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A B S T R A C T

This paper presents the novel approach of the Norm-dist Monte-Carlo fuzzy analytic hierarchy process
(NMCFAHP) to incorporate probabilistic and epistemic uncertainty due to human's judgment vagueness in multi-
criteria decision analysis. Normal distribution is applied as the most appropriate distribution model to approxi-
mate the probability distribution function of the criteria and alternatives within Monte-Carlo simulation. To test
the applicability of the proposed NMCFAHP, the case study of non-destructive test (NDT) technology selection is
performed in the Petroleum Company in Borneo, Indonesia. When compared with the conventional triangular
fuzzy-AHP, the proposed NMCFAHP method reduces the standard error of mean values by 90.4–99.8% at the final
evaluation scores. This means that the proposed NMCFAHP significantly involves fewer errors when dealing with
fuzzy uncertainty and stochastic randomness. The proposed NMCFAHP delivers reliable performance to overcome
probabilistic uncertainty and epistemic vagueness in the group decision making process.
1. Introduction

Analytic hierarchy process is one of the most popular methodologies
of multi-criteria decision making (MCDM) to evaluate both criteria and
alternatives' degree of importance by interpreting experts' judgment. The
research performed by various studies concludes that AHP applications
are able to describe the weight factor of criteria and alternatives [1,3].
However, according to those researches, AHP has limitations in
measuring vagueness and uncertainty that existed in the pairwise com-
parison. The potential problems often linked to AHP include experts'
judgment may not always yield consistent result [3], and it is unable to
incorporate fuzziness and uncertainty [4]. In order to overcome these
limitations, adoption of integrative probabilistic method and fuzzy logic
in multi-criteria decision making is capable to evaluate complex vague-
ness and uncertainty in the pairwise comparison of the AHP [5,6].
Implementations of fuzzy logic in multi-criteria decision making and
evaluation of risk assessment have been widely used in many recent
applications and studies [7,8,9]. The integrated analytic hierarchy
process-fuzzy approach is the most popular methodology in the past ten
years [10]. Fuzzy logic allows multiple stakeholders to participate in the
process of decision-making for evaluating complex technological prob-
lems [8]. Fuzzy logic is capable of being integrated with other
icaksono).
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methodologies, such as scoring system [11], and other multi-criteria
decision analysis, such as TOPSIS (technique for order of preference by
similarity to ideal solution) and VIKOR (multi-criteria optimization and
compromise solution) [12,13]. Jing et al., [14] implement a hybrid sto-
chastic analytic hierarchy process for evaluating ballast water treatment
technologies where environmental decision can be critical due to the
inherent trade-off among social, ecological, and economic factors. Lav-
asani et al., [15] perform analysis of multi-attributes decision making in
fuzzy environments for selecting the best barrier for offshore wells. The
research employs a fuzzy decision matrix by considering evaluation at-
tributes, and then calculates the weight factor of all risk control options.
Eleye-Datubo et al., [16] present incorporative risk modeling of fuzzy and
Bayesian network for evaluating marine and offshore safety assessment.
The implementation of Fuzzy-Bayesian network methodology is pro-
posed to determine human relative performance in maritime operation
performance shaping factors.

In spite of several researches that demonstrated the use of integrative
fuzzy logic in multi-criteria decision making, none of these researches
actually presents analysis on a statistical approach, especially when the
input data is gathered in a Normal distribution model. In addition, from
the past years' researches, there has been no reference that specifically
mentions the usage of a Normal distribution as an integrative method
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with fuzzy AHP to address both probabilistic uncertainty and epistemic
uncertainty due to human's judgment vagueness. In fact, the pairwise
comparison data forms as a Normal distribution which can be validated
and evaluated using the Kolmogorov-Smirnov test.

This paper proposes the development of a Norm-dist Monte-Carlo
fuzzy AHP (NMCFAHP) to incorporate probabilistic uncertainty which
cannot be addressed by conventional fuzzy AHP. This paper integrates a
Normal distribution fuzzy number (Norm-dist FN) to represent the
epistemic uncertainty in a fuzzy logic system andMonte-Carlo simulation
to quantify the probabilistic uncertainty by synthesizing random
numbers in the pairwise comparison. The Normal distribution is applied
as the most appropriate distribution model to approximate the proba-
bility distribution function of the alternatives' degree of importance. The
Normal distribution involved in this paper is able to represent realistic
human judgment over criteria and alternatives. The implementation of
the proposed methodology is performed to evaluate the most optimum
non-destructive test (NDT) technology for addressing cracks on piping
and vessels. The result of this paper is then compared with conventional
triangular fuzzy analytic hierarchy process to measure the performance
and accuracy of the proposed NMCFAHP for evaluating the decision-
making process.

2. Theoretical background

AHP is a multi-criteria decision approach which can evaluate both
qualitative and quantitative criteria by providing mathematical
reasoning behind the judgment [2]. For the last 20 years, AHP has been
extensively studied due to its flexibility, wide applicability, and capa-
bility to be integrated with other MCDM approaches [10]. AHP was first
developed by Saaty during his assignment in Wharton School (University
of Pennsylvania 1971–1975) [17]. The remarkable study of AHP is per-
formed by Saaty et al. [18], to investigate a structured scientific solution
to the Israeli-Palestinian conflict. Based on the study, AHP works by: 1.
decomposing a complex problem into a structured hierarchy; 2. use a
measurement methodology to establish priorities among the elements for
ranking the alternatives; 3. develop a series of pairwise comparison
matrices based on the hierarchy structure. In particular cases, the
decision-making process may possess criteria that are opposite in direc-
tion to other criteria, such as benefits versus costs and opportunities
versus risks. To resolve this issue, Saaty and Ozdemir [19] present
negative priorities number in the AHP evaluation. It is inferred that
positive or negative priorities do not need to have a symmetric opposite
value as the opposite criterion inexistence in practice. Saaty [20] also
proves that AHP is capable of developing dynamic priorities in the
pairwise comparison when the decision is more likely or more preferred
over different time periods. This approach is well known as a theory for
dynamic decision making.

2.1. Epistemic uncertainty in analytic hierarchy process

Epistemic uncertainty is defined as the uncertainty which comes from
lack of knowledge, incomplete information, inadequate process under-
standing, or imprecise evaluation of the related characteristics [21].
Epistemic uncertainty may come from the process of underlying funda-
mental or total ignorance of influencing parameter. It may also arise from
incompleteness data, simplification in modeling, or confusion in decision
making [22]. Galvez et al. [23], state that the lack of knowledge in
epistemic uncertainty is generated either due to the exact value of some
criteria being unknown, the model is unable to appropriately represent
the realistic judgment, or for both reasons. Several studies disclose the
extent usage of fuzzy logic system to resolve the epistemic uncertainty.
Rohmer and Baudrit [24] develop the scenario-based earthquake risk
assessment by using the concept of fuzzy random variables based on the
fuzzy logic methodology introduced by Zadeh [25]. Purba et al., [26]
perform an investigation to quantify epistemic uncertainty by intro-
ducing fuzzy probability fault tree analysis. They use a fuzzy
2

methodology principle instead of the Monte-Carlo simulation as it is
more appropriate to quantify fuzzy probability based on a fuzzy logic
system rather than the probabilistic Monte-Carlo method. The extent
application of dual interval-and-fuzzy analysis method is introduced by
Wang et al. [27], to investigate dual epistemic uncertainties in the ther-
mal engineering process. Wang and Matthies [28] also investigate the
safety assessment for engineering systems with hybrid epistemic un-
certainties by integrating evidence variable and fuzzy variable system
evaluation. In the field of multi-criteria decision making, epistemic un-
certainty is marked with the extent usage of fuzzy logic system in the
analytic hierarchy process. The most well-known fuzzy AHP approaches
application is based on the methodology explained in chapter 2.1.1 until
2.1.4.

2.1.1. Laarhoven and Pedrycz's logarithmic least square
Fuzzy AHPmethodology is first introduced by Laarhoven and Pedrycz

[29] by utilizing a comparison of fuzzy ratio by triangular membership
function. The detailed steps below explain how to conduct the
evaluation.

Step 1. Develop pairwise comparison matrices based on triangular
fuzzy number and obtain the nþ 1 fuzzy reciprocal matrix using Eq. (2.1).

~A¼

2664
ð1; 1; 1Þ ~a12δ12 … ~a1nδ1n
~a21δ21 ð1; 1; 1Þ ⋯ a2nδ2n
⋮ ⋮ ⋱ ⋮

~an1δn1 ~an2δn2 ⋯ ð1; 1; 1Þ

3775; (2.1)

where ~Aijδij are fuzzy pairwise comparison ratios based on decision
maker judgment.

