while PsA patients had
predominantly an intermediate monocyte/macrophage sub-
population in their SF samples. This result aligns with previous
reports of pro-inflammatory cytokine production and cartilage and
bone destruction by RA macrophages and the increased number of
pro-inflammatory macrophages in RA patients with active disease
(67, 68). Notably, it has been shown that the total number of
monocytes/macrophages is equivalent between patients with RA
and SpA, including PsA, but CD163+ anti-inflammatory
macrophages are elevated in SpA synovitis (69, 70).
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FIGURE 9 | PAR2 modulates MCP-1 expression from PsA monocytes/macrophages. The expression of 20 chemokines/cytokines measured from conditioned
medium of blood-derived PAR2-expressing monocytes/macrophages of PsA patients (n=8) using a multiplex Luminex assay is shown in (A). Cells were cultured for
48 h in the presence or absence of 100 µM 2fLI and stimulated with LPS during the last 4 h. The expression of IFNg, IL-17E and IL-4 were below the limits of
detection and are not shown. Values are graphed on a log10 scale to better visualize differences between groups. MCP-1 was also measured in additional samples
of blood-derived PAR2-expressing monocytes/macrophages (n=6) in the presence of 30 µM I-191, 100 µM 2fLI or both (B). Expression was compared between
groups using the Wilcoxon matched-pairs signed rank test. Error bars indicate the median ± interquartile range. Asterisks are used to indicate significant differences
between groups, where *p < 0.05 and **p < 0.01.
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We also characterized PAR2 expression in SF monocytes/
macrophages and found elevated PAR2 in OA compared to PsA/
RA patients, especially within the intermediate population.
Although this cell subtype-specific expression has not been
previously investigated, the ability of PAR2 to modulate bone
pathology and pro-inflammatory changes in OA has been
documented in experimental arthritis models as well as in
human synovial cells (71, 72). Previous groups have detected
PAR2 on peripheral blood monocyte/macrophages from healthy
donors (64) and RA and OA patients (73, 74) and within the RA
synovium (66), but this is the first report of PAR2 expression
within monocytes/macrophages in SF of PsA patients.

We were also able to show that the monocytes/macrophage
populations can respond to PAR2 activation by means of calcium
and MAPKinase signaling. Activation of these signaling
pathways by tryptase-6 to mimic the action of the PAR2-
selective peptide agonist, 2fLI, was confirmed in HEK-293
cells, which are well-recognized for their responsiveness to
PAR2 stimulation with this agonist (52, 54). In monocyte/
macrophage cell populations, the calcium response to 2fLI
activation was small. This result is consistent with a previous
report, where the low expression of PAR2 mRNA resulted in a
small response to the PAR2 activating peptide (SLIGKV-amide)
in monocytes that was partially increased when cells were
differentiated into macrophages by GM-CSF or M-CSF (64).
Stimulation of macrophage-related THP-1 cells with phorbol
ester (PMA) and isolation of PAR2+ monocytes/macrophages
from PsA patients also improved their responsiveness to the
selective PAR2 agonist, 2fLI, in this study.
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PAR2 activation also modulated expression of cytokines in PsA-
derivedmonocytes/macrophages, with a significant increase inMCP-
1 and decrease in CXCL10. Other studies have found increased
expression of MCP-1, along with other pro-inflammatory cytokines
such as IL-1b, IL-6, and TNFa following PAR2 activation in models
such as bone marrow-derived macrophages, the murine macrophage
cell line RAW264.7, A549 lung cancer cells and human vascular
endothelial cells (75–77). PAR2 activation has also been observed to
cause an increase in anti-inflammatory IL-10 and suppression of IL-
6, IL-12, and TNFa in murinemacrophages (78). These data indicate
that differences in PAR2-mediated cytokine expression can occur,
with both pro- and anti-inflammatory consequences (79). When
examining the expression of CCR2, the receptor for MCP-1 in SF
cells, PsA patients had high overall levels of CCR2 in monocytes/
macrophages, particularly in intermediate CD14+CD16+ cells. The
increased production of MCP-1 upon PAR2 activation in PsA
monocytes/macrophages may result in recruitment of additional
CCR2-expressing intermediate monocytes/macrophages to
perpetuate an immune response. This intermediate population has
been shown to exert either pro- or anti-inflammatory effects,
depending on the setting of their activation (80, 81). PAR2-
mediated polarization towards both pro- and anti-inflammatory
macrophage phenotypes has also been reported, such as the pro-
inflammatory polarization of murine macrophages (75) and the
repair-associated response in ischemic tissues and colitis (82, 83).