Step 2. Solve mathematical equation using Eqs. (2.2), (2.3), and (2.4)
to disclose the value of ~rij ¼ ðli;mi;uiÞ,

li

0BBBB@
Xn
j¼1

j6¼i

δij

1CCCCA�
Xn
j¼1

j 6¼i

δijuj ¼
Xn
j¼1

j 6¼i

Xδij
k¼1

�
lnlijk

�
i¼ 1; 2;…; n; (2.2)

mi

0BBBB@
Xn
j¼1

j 6¼i

δij

1CCCCA�
Xn
j¼1

j6¼i

δijmj ¼
Xn
j¼1

j6¼i

Xδij
k¼1

�
lnmijk

�
i¼ 1; 2;…; n; (2.3)

ui

0BBBB@
Xn
j¼1

j6¼i

δij

1CCCCA�
Xn
j¼1

j 6¼i

δijlj ¼
Xn
j¼1

j 6¼i

Xδij
k¼1

�
lnuijk

�
i¼ 1; 2;…; n; (2.4)

where lijk and uijk are the lower and upper values of ln ð~aijÞ ¼ - ln ð~aijÞ, the
following equation then solved truly.

ln
�
ljik
�þ ln

�
lijk
�¼ ln

�
ujik
�þ ln

�
uijk
�¼ 0; for 1; j¼ 1; 2;…; n; k¼ 1; 2;…; δij

(2.5)

The solution for Eqs. (2.2), (2.3), and (2.4) is typically solved in Eq.
(2.6),

ri ¼ðli þ p1;mi þ p2; ui þ p1Þ; i¼ 1; 2;…; 2; (2.6)

where p1 and p2 are chosen arbitrarily.

Step 3. Determine the fuzzy weight by generating logarithmic
operations.
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wi ¼αi ¼ðγ1:expðliÞ; γ2:expðmiÞ; γ3:expðuiÞÞ; i¼ 1; 2;…; n; (2.7)
where

γ1 ¼
 Xn

i¼1

expðuiÞ
!�1

; γ2 ¼
 Xn

i¼1

expðmiÞ
!�1

; γ3 ¼
 Xn

i¼1

expðliÞ
!�1

Eq. (2.7) is also known as performance score of rij.

Step 4. repeat steps 1–3 so that all reciprocal matrices are solved.
Therefore, we can obtain the fuzzy weight and performance score for
alternative Ai as written in Eq. (2.8).

ui ¼
Xn
j¼1

wjrij (2.8)

2.1.2. Buckley's FAHP methodology
Buckley's FAHP methodology [30] is also known as fuzzy geometric

mean FAHP. The name is derived due to the usage of a geometric mean to
calculate the fuzzy weights for each fuzzy matrix. This methodology
comes as a simple and efficient approach in FAHP evaluation. The
following steps are written to explain how Buckley's FAHP conduct an
evaluation.

Step 1. Construct fuzzy pairwise comparison matrices based on trape-
zoidal fuzzy number whose elements are consisted of Eq. (2.9).

~Aij ¼
�
aij; bij; cij; dij

�
(2.9)

Step 2. Calculate the fuzzy weight value by applying geometric mean
operation for each row using Eq. (2.10).

~ri ¼
 Ym

j¼1

~Aij

!1
m

(2.10)

The fuzzy weight is obtained by solving Eq. (2.11) as a fuzzy hier-
archical sequencing operation.

wi ¼~ri �
 Xm

j¼1

erj
!�1

(2.11)

Kahraman [50] states that the derivation of wi values are expressed as

the left leg and right leg offAij. It is respectively defined in Eqs. (2.12) and
Eq. (2.13),

ðγÞ¼
"Ym

j¼1

��
bij � aij

�
γ þ aij

!#1=n
; γ 2 ½0:1�; (2.12)

giðγÞ¼
"Ym

j¼1

��
cij � dij

�
γ þ bij

!#1=n
; γ 2 ½0:1�; (2.13)

where

ai ¼
 Ym

j¼1

~Aij

!1
m

and

a¼
Xn
i¼1

ai:

The computations for determining the values of bi and b, ci and c, and
di and d is applied in Eq. (2.14).
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wi ¼ ai
a
;
bi
b
;
ci
c
;
di
d
; ;8i; (2.14)
� �
Table 1 elaborates the value of membership function δwiðxÞ, and

suppose x is a real number on a horizontal axis,where x 2
�
ai
d ;

bi
c

�
or x 2

�
ci
b;

di
a

�
, the value of x is defined in Eq. (2.15),

x¼
�
fiðγÞ=gðγÞ; if x 2 ½ai=d; bi=c�
giðγÞ=f ðγÞ; if x 2 ½ci=b;i=a� (2.15)

and the value of fiðγÞ and g ðγÞ are obtained in Eq. (2.16).

f ðγÞ¼
Xm
i¼1

fiðγÞ; gðγÞ ¼
Xm
i¼1

giðγÞ (2.16)

Repeat the calculations of Step 2 for all the fuzzy performance scores

Step 3. Calculate the fuzzy weights and fuzzy final scores Ui by
applying Eq. (2.17).

Ui ¼
Xn
j¼1

wijtij; 8i; (2.17)

2.1.3. Cheng's entropy-based FAHP
Entropy-based FAHP is firstly developed by Cheng [32] to evaluate

the naval tactical missile system based on the grade value of membership
function. The following steps describe how the Entropy-based FAHP is
conducted.

Step 1. Develop pairwise comparison matrices based on the analytical
hierarchy structure. The symmetric triangular membership function is
used to demonstrate the relative strength of the fuzzy matrices' elements.

~aαij ¼
8<:
pt~1; ~3; ~5; ~7; ~9 ; criterion i is reletive important to j

~1 ; criterion i is equal important to j
~1
�1
; ~3

�1
; ~5

�1
; ~7

�1
; ~9

�1
; criterion is releatively less important to j

Step 2. - Determine the fuzzy judgment matrices ~A by implementing
multiple operations of fuzzy subjective weight vector ~Wand the associ-
ating column of fuzzy judgment matrix ~X using Eq. (2.18).

~A¼

2664
~w1 � ~x11 ~w2 � ~x12 ⋯ ~wm � ~x1m
~w1 � ~x21 ~w2 � ~x22 ⋯ ~wm � ~x2m

⋮ ⋮ ⋱ ⋮
~w1 � ~xm1 ~w2 � ~x22 ⋯ ~wm � ~xmm

3775; (2.18)

Eq. (2.19) is obtained by implementing interval arithmetic and values
of α-cut.

~Aα ¼
24 ða11l; aα11uÞ ⋯ ðaα1nl; aα1nuÞ

⋮ ⋱ ⋮
ðaαn1l; aαn1uÞ ⋯ ðaαnnl; aαnnuÞ

35; (2.19)

where
tα ijl ¼ wα

ijl xα ijl ; tα iju ¼ wα
iju xα iju for 0 < α � 1 and all i, j

Step 3. Determine the value of performance of the judgment matrix ~A,
and estimate the index of optimism λ by solving Eq. (2.20).

baα
ij ¼ð1� λÞaα ijl þ λaα iju;8λ 2 ½0; 1� (2.20)

The exact judgment matrix bA is obtained in Eq. (2.21).



Table 1. Determination value of membership function δwiðxÞ

x δwiðxÞ
� ðai =dÞ 0

� ðai =dÞ 0�
bi
c
;
ci
b

�
1

�
ai
d
;
bi
c

�
γ 2 ½0:1�

�
ci
b
;
di
a

�
γ 2 ½0:1�
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b 66 ba
α
11 baα

12 ⋯ baα
1mbaα

21 aα22 ⋯ baα
2m
77
μ 

1 Representation of 
Normal distribution 
membership function 

Representation of 
Triangular function 
A¼

2
4 ⋮ ⋮ ⋱ ⋮baα

m1 baα
m2 ⋯ baα

mm

3
5; (2.21)

The relative frequency is used to quantify the entropy of fuzzy pair-
wise comparison matrices in Eq. (2.22),26666666664

a11
z1

a12
z1

⋯
t1m
z1

a21
z1

a22
z2

⋯
t2m
z2

⋮ ⋮ ⋱ ⋮
am1
zm

a11
zm

⋯
tmm
zm

37777777775
¼
24 f11 f12 ⋯ f1

⋮ ⋮ ⋱ ⋮
fm1 fm2 ⋯ fmm

35; (2.22)

where

zk ¼
Xm
j¼1

tkj

And the entropy values are obtained by solving Eq. (2.23).

E1 ¼ �
Xm
j¼1

�
f1j
�
log2

�
f1j
�

E2 ¼ �
Xm
j¼1

�
f2j
�
log2

�
f2j
�

⋮

Em ¼ �
Xm
j¼1

�
fmj
�
log2

�
fmj
�

(2.23)

Therefore, the final entropy weight of the fuzzy AHP is formulated in
Eq. (2.24).

Ei ¼ EiPm
j¼1Ej

; i ¼ 1; 2;…;m (2.24)

2.1.4. Normal distribution fuzzy number
In this paper, the membership function of fuzzy set is represented by a

bell-shaped curve, known either as a Normal distribution fuzzy number
(Norm-dist FN) or a Gaussian fuzzy number. The Norm-dist FN is used to
represent firmly epistemic uncertainty in fuzzy environment during de-
cision making process. The membership function of Norm-dist fuzzy
number is defined in Eq. (2.25).

f ðx : μ; σÞ¼ exp
��ðx� μÞ2

σ2

�
(2.25)

The proposed methodology in this research compares the Norm-dist
FN and triangular fuzzy number (TFN) with Eqs. (2.26), (2.27), and
(2.28).
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α¼ exp
��ðx� μÞ2

σ2

�
(2.26)
xa ¼ μ� σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�LnðαÞ

p
(2.27)

xb ¼ μþ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�LnðαÞ

p
(2.28)

The description of value α is explained in Figure 1.
The membership function of Norm-dist FN μ will reach asymptote at

the value of y¼0. For the small value of α, it will be approximated for the
Norm-dist membership function f ðx : μ ; σÞ to the triangular function T(x:
xa, xb). The definition of Norm-dist FN as conversion form TFN is
explained by Eqs. (2.29) and Eq. (2.30) [33,34].

Suppose that Ti is the triangular fuzzy numbers, and Gi is the element
of the preference matrix after performing a triangular approximation.

Ti ¼
P

jGijP
i

P
jGij

¼
P

j

�
lij;mi

j; uij;
�P

i

P
j

�
li j;mi

j; uij;
� (2.29)

where lij ffi mi
j � σi j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�lnðαÞp
and uij ffi mi

j þ σi j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�lnðαÞp

To obtain a representative triangular approximation, the value of α is
set as 0.01. This means that 99% of values are approximately represented
by the Normal distribution function.

Ti ¼
�P

jli
j;
P

jmi
j;
P

jui
j
	

�P
i

P
jli

j;
P

i

P
jmi

j;
P

i

P
jui j
	¼ P

jli
jP

i

P
juij

;

P
jmi

jP
i

P
jmi

j
;

P
jui

jP
i

P
jli

j

!
(2.30)

whereX
j

li j ¼
X
j

mi
j �
X
j

σi j
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�lnðαÞ
p 	

X
j

uij ¼
X
j

mi
j þ
X
j

σi j
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�lnðαÞ
p 	

X
i

X
j

li j ¼
X
i

X
j

mi
j �
X
i

X
j

σi
j
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Lnðα
p 	

X
i

X
j

ui j ¼
X
i

X
j

mi
j þ
X
i

X
j

σi
j

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Lnðα

p !

and

mti ¼
P

jmi
jP

i

P
jmi

j
; Xti

L ¼
P

jli
jP

i

P
jui j

; Xti
R ¼

P
jui

jP
i

P
jli

j

Then, Ti can be converted into asymmetric Norm-dist fuzzy number as
stated in Eqs. (2.31) and Eq. (2.32).
xb xa 0 
α 

Figure 1. Comparison of Norm-dist fuzzy number by triangular fuzzy number.
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σti
L ¼ mti � Xti

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip (2.31)
�LnðσÞ

σti
R ¼ Xti

R � mtiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�LnðσÞp (2.32)

where σti
L expressed the left deviation band of Norm-dist FN and σti

R

illustrated the right deviation band of Norm-dist FN.
Here, Ti becomes the membership function of asymmetric Norm-dist

FN as stated in Eq. (2.33).

μti ðxÞ¼

8>><>>:
exp
�
�


x� mti

σti
L

��
; for x � mti

exp
�
�


x� mti

σti
L

��
; for x > mti

(2.33)

Suppose that there are two Norm-dist FNs, i.e. μt1 ðxÞ and μt2 ðxÞ.

μt1 ðxÞ ¼

8>>><>>>:
exp
�
�


x� mt1

σti
L

��
; for x � mt1

exp
�
�


x� mt1

σti
L

��
; for x > mt1

μt2 ðxÞ ¼

8>>><>>>:
exp
�
�


x� mt2

σti
L

��
; for x � mt2

exp
�
�


x� mt2

σti
L

��
; for x > mt2

(2.34)

The intersection point between μt1 ðxÞ and μt2 ðxÞ is written as illus-
trated on Figure 2 and Eqs. (2.33), (2.34), and (2.35).

v¼

8>>><>>>:
exp
�
�

�ðmt2 � mt1 Þ

σt1 L þ σt2
R

�2�
; for mt1 > mt2

exp
�
�

�ðmt2 � mt1 Þ

σt1 R þ σt2 L

�2�
; for mt1 < mt2

(2.35)

2.2. Probabilistic uncertainty in analytic hierarchy process

Probabilistic or aleatory uncertainty is defined as the uncertainty
which occurs due to random fluctuations of properties or condition
leading to variability in outcomes [22]. Probabilistic uncertainty is often
linked to the statistical process of complex variability. Probabilistic un-
certainty refers to uncertainty caused by stochastic variation in a random
event [21]. In the field of MCDM, probabilistic uncertainty is marked by
several studies performed in various applications. Stam and Silva [35]
present a stochastic approach in AHP methodology where the pairwise
preference judgments are uncertain by developing multivariate statistical
techniques. Wu et al. [36], administer the uncertainty in multi-attributes
decision making by proposing an interval number with a probability
distribution (INPD). This novel approach provides a uniform form for
interval numbers and random numbers. Jalao et al. [37], propose a beta
S1 S2 
1 

0 

α 
v 

l2 l1 l2llm1 u1 u1 m2 u2 Xint 

Figure 2. The intersection point between two Norm-dist functions (X int, v).
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distribution to model the varying stochastic preference or judgment
resulted from imprecise pairwise comparisons.

In several multi-criteria decision-making problems, both epistemic
and probabilistic may occur due to complex fuzzy environments and
statistical process. Researches to address both kinds of uncertainties have
been demonstrated by adopting extent AHP approaches. Antucheviciene
et al. [38], identify decision making method difficulties emerging from
uncertainty quantification by means of fuzzy logic and probabilistic
modeling. Wang et al. [39], integrates fuzzy logarithmic least square
method (fuzzy LLSM) with fuzzy comprehensive evaluation (FCE), and
employs the Monte-Carlo method to characterize random variables in
judgment. Emec and Akkaya [40] proposed an integrative approach of
stochastic MCDM by combining stochastic AHP and fuzzy VIKOR for
warehouse location evaluation. Promentilla et al. [41], propose sto-
chastic and fuzzy-based AHP approaches to address complexity and un-
certainty resulted from conflicting multiple criteria in the clean
technology selection. Monte-Carlo simulation is performed to model the
uncertainty and probability distribution of the priority weights needed
for ranking. Erdogan and Kaya [42] address two types of uncertainties in
their study. Type-2 fuzzy AHP is used to determine the weights of the
criteria in epistemic uncertainty and stochastic TOPSIS is applied to
quantify probabilistic uncertainty for obtaining alternatives ranking.
From the above researches, it is inferred that epistemic and probabilistic
uncertainty shall be resolved by adopting the correct MCDM
methodology.

2.2.1. Monte-Carlo simulation
The probabilistic theory has been used for many years to describe

random variable and uncertain phenomenon. The Monte-Carlo simula-
tion is used to address the probabilistic theory based on statistical in-
formation and is considered as the realistic form involves random
sampling from a probability distribution (e.g., uniform, normal, beta, and
lognormal), and it has been used to administer systems which are too
complex to be solved analytically [43]. Principally, the Monte-Carlo
simulation is where non-deterministic methods are employed to deter-
mine approximate solutions for complex systems which are beyond the
resources of theoretical mathematics by experimenting with random
numbers [44]. Sari [45] proposes a methodology to select an RFID so-
lution provider by integrating a fuzzy multi-criteria decision model with
a Monte-Carlo simulation based on a triangular fuzzy number. Negahban
[46] implements a Monte-Carlo analytic hierarchy process to investigate
the optimization of consistency improvement of positive reciprocal ma-
trix by transforming reciprocal judgment matrices into near-consistent
matrices, and further develops a sampling-optimizing-adjustment
approach integrated into Monte-Carlo AHP framework. The aim of the
research is to generate a distribution that more closely resembles a
realistic probability distribution.

The Monte-Carlo simulation works by performing random sampling
from the distribution of an uncertainty input [47]. The probability dis-
tribution function F(x) range from 0 to 1 to describe the probability P that
the variable X will be less than or equal to x.

FðxÞ¼PðX� xÞ
The inverse function of F(x) is namely G(x), where

GðFðxÞÞ¼ x

The random samples can be generated by plotting inputs to the in-
verse function GðFðxÞÞ. Figure 3 explains the relationship between F(x)
and G(F(x)). The random r is generated from the probability distribution
function approximate to FðxÞ. A random sample for the probability dis-
tribution function, input r is entered with value between 0 and 1 to the
distribution, firmly as GðrÞ ¼ x:
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3. Research framework

This paper proposes the Norm-dist Monte-Carlo fuzzy AHP, a novel
methodology which can compensate probabilistic uncertainty, human's
thought of ambiguity during investigation and judgments, and risk of
incomplete information or scattered data. The section of the research
proceeds as follows. The first part, NMCFAHP methodology, is explained
as research background. The second part elaborates the application steps
for constructing the NMCFAHP methodology. Finally, the fourth part
presents applications in the evaluation of technology and comparing with
conventional fuzzy AHP. The structure of the NMCFAHP methodology is
described in several phases (Figure 4.).