In searching for potential PAR2 activating proteinases in SF,
we singled out tryptase-6, a novel serine proteinase that to date
has not been identified in the setting of arthritis. This trypsin-like
serine proteinase was first identified in 2003 due to its similarity
A

B

FIGURE 10 | PAR2+CCR2+ monocytes/macrophages are elevated in PsA SF cells. Flow cytometry was used to determine the frequency of PAR2+CCR2+ monocytes/
macrophages from SF of PsA, OA and RA patients (A; n=10 each). PsA patients had significantly higher total PAR2+CCR2+ monocytes/macrophages compared to RA
patients (p=0.018). The proportion of total and subsets of monocytes/macrophages within PsA patients were compared in (B). Intermediate (CD14 +CD16+) PAR2/
CCR2 expressing cells were higher than classical (CD14+CD16-) PAR2/CCR2 expressing cells in PsA patients (p=0.001). Error bars indicate median ± interquartile range.
Asterisks are used to indicate significant differences between groups, where *p<0.05.
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to prostasin and tryptases (62, 84–87). Tryptase-6 was originally
found to be primarily localized to human macrophages and up-
regulated upon PMA-induced activation. The amino-acid
sequence of this proteinase shares 44% identity with human b-
tryptase produced from mast cells that may possibly play a role
in activating PAR2 (88). Tryptase-6 has been the focus of few
studies, most of which have concentrated on its role in airway
inflammatory diseases (89, 90). One study found up-regulation
of blood tryptase-6 mRNA from patients with early-onset atopic
dermatitis (91). We showed that total but not active tryptase-6
levels are elevated in patients with inflammatory arthritis,
particularly RA. Furthermore, tryptase-6 isolated from PsA SF
stimulates calcium signaling in a partially PAR2-dependent
manner in cell lines (HEK-293 or THP-1) and primary
monocytes/macrophages from PsA patients (SF or blood).
Toyama et al. have also shown that tryptase-6 can increase
collagen and fibronectin mRNA in human fibroblasts in part
via activation of PAR2 (89). Our preliminary studies using
CRISPR-PAR2-null HEK-293 cells confirm that tryptase-6
causes a small PAR2-mediated calcium response; but it also
causes calcium signals via a non PAR2 target present in HEK-
293 cells. Interestingly in PsA, PAR2-expressing monocytes/
macrophages from SF were more sensitive to tryptase-6-
mediated PAR2 calcium signaling compared to those from the
periphery. Therefore, our data show not only that this enzyme is
proteolytically active in PsA SF samples and is capable of
regulating the activity of PAR2 but also that it may stimulate
other non-PAR2 inflammatory signals.

Taken together, our data thus point to the existence of a
macrophage-triggered autocrine-paracrine loop in PsA, whereby
the invading inflammatory macrophages can both produce and
respond to tryptase-6 via PAR activation, to further the disease
process. Elevation of PAR2 and CCR2-expressing CD14+CD16+
cells and an increased expression of MCP-1 amongst other
cytokines following PAR2 activation can mediate recruitment
of further peripheral monocytes/macrophages to the joint,
perpetuating the immune response (92).

In summary, we characterized the expression of PAR2 in SF
monocytes/macrophages and evaluated its signaling potential
within these cells. Tryptase-6 was identified as an active serine
proteinase in SF that induced a partial PAR2-dependent calcium
response. Treatment of PsA monocytes/macrophages with a
PAR2 agonist induced expression of cytokines with significant
MCP-1 production. The expression of CCR2 on SF CD14+CD16+
monocytes/macrophages indicates that this may be an important
cell population for the PAR2-mediated recruitment of monocytes/
macrophages to the PsA joint. Pending future studies, these results
may point to novel therapeutic targets for the management of PsA.
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11. Delaissé JM, Andersen TL, Engsig MT, Henriksen K, Troen T, Blavier L.
Matrix metalloproteinases (MMP) and cathepsin K contribute differently to
osteoclastic activities. Microsc Res Tech (2003) 61(6):504–13.

12. Cunnane G FO, Hummel KM, Youssef PP, Gay RE, Gay S, Bresnihan B.
Synovial tissue protease gene expression and joint erosions in early
rheumatoid arthritis. Arthritis Rheum (2001) 44(8):1744–53.

13. Cretu D, Prassas I, Saraon P, Batruch I, Gandhi R, Diamandis EP, et al.
Identification of psoriatic arthritis mediators in synovial fluid by quantitative
mass spectrometry. Clin Proteomics (2014) 11(1):27.

14. Jadon DR, Sengupta R, Nightingale A, Lu H, Dunphy J, Green A, et al. Serum
bone-turnover biomarkers are associated with the occurrence of peripheral
and axial arthritis in psoriatic disease: a prospective cross-sectional
comparative study. Arthritis Res Ther (2017) 19(1):210.

15. Sun S, Bay-Jensen AC, Karsdal MA, Siebuhr AS, Zheng Q, Maksymowych
WP, et al. The active form of MMP-3 is a marker of synovial inflammation
and cartilage turnover in inflammatory joint diseases. BMC Musculoskelet
Disord (2014) 15:1593.

16. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system
for immune surveillance and homeostasis. Nat Immunol (2010) 11(9):785–97.

17. Trouw LA, Pickering MC, Blom AM. The complement system as a potential
therapeutic target in rheumatic disease.Nat Rev Rheumatol (2017) 13(9):538–47.

18. So AK, Varisco PA, Kemkes-Matthes B, Herkenne-Morard C, Chobaz-Péclat V,
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