4. Norm-dist Monte-Carlo integrative method in FAHP

The proposed methodology employs two methods of validity test.
Firstly, the Kolmogorov-Smirnov test is conducted to evaluate the judg-
ments data normality and, secondly, a pairwise comparison inconsistency
test is performed to measure evaluative matrices inconsistency. The
detailed procedure to perform evaluation with Monte-Carlo fuzzy AHP is
described as follow:

Step 1. develop a hierarchical decision structure for the concerning
problems. Complete the structure with criteria, sub-criteria, and alter-
natives. As specified in this paper, the goal is to determine the most
important factor for the criteria and alternatives. The decision goal,
criteria, sub-criteria, and alternatives' attributes shall be developed based
on collaborative discussion.

Step 2. collect the degree of importance for each alternative and cri-
terion, respectively, in accordance with experts' judgment. This judgment
can be developed through valid questionnaires, surveys, or direct ob-
servations. Develop initial judgment using Saaty's scale, similar to
triangular AHP

Step 3. list each criterion and alternative judgment and sort the data in
a spreadsheet which can be evaluated by a Normal distribution. Deter-
mine the lower (a), most probable (b), and upper (c) values of the Normal
distribution curve. Eq. (4.1) demonstrates the probability distribution
function for the Normal distribution curve, and Eqs. (4.2) and (4.3) are
used to determine independent Normal distribution properties.

f ðxjμ; σÞ¼ 1

s
ffiffiffiffiffi
2π

p e
�ðx�μÞ2

2s2 (4.1)

X¼ 1
N

Xn
i¼1

xi ¼ x1 þ x2 þ…þ xn
n

(4.2)
Figure 3. Graphical explanation relationship between F(x) and G(F(x)).
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s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn ðxi � XÞ2

s
(4.3)
i¼1 n� 1

a¼ lower value¼X �


Zα

2

�
sffiffiffi
n

p (4.4)

b¼most probable value¼ X (4.5)

c¼ upper value¼X þ


Zα

2

�
sffiffiffi
n

p (4.6)

where X and s are the mean and standard deviation of the Normal dis-
tribution; (a), and (c) indicates the most probable, lower value, and
upper value of the Normal distribution, respectively as stated in Eqs.
(4.4), (4.5), and (4.6). These values are obtained based on confidence
interval of mean 95%; n is the quantity of data used (e.g., 1,000). Figure 5
illustrates detail properties of Normal distribution curves with a confi-

dence interval of 95% (1-α ¼ 5%). The values of

0BB@Zα
2
2

1CCA is determined

based on a standard Normal distribution table, for (1-α ¼ 5%), the value
is 1.96.

Step 4. generate a Norm-dist fuzzy number by applying the Monte-
Carlo simulation of a Normal distribution by generating a random vari-

able for X , X �


Zα

2

�
sffiffi
n

p , and X þ


Zα

2

�
sffiffi
n

p . This paper employs 1,000

random normal variables. The Monte-Carlo simulation is obtained by
entering a spreadsheet formula, i.e. "¼ NORMINVðRANDðÞ; X; sÞ". Eqs.
(4.7), (4.8), (4.9), and (4.10) describe how random number can be
generated.

CDF¼FðXjμ; σÞ¼ 1

σ
ffiffiffiffiffi
2π

p
Z x

�∞
e�

ðx�μÞ2
2σ2 	 1

2



1þ erf



x� μ

σ
ffiffiffi
2

p
��

(4.7)

where CDF is the cumulative distribution function of Normal distribu-
tion. The random Monte-Carlo number can be generated by plotting in-
puts (X) varying from 0 to 1.

Generate random variable for i¼ 1 to 1,000 times, and store the result
as the random variable column. Then, determine the Monte-Carlo
Normal distribution mean and standard deviation to state the value of
randoma, randomb, and randomc using Eqs. (4.11), (4.12), and (4.13).

randoma ¼ μ�


Zα

2

�
σffiffiffi
n

p (4.8)

randomb ¼ μ (4.9)

randomc ¼ μ þ


Zα

2

�
σffiffiffi
n

p (4.10)

μ¼ 1
n

 XN
i¼1

xi

!
¼ x1 þ x2 þ…þ xn

n
(4.11)

σ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðxi � xÞ2
n� 1

s
(4.12)

where μ and σ are the mean and the standard deviation of the Monte-
Carlo Normal distribution, and random a, random b, and random c is the
lower, most probable, and upper value. The values of reciprocal fuzzy
sets are applicable.

ðrandoma; randomb; randomcÞ�1 ¼ð1 = randomc; 1 = randomb; 1 = randomaÞ



Figure 4. The research framework deployed in this study.

Figure 5. The Normal distribution curve and properties.

F.D. Wicaksono et al. Heliyon 6 (2020) e03607

7

¼

0B@ 1

μþ


Zα

2

�
σffiffi
n

p
;
1
μ
;

1

μ�


Zα

2

�
σffiffi
n

p

1CA (4.13)

Step 5. perform a normality test by using Kolmogorov-Smirnov (KS
test) to ensure the normality of statistical data. Principally, the KS test
measures the differences between cumulative distribution function (CDF)
of the reference and empirical distribution function (EDF) of the statis-
tical data. The KS test significantly indicates normality when the super-
lative differences of jCDF�EDFj is smaller than the value in the
Kolmogorov-Smirnov table. When this value becomes larger, then the
data is not significantly Normal distributed. Mathematical equations of
KS test are described in Eqs. (4.14), (4.15), and (4.16).
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Dn ¼ supjfxðxÞ�FnðxÞj (4.14)
fxðxÞ¼
Z x

�∝
fxðkÞ dk¼

Z x

�∝

1

σ
ffiffiffiffiffi
2π

p e


� ðk � μÞ2

2σ2

�
dk (4.15)

FnðxÞ¼ 1
n

Xn
i¼1

1xi�t (4.16)

where Dn is the superlative difference between CDF and EDF for the
statistical data; fxðxÞ is the cumulative distribution function (CDF), and
FnðxÞ is the empirical distribution function (EDF) of the statistical data
formed as a Normal distribution. To simplify the calculation, this paper
utilizes IBM SPSS software to perform the Kolmogorov-Smirnov test.
Table 2 demonstrates how SPSS analyze the normality test.where

H0: P-value > 0.05, it means that the data forms as Normal distri-
bution, and

H1: P-value � 0.05 data does not form as Normal distribution.
From Table 2., we obtain the statistic value of Kolmogorov-Smirnov¼

0.021 and the significance value, or P-value, ¼ 0.200 > 0.05. By these
terms, we conclude that the data are normally distributed. In addition,
we can see the statistic value of Saphiro-Wilk ¼ 0.999 and significance
value ¼ 0.773 > 0.05 which arrives to the same conclusion that the data
forms as a Normal distribution.

Step 6. construct fuzzy pairwise comparison (Eq. (4.17)) matrices for
all criteria and alternatives in the hierarchical level. Perform computa-
tion based on the developed fuzzy judgment matrix ~A based on the
random lower value, most probable value, and upper value (randoma,
randomb, randomc).

(4.17)

~a12 is named as non-diagonal fuzzy element. It indicates the pairwise
comparison of one alternative or criterion to another. The index m in-
dicates the size of pairwise comparison matrices which is equal to the
number of criteria and alternatives. Let the random Normal distribution
value for A1 and A2 be (a1, b1, c1) and (a2, b2, c2), respectively, then the
value of ~a12 and 1/~a12 are obtained in Eqs. (4.18) and (4.19).

~a12 ¼ða1 = c2; b1 = b2; c1 = a2Þ (4.18)

~a21 ¼ 1=~a12 ¼ ða2 = c1; b2 = b1; c2 = a1Þ (4.19)

Step 7. perform normalization for each element by the sum of every
matrix's column using Eq. (4.20).

baij ¼ aijPm
i¼1aij

; bbij ¼ bijPm
i¼1bij

;bcij ¼ cijPm
i¼1cij

for i ¼ 1; 2; 3;…;m (4.20)

Apply geometric mean using Eq. (4.21) to calculate the fuzzy weight
for each pairwise comparison matrix for each criterion and alternative
[48].
Table 2. Result of Kolmogorov-Smirnov test of normality. The *mark indicates the st

Kolmogorov-Smirnova

Statistic df Sig

VAR00001 0.021 1000 0.2

a. Lilliefors Significance Correction.
* This is a lower bound of the true significance.
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6  Ym !1
m

 Ym !1
m

 Ym !1=m7

~wij ¼

2
64ai ¼

j¼1

baij ; bi ¼
j¼1

bbij ; ci ¼
j¼1

bcij
3
75 (4.21)

where aij, bij, cij are the lower value, most probable value, and the upper
value properties of the fuzzy pairwise comparison matrices ~Aij; the index
m indicates the size of pairwise comparison matrices or the order of the
pairwise comparison matrices; ai, bi, and ci are the geometric mean for
each lower value, most probable value, and upper value of the fuzzy
pairwise comparison matrices at the i-th row; ~wij are the fuzzy weight
value of the i-th alternatives over the j-th criterion.

Step 8. perform consistency analysis for each pairwise comparison
matrices. As in triangular AHP consistency analysis should be performed
to ensure that fuzzy pairwise comparison is valid for the evaluation. Once
it is not consistent, then the concerning fuzzy pairwise comparisons need
to be revised. As a fuzzy number is present in the calculation, then
triangular AHP consistency analysis cannot be performed as it is
considered ineffective to address uncertainty. Ramik and Korviny [49]
propose a new methodology to measure the inconsistency of a pairwise
comparison matrix with fuzzy elements by utilizing a new consistency
index (KIF). The calculation of consistency analysis is stated in Eqs.
(4.26), (4.27), and (4.28).

asum ¼
Xm
i¼1

aij; bsum ¼
Xm
i¼1

bij; csum ¼
Xm
i¼1

cij ð4:22Þ (4.22)

uiL ¼ min|{z}
i

�
bi
ai

�
:

ai
bsum

(4.23)

uiM ¼ bi
bsum

(4.24)

uiU ¼ max|ffl{zffl}
i

�
bi
ci

�
:
ci
bsum

(4.25)

KIFð~AÞ¼ γ:max|ffl{zffl}
ij

�
max

�����uiLujU
� aij

����; ����uiMujM
� aij

����; ����uiUuL � aij

������ (4.26)

γ¼ 1

max

8><>:ϕ� ϕð2�2mÞ;ϕ

0B@
2
m

� 2
m�2

�



2
m

� m
m�2

1CA
9>=>;
; for ϕ <

�m
2

	m=ðm�2Þ

(4.27)

γ¼ 1

max

8<:ϕ� ϕ
2�2m
m ;ϕ

2m�2
m � ϕ

9=;
; for ϕ �

�m
2

	 m
m�2

(4.28)

where wi
L, wi

M , and wi
Uare the lower value, most probable value, and

upper value of the concerning fuzzy pairwise comparison matrices,
atistically significant Normal distribution (significant number > than 0.05.

Saphiro-Wilk

. Statistic df Sig.

00* 0.999 1000 0.77
3
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respectively; asum, bsum, csum are the sum of ai; bi; and ci; ϕ is the pairwise
comparison scale (i.e., 1/9, 9, then pairwise comparison scale is 9); γ is
the normality constant; and KIFð~AÞ is the consistency index of the fuzzy
pairwise comparison matrices. The pairwise comparison ~A is considered
as a consistent result when the value of KIFð~AÞ relies amongst 0 to 0.1.
The closer the value of KIFð~AÞ to 0, the more consistent the result is.

Step 9. Calculate the fuzzy final value by calculating hierarchical layer
sequencing [31]. The overall fuzzy final values ~wi for each alternative can
be calculated in Eq. (4.29).

~wi ¼
Xn
j¼1

~wij* ~wj (4.29)

where ~wij are the fuzzy weight values of the j-th criteria to the i-th al-
ternatives and ~wj are the fuzzy weight value for each criterion j-th irre-
spective to the goal.

Step 10. Generate random variable by using the Normal distribution
model following the values of ~σ and ~μ. All calculation results are then
plotted as a probability distribution function. The values of ~σ and ~μ are
obtained by concerning the values of random Normal distribution for Ai,
namely (ai, bi, ci). The values are stated in Eqs. (4.30) and (4.31).

~μ¼ bi (4.30)

~σ¼min

8><>:jðci � ~μÞ ffiffiffi
n

p j

Zα

2

� ;
jð~μ� aiÞ

ffiffiffi
n

p j

Zα

2

�
9>=>; (4.31)

where ai, bi, ci are the random Normal distribution value of lower, most
probable, and upper of Ai. ~μ and ~σ are the randomized mean and standard

deviation value,


Zα

2

�
is typically the value of (1-α ¼ 5%), 1.96, n is the

number of data, i.e. 1000.

Step 11. Perform defuzzification by implementing the center of gravity
method (COG), and rank all the alternatives based on the normalized
crisp overall value wi. The center of gravity method is written as Eqs.
(4.32) and Eq. (4.33).

wi
* ¼
R c
a x:fewi

ðxÞdxR c
a fewi

ðxÞdx (4.32)

wi
* ¼

R uiU

uiL
xffiffiffiffiffiffiffi
2π~σ

2
p e

�ðx�~μÞ2

2~σ
2
dx

R uiU

uiL
1ffiffiffiffiffiffiffi
2π~σ

2
p e

�ðx�~μÞ2

2~σ
2
dx

(4.33)

where wi
*are the crisp value of the fuzzy weight value for the i-th

alternative, and can be written as an integration of the Normal distri-
bution PDF; wiare normalized crisp value; and it is considered as final
weight value; fewi

ðxÞ are the probability density function of the ewiand;

a and c are the lower and upper limit value of ewi.

5. Research application

The applicability of the proposed NMCFAHP is tested based on the
case study in the selection of appropriate technology for addressing
piping and vessels cracks using non-destructive testing (NDT). The con-
cerning NDT technology are (1) Magnetic particle test; (2) Dye penetrant
test; (3) Radiography; (4) Eddy-current test. This case study is performed
to demonstrate the capability and reliability to evaluate probabilistic and
9

fuzzy uncertainty in the decision making. An oil and gas processing fa-
cility, in Borneo, Indonesia, has been operating for more than four de-
cades. Due to its aging facilities, a special inspection strategy must be
applied to prolong the operational productivity. This case study dem-
onstrates the most optimal technology in providing appropriate piping
and vessels NDT for the Petroleum Company. The hierarchical structure
of the decision making is illustrated in Figure 6.
5.1. Data and judgments acquisition

The qualitative judgments are performed by developing question-
naires answered by the Petroleum Company employees and experts, with
the process is carried out during November–December 2018. An expla-
nation of recent NDT technology and working principles are delivered
and prepared as the option for the panelists. Ten expert participants are
selected in accordance with their m�etier and working scope, and mainly
work in the Field Operation division within the Petroleum Company as
demonstrated in Figure 7. A majority of engineer panelists are selected as
they are the true front-liner to perform calculations on safety engineering
factors. Some managerial positions are also selected, such as head
department of production support and head of field operation safety and
method services. This approach is taken as they are key personnel in the
decision making process.

The questionnaires are formulated as open-ended that describe how
important a criterion is compared to another criterion. The questionnaire
data is obtained by providing a pairwise comparison of criteria for
evaluating the NDT technology to address cracks in piping and vessels.
For example, the questionnaire mentions: how important is the criterion
"reliability and precision" as compared with the criterion "detection coverage
area" for non-destructive test technology. The panelists can directly answer
the questionnaire and list the answers for all criteria judgments. A
summary of the questionnaire results are described in Table 3. The
original result of criteria weighting judgment by the expert panelists is
available in Appendix 1.

The results of the questionnaire explain that the criteria have been
weighted according to their importance. For example, reliability and
precision criteria (C1) brings significant importance when compared to
capital and operational cost criteria (C2). Panelists respond in pairwise
comparison involving C1 and C2 within the average value of 1.8 and
standard deviation of 1.0328. These values are used to compare the
NMCFAHP value. A similar approach is also applied for alternatives
evaluations which is consisted as Magnetic particle test (A1), Dye
penetrant test (A2), Radiography (A3), and Eddy-current test (A4). The
summary result of alternatives weighting questionnaire is demonstrated
in Table 4. The original result of alternatives weighting judgment by the
expert panelists is available in Appendix 2.

6. Development of NMCFAHP

The development of this process begins by applying random variables
in accordance with a Normal distribution with mean and standard de-
viation of criteria as listed in Table 3. We develop a random function by
applying a Normal distribution formula in the excel spreadsheet. From
Table 3., we obtain the value of judgment's mean and standard deviation
i.e. X ¼ 1.800; s ¼ 1.0328. We then generate a Norm-dist fuzzy number
by applying the Monte-Carlo simulation folowing the values of X and s
for each criteria evaluation. This paper employs 1,000 random normal
variables. The Monte-Carlo simulation is obtained by entering a
spreadsheet formula, i.e. "¼ NORMINVðRANDðÞ; X; sÞ". The results of
generated Monte-Carlo simulation for each criteria evaluation is avail-
able in Appendix 3. From the Monte-Carlo simiulation., we obtain the
result of Monte-Carlo Normal distribution mean (μ) and standard devia-
tion (σ).

Based on the random number generation for the criteria pairwise
comparison, we determine the value of randoma, randomb, and randomc as



Figure 6. Hierarchical structure of non-destructive test technology evaluation.
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Figure 7. Working position of expert panelists involved in the judgments.
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the most probable, lower value, and upper value of the fuzzy pairwise
comparison matrices ~A: For the evaluation of criterion 1. versus criterion
2., we determine the value of randoma, randomb, and randomc using Eqs.
(4.11), (4.12), and (4.13). Similar calculation is also applied for the rest
of criteria judgments, (C1 vs C3, C1 vs C4, C1 vs C5, C2 vs C3, C2 vs C4,
C2 vs C5, C3 vs C4, C3 vs C5, and C4 vs C5). The value of randoma,
randomb, and randomc are used for the fuzzy analytic hierarchy process
calculation corresponding to the lower, most probable, and upper value
of the pairwise comparison matrices. The results of evaluation is dis-
played in Table 5. The fuzzy pairwise comparison is developed for
criteria and alternatives, respectively. Based on Eq. (4.28), the consis-
tency index (KIf) of this Norm-dist fuzzy evaluation is quantified below
0.1 for every pairwise comparison matrices. Due to space limitation, a
detailed calculation of KIf will not be displayed.
Table 3. The result of criteria judgments.

Criteria Evaluation Mean (x)

C1 vs C2 1.8000

C1 vs C3 3.4000

C1 vs C4 4.6000

C1 vs C5 8.4000

C2 vs C3 3.2000

C2 vs C4 3.2000

C2 vs C5 6.8000

C3 vs C4 2.2000

C3 vs C5 2.8000

C4 vs C5 4.0000

10
randoma ¼ μ� Zα
2

σffiffiffi
n

p ¼ 1:8020� ð1:96Þ 1:0477ffiffiffiffiffiffiffiffiffiffi
1000

p ¼ 1:7371


 �

randomb ¼ μ ¼ 1:0477

randomc ¼ μþ


Zα

2

�
σffiffiffi
n

p 1:8020þ ð1:96Þ 1:0477ffiffiffiffiffiffiffiffiffiffi
1000

p ¼ 1:8669

The pairwise comparison evaluations are then performed for all al-
ternatives corresponding to the evaluative criteria. Similar mathematical
processes are implemented for the evaluation of alternatives. The results
of generated Monte-Carlo simulation for each alternatives evaluation are
available in Appendix 4. We also determine the value of the most prob-
able, lower value, and upper value of the fuzzy pairwise comparison
matrices for all alternatives corresponding to the evaluative criteria. The
results of alternatives pairwise comparison matrices are available in
Tables 6,7,8,9,10.

The process is continued by conducting the Kolmogorov-Smirnov test
to evaluate random variables for every criterion pairwise comparison.
The result of the Kolmogorov-Sminrov test is described in Table 11. The
Kolmogorov-Smirnov test proves that all criteria pairwise comparison
forms as a Normal distribution. In addition, we implement graphical
analysis of Normal Q-Q plot and detrended Normal Q-Q plot using
Minitab software illustrated in Figure 8. The graphics show that the
criteria pairwise comparison evaluation forms as a Normal distribution.
Figure 8 is obtained by plotting the results of Monte-Carlo random
number generation for the criteria evaluation available in Appendix 3
into the Minitab software. This analysis shows that all significance values
are stated>0.05. Based on this analysis, the pairwise comparison criteria
are applicable for the proposed NMCFAHP evaluation.
Standard Deviation (s)

1.0328

0.8433

0.8433

0.9661

0.6325

0.6325

0.6325

1.0328

0.6325

1.0541



Table 4. The result of alternatives judgments.

Alternatives Evaluation Mean (x) Standard Deviation (s)

Criteria 1. Reliability and Precision

A1 VS A2 1.7333 1.4555

A3 VS A1 2.9000 1.3703

A1 VS A4 3.2000 1.1353

A3 VS A2 2.7000 1.3375

A2 VS A4 2.6000 1.2649

A3 VS A4 5.4000 1.2649

Criteria 2. Capital and Operational Costs

A2 VS A1 7.2000 1.4757

A1 VS A3 1.5333 1.0328

A4 VS A1 7.4000 1.5776

A2 VS A3 6.0000 1.4142

A4 VS A2 2.4000 1.3499

A4 VS A3 7.8000 1.3984

Criteria 3. Cracks Detection Coverage

A1 VS A2 2.8000 1.4757

A3 VS A1 4.4000 1.6465

A1 VS A4 4.2000 1.3984

A3 VS A2 4.0000 1.6997

A2 VS A4 2.6000 1.2649

A3 VS A4 7.6667 1.4142

A1 VS A2 2.8000 1.4757

Criteria 4. Training and Development Costs

A2 VS A1 6.4000 1.8974

A3 VS A1 7.8000 1.6865

A4 VS A1 8.2000 1.3984

A3 VS A2 3.0000 1.6330

A4 VS A2 5.0000 1.8856

A3 VS A4 1.5000 0.8498

Criteria 5. Maturity of Technology and Market Availability

A2 VS A1 3.6000 1.3499

A3 VS A1 2.4000 1.3499

A1 VS A4 6.0000 2.1602

A2 VS A3 1.1200 0.7068

A2 VS A4 7.8000 1.9322

A3 VS A4 6.4000 1.6465

Table 5. Fuzzy pairwise comparison matrix for criteria evaluation. The fuzzification

Criteria C1 C2 C3

C1 (1,1,1) (1.7371, 1.8020, 1.8669) (3.3433, 3.3947, 3.4461

C2 (0.5356, 0.5549, 0.5757) (1,1,1) (3.1444, 3.1842, 3.2240

C3 (0.2902, 0.2946, 0.2991) (0.3102, 0.3141, 0.3180) (1,1,1)

C4 (0.1183, 0.1192, 0.1201) (0.3091, 0.3130, 0.3171) (0.4469, 0.4603, 0.4745

C5 (0.1183, 0.1192, 0.1201) (0.1462, 0.1470, 0.1479) (0.3508, 0.3558, 0.3609

KIf ¼ 0.0991.

Table 6. Alternatives evaluation matrix in terms of reliability and precision (C1).

Alternatives A1 A2 A3

A1 (1,1,1) (1.6033, 1.6925, 1.7816) (0.33

A2 (0.5613, 0.5909, 0.6237) (1,1,1) (0.35

A3 (2.8158, 2.9013, 2.9868) (2.6449, 2.7291, 2.8132) (1,1,

A4 (0.3054, 0.3121, 0.3191) (0.3847, 0.3971, 0.4103) (0.18

KIf ¼ 0.0208.
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7. Results and discussion

According to the criteria and alternatives pairwise comparison
matrices, we calculate the geometric mean based on Eq. (4.21). This
process is intended to calculate the fuzzy weight for each criterion and
alternatives by implementing a hierarchical layer sequencing on Eq.
(4.29). The results of this computation are shown as a triplet number
which follows as a mathematical equation in Eqs. (7.1), (7.2), and (7.3).

uiL ¼ ~μ�


Zα

2

�
~σffiffiffi
n

p (7.1)

uiM ¼ ~μ (7.2)

uiU ¼ ~μþ


Zα

2

�
~σffiffiffi
n

p (7.3)

where wi
L, wi

M , and wi
Uare the lower value, most probable value, and

upper value of the calculated fuzzy pairwise comparisonmatrices; ~σ is the
fuzzy standard deviation; and ~μ is the mean of fuzzy calculated values.
Random variables for all alternatives are generated in accordance with
the values of ~μ and ~σ. This process can be also performed by iterating
several numbers. The results are then plotted as a probability distribution
function, as demonstrated in Figure 9. The fuzzy final values are then
calculated by applying a defuzzification using the center of gravity
method (COG).

Alternative 1

uiMðA1Þ¼ ~μ ¼ 0:15971

~σðA1Þ¼maxjuiU � ~μj

Zα

2

� ffiffiffi
n

p ¼ 0:014537

wi
*ðA1Þ¼ COG¼

R uiU

uiL
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð0:0082449Þ2
p e

�ðx�0:158875Þ2
2ð0:0082449Þ2 dxR uiU

uiL
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð0:0082449Þ2
p e

� ðx�0:1613Þ2
2ð0:0082449Þ2dx

(7.4)

By solving complex integration in Eq. (7.4), the fuzzy final values for
alternative-1 are:
values are determined based on the value of randoma, randomb, and randomc.

C4 C5 Normalized Wi

) (8.3298, 8.3898, 8.4497) (8.3298, 8.3898, 8.4497) (0.4557, 0.4558, 0.4557)

) (3.1536, 3.1946, 3.2356) (6.7617, 6.8009, 6.8400) (0.2833, 0.2833, 0.2834)

(2.1075, 2.1725, 2.2374) (2.7711, 2.8109, 2.8507) (0.1212, 0.1212, 0.1213)

) (1,1,1) (3.9721, 4.0390, 4.1059) (0.0794, 0.0794, 0.0793)

) (0.2436, 0.2476, 0.2518) (1,1,1) (0.0375, 0.0373, 0.0371)

A4 Normalized Wi

48, 0.3447, 0.3551) (3.1336, 3.2038, 3.2740) (0.2403, 0.2415, 0.2426)

55, 0.3664, 0.3781) (2.4375, 2.5185, 2.5995) (0.1733, 0.1741, 0.1750)

1) (5.2896, 5.3682, 5.4469) (0.5077, 0.5062, 0.5046)

36, 0.1863, 0.1891) (1,1,1) (0.0787, 0.0782, 0.0778)



Table 7. Alternatives evaluation matrix in terms of capital and operational costs (C2).

Alternatives A1 A2 A3 A4 Normalized Wi

A1 (1,1,1) (0.1384, 0.1402, 0.1420) (1.4763, 1.5402, 1.6042) (0.1323, 0.1340, 0.1358) (0.0680, 0.0684,0.0687)

A2 (7.0429, 7.1338, 7.2247) (1,1,1) (5.8526, 5.9369, 6.0212) (0.4027, 0.4171, 0.4326) (0.3305, 0.3303, 0.3302)

A3 (0.6234, 0.6492, 0.6774) (0.1661, 0.1684, 0.1709) (1,1,1) (0.1279, 0.1293, 0.1307) (0.0558,0.0557, 0.0557)

A4 (7.3642, 7.4621, 7.5599) (2.3118, 2.3976, 2.4834) (7.6491, 7.7338, 7.8184) (1,1,1) (0.5457, 0.5456, 0.5454)

KIf ¼ 0.0003.

Table 8. Alternatives evaluation matrix in terms of detection coverage (C3).

Alternatives A1 A2 A3 A4 Normalized Wi

A1 (1,1,1) (2.6464, 2.7368, 2.8271) (0.2219, 0.2271, 0.2326) (4.0526, 4.1388, 4.2250) (0.2342, 0.2347,0.2351)

A2 (0.3537, 0.3654, 0.3779) (1,1,1) (0.2457, 0.2524, 0.2595) (2.5010, 2.5786, 2.6561) (0.1289, 0.1294, 0.1300)

A3 (4.2989, 4.4027, 4.5066) (3.8531, 3.9614, 4.0697) (1,1,1) (7.1709, 7.2938, 7.4166) (0.5769, 0.5760, 0.5751)

A4 (0.2367, 0.2416, 0.2468) (0.3765, 0.3878, 0.3998) (0.1348, 0.1371, 0.1395) (1,1,1) (0.0600, 0.0599, 0.0598)

KIf ¼ 0.0840.

Table 9. Alternatives evaluation matrix in terms of training and development costs (C4).

Alternatives A1 A2 A3 A4 Normalized Wi

A1 (1,1,1) (0.1537, 0.1564, 0.1593) (0.1263, 0.1280, 0.1297) (0.1202, 0.1215, 0.1228) (0.0414, 0.0411, 0.0408)

A2 (6.2782, 6.3922, 6.5061) (1.0000, 1.0000, 1.0000) (0.3171, 0.3273, 0.3383) (0.1953, 0.1999, 0.2046) (0.1526, 0.1531, 0.1536)

A3 (7.7084, 7.8124, 7.9163) (2.9561, 3.0550, 3.1539) (1.0000, 1.0000, 1.0000) (1.4467, 1.5013, 1.5558) (0.4169, 0.4177, 0.4182)

A4 (8.1466, 8.2317, 8.3168) (4.8872, 5.0034, 5.1196) (0.6427, 0.6661, 0.6912) (1,1,1) (0.3891, 0.3882, 0.3874)

KIf ¼ 0.0642.

Table 10. Alternatives evaluation matrix in terms of technology maturity and market availability (C5).

Alternatives A1 A2 A3 A4 Normalized Wi

A1 (1,1,1) (0.2713, 0.2775, 0.2840) (0.4033, 0.4171, 0.4318) (5.8002, 5.9330, 6.0658) (0.1726, 0.1726, 0.1728)

A2 (3.5217, 3.6036, 3.6854) (1,1,1) (1.0887, 1.1315, 1.1743) (7.6908, 7.8104, 7.9300) (0.4333, 0.4328, 0.4322)

A3 (2.3157, 2.3977, 2.4797) (0.8516, 0.8838, 0.9185) (1.0000, 1.0000, 1.0000) (6.2799, 6.3804, 6.4810) (0.3476, 0.3483, 0.3492)

A4 (0.1649, 0.1685, 0.1724) (0.1261, 0.1280, 0.1300) (0.1543, 0.1567, 0.1592) (1,1,1) (0.0465, 0.0462, 0.0458)

KIf ¼ 0.0208.

Table 11. The result of Kolmogorov-Smirnov test for criteria pairwise comparison.

Tests of Normality

Kolmogorov-Smirnova

Statistic df Sig. Mean(μ) Std. Deviation(σ) Saphiro-Wilk Sig.

C1vsC2 0.019 1000 .200* 1.80198 1.047694 0.488

C1vsC3 0.023 1000 .200* 3.39468 0.829563 0.027

C1vsC4 0.019 1000 .200* 4.61654 0.809628 0.381

C1vsC5 0.017 1000 .200* 8.38975 0.967064 0.789

C2vsC3 0.024 1000 .200* 3.18418 0.642174 0.536

C2vsC4 0.014 1000 .200* 3.19458 0.661144 0.200

C2vsC5 0.019 1000 .200* 6.80087 0.632353 0.485

C3vsC4 0.012 1000 .200* 2.17249 1.047965 0.845

C3vsC5 0.018 1000 .200* 2.81092 0.642314 0.785

C4vsC5 0.020 1000 .200* 4.03900 1.079334 0.420

* This is a lower bound of the true significance.
a Lilliefors Significance Correction.
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Figure 8. (a) Normal Q-Q plot of pairwise comparison C1 versus C2; (b) Detrended Normal Q-Q plot of pairwise comparison C1 versus C2; (c) Normal Q-Q plot of
pairwise comparison C1 versus C3; (d) Detrended Normal Q-Q plot of pairwise comparison C1 versus C3. These graphics show that the pairwise comparison forms as a
Normal distribution.

Figure 9. The result of probability density function for alternatives final values.
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wi
*ðA1Þ	 0:000710754

0:004458629
¼ 0:159411
This process is applicable for other alternatives respectively.
Alternative 2

uiMðA2Þ¼ ~μ ¼ 0:20709

~σðA2Þ¼maxjuiU � ~μj

Zα

2

� ffiffiffi
n

p ¼ 0:00369

wi
*ðA2Þ¼ COG¼

R uiU

uiL
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð0:0125654Þ2
p e

�ðx�0:206327Þ2
2ð0:0125654Þ2 dxR uiU

uiL
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð0:0125654Þ2
p e

�ðx�0:206327Þ2
2ð0:0125654Þ2 dx

wi
*ðA2Þ	 0:011535194

0:05598462
¼ 0:206042

Alternative 3

uiMðA3Þ¼ ~μ ¼ 0:359283

~σðA3Þ¼maxjuiU � ~μj

Zα

2

� ffiffiffi
n

p ¼ 0:000823

wi
*ðA3Þ¼ COG¼

R uiU

uiL
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð0:013853Þ2
p e

�ðx�0:362825Þ2
2ð0:013853Þ2 dxR uiU

uiL
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð0:013853Þ2
p e

�ðx�0:362825Þ2
2ð0:013853Þ2 dx

wi
*ðA3Þ	 0:0569147

0:15854348
¼ 0:358985

Alternative 4

uiMðA4Þ¼ ~μ ¼ 0:24009

~σðA4Þ¼maxjuiU � ~μj

Zα

2

� ffiffiffi
n

p ¼ 0:01592

wi
*ðA4Þ¼ COG¼

R uiU

uiL
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð0:0041763Þ2
p e

�ðx�0:233561Þ2
2ð0:0041763Þ2 dxR uiU

uiL
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð0:0041763Þ2
p e

�ðx�0:233561Þ2
2ð0:0041763Þ2 dx

wi
*ðA4Þ	 0:011308009

0:047219149
¼ 0:239479

The final results of the fuzzy values have been obtained by imple-
menting the proposed NMCFAHP methodology. As demonstrated in
Figure 10., the probability distribution function of each alternative are
elaborated with respect to the evaluation criteria. The histogram plots
clearly state that alternative-3 (~μ ¼ 0:362825, eσ ¼ 0:013853) as the
most optimum solution for the evaluation of NDT technology. The result
of alternative-3 is depicted without any overlap from other alternatives.
This means that alternative-3 is confidently ranked as the first option in
the evaluation. The other three alternatives are not considered preferable
due to the numerous gaps from alternative-3 and the overlap condition
among each other.

The values of criteria weight are also plotted as a probability density
function in Figure 9. It is exposed that reliability and precision (C1) and
capital-operational costs (C2) are the most significant evaluation criteria.
On the other hand, cracks detection coverage area (C3), training-
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development costs (C4), and technology maturity (C5) are the least
influential criteria. Figure 9 also infers the small numbers of standard
deviation. The calculation of standard deviations for C1, C2, and C4 are
less than 0.5% of their means. Based on this figure, it is implied that the
decision makers are confident in deciding the criteria weights of judg-
ment. From the operational perspective, probability and precision
criteria are projected as the first option as this criterion has the main
characteristic needed by the organization. The reliability and precision
function are considered as fundamental requirement for the NDT tech-
nology. Contrarily, technology maturity and market availability come as
the least important criteria. In fact, the organization operating the Pe-
troleum Company is currently operating worldwide in more than 20
countries. The aspect of technology maturity and market availability
brings insignificant bother to the organization.

7.1. Comparison with triangular fuzzy analytic hierarchy process

This paper deploys a comparison between the conventional triangular
fuzzy analytic hierarchy process (TFAHP) and the proposed NMCFAHP
methodology. The comparison is intended to measure the performance
and accuracy of the proposed NMCFAHP for evaluating the decision-
making process. Conventional TFAHP is built based on a similar judg-
ment for evaluating NDT technologies, as in the NMCFAHP. As the
TFAHP cannot deal with the unbalanced weight scale, the modus values
are chosen to replace the mean values for the initial pairwise comparison
matrices. The lower, middle, and upper fuzzy values are developed based
on triangular fuzzy sets. For the final evaluation, by using TFAHP,
triangular distribution is applied to generate random numbers when
compared in the Normal distribution for the proposed NMCFAHP. The
result is compared by using a standard error of mean parameter and 95%
confidence interval values. According to the fuzzy final values, both
methodologies demonstrate the similar order of alternatives rank. These
analyses bring A3 as the most preferred solution for the NDT technology,
followed by A4, A2, and A1 (see Table 12).

From Table 13 and Figure 11., it is inferred that the usage of Normal
distribution in the Monte-Carlo simulation reduces the standard error of
mean values by 90.4–99.8% of the final evaluation scores. This means
that the proposed NMCFAHP significantly involves less error when
dealing with uncertainty and stochastic randomness. The Normal dis-
tribution used in the evaluation tends to concentrate around the mean
values and discloses similar values with modus and the defuzzification
values. Therefore, it brings a relatively lower standard deviation error. In
contrary, the triangular distribution in TFAHP cannot exactly represent
the realistic standard deviation values bas the fuzzy sets approximation is
based on a triangular fuzzy number instead of an initial standard devi-
ation from the experts' judgement.

In addition, a Normal distribution Monte-Carlo in the proposed
NMCFAHP presents a narrower 95% confidence interval compared to the
conventional TFAHP. This analysis concludes that the NMCFAHPmethod
can efficiently overcome uncertainty and figures realistic judgment
scores in the decision-making process. It is inferred that the proposed
NMCFAHP can provide a reliable decision support system.

8. Conclusion

In this paper, we proposed a novel methodology of the multi-criteria
decision-making process, namely the Norm-dist Monte-Carlo fuzzy AHP
(NMCFAHP). The development of NMCFAHP is divided into three pha-
ses. In the first phase, pairwise comparison data is gathered and analyzed
for each criterion and alternative. This analysis is then inputted in to the
evaluation of the proposed NMCFAHP. The second phase is concerned
with the validity of judgments data which is simulated by extracting of
random number based on the Normal distribution model. The
Kolmogorov-Smirnov test is used to analyze the normality of the data
used as input to the Monte-Carlo fuzzy AHP. In the third phase, we
perform the evaluation of multi-criteria decision making by using the



Figure 10. The result of probability density function for alternative final values.

Table 12. Comparison of statistical values between proposed NMCFAHP and triangular fuzzy AHP.

Alternatives Proposed NMCFAHP Triangular fuzzy AHP

uiL uiM uiU ~σ lower middle upper std:dev:

A1 0.15849 0.15943 0.16033 0.01454 0.14038 0.16141 0.16739 0.014537

A2 0.20576 0.20596 0.20632 0.00325 0.19202 0.20334 0.21891 0.003248

A3 0.35919 0.35928 0.35923 0.00082 0.33721 0.36965 0.37929 0.000823

A4 0.24048 0.23947 0.23847 0.01606 0.22130 0.23612 0.23818 0.016063

Table 13. Confidence interval (95%) values between proposed NMCFAHP and triangular fuzzy AHP.

Alternatives Proposed NMCFAHP Triangular fuzzy AHP

Confidence interval (95%) Std.dev. error Confidence interval (95%) Std.dev. error

A1 (0.15881, 0.16062) 0.00046 (0.12114, 0.19164) 0.01768

A2 (0.20686, 0.20732) 0.00010 (0.17121, 0.23830) 0.02713

A3 (0.35754, 0.35766) 0.00003 (0.30729, 0.41681) 0.04866

A4 (0.23911, 0.24108) 0.00051 (0.20899, 0.25475) 0.02829

Figure 11. Standard error of mean values of proposed NMCFAHP and trian-
gular fuzzy AHP.
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NMCFAHP approach. A case study is performed to evaluate the NDT
technology for addressing piping and vessels cracks in Petroleum Com-
pany, Indonesia. The results of this paper depict that reliability and
precision (C1) and capital-operational costs (C2) come as the most sig-
nificant evaluation criteria, and the alternative technology-3 comes out
as the most optimum solution for the NDT technology. In addition, the
15
proposed NMCFAHP present less standard error of mean (by
90.4–99.8%) when compared with TFAHP. This means that NMCFAHP
possesses better performance not only to address probabilistic and
epistemic uncertainty but also when describing the realistic and confi-
dence in ranking alternatives.
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Safety
and
Method
Eng.I

Production/
process
method
Eng.II

Head of
Corrosion
services

Safety
and
Method
Eng.III

Head of
Field
Operation
Safety
and
Method

Criteria Evaluation

C1 vs C2 3 1 1 1 1

C1 vs C3 3 3 3 3 3

C1 vs C4 5 5 5 3 3

C1 vs C5 7 9 9 9 9

C2 vs C3 3 3 3 3 3

C2 vs C4 3 3 3 3 3

C2 vs C5 7 7 7 7 7

C3 vs C4 1 1 3 3 1

C3 vs C5 3 3 3 3 3

C4 vs C5 3 3 5 5 3

Safety
and
Method
Eng.I

Production/
process
method
Eng.II

Head of
Corrosion
services

Safety
and
Method
Eng.III

Head
of Field
Operation
Safety
and
Method

Criteria 1. Reliability and Precision

A1 VS A2 1 1 1 3 1

A3 VS A1 1 3 2 3 1

A1 VS A4 1 3 3 3 3

A3 VS A2 3 3 3 1 1

A2 VS A4 3 3 3 3 1

A3 VS A4 5 5 7 5 5

Criteria 2. Capital and Operational Costs

A1 VS A2 9 7 7 7 5

A3 VS A1 0.333333333 1 3 1 3

A1 VS A4 9 9 9 9 7

A3 VS A2 7 7 7 7 5

A2 VS A4 1 1 3 3 3

A3 VS A4 7 7 5 9 7

Criteria 3. Cracks Detection Coverage
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Appendix 1. The detail result of criteria judgments by expert panelists.
Head of
Inspection
Department

Safety
and
Method
Eng. I

Corrosion
method
Eng.

Corrosion
method
Eng.

Inspection-
Instrument
Eng.

3 1 3 3 1

3 5 5 3 3

5 5 5 5 5

7 7 9 9 9

3 3 3 3 5

3 3 3 3 5

7 5 7 7 7

1 3 3 3 3

3 3 3 3 1

5 5 5 3 3
Appendix 2. The detail result of alternatives judgments by expert panelists.
Head of
Inspection
Department

Safety
and
Method
Eng. I

Corrosion
method
Eng.

Corrosion
method
Eng.

Inspection-
Instrument
Eng.

3 0.333333333 5 1 1

3 5 3 3 5

5 3 3 3 5

3 3 4 5 1

5 1 3 1 3

7 7 3 5 5

5 9 7 7 9

3 1 1 1 1

7 7 7 5 5

5 3 5 7 7

3 1 3 1 5

9 9 7 9 9

(continued on next page)



(continued )

Safety
and
Method
Eng.I

Production/
process
method
Eng.II

Head of
Corrosion
services

Safety
and
Method
Eng.III

Head
of Field
Operation
Safety
and
Method

Head of
Inspection
Department

Safety
and
Method
Eng. I

Corrosion
method
Eng.

Corrosion
method
Eng.

Inspection-
Instrument
Eng.

A1 VS A2 1 3 1 1 5 3 3 3 5 3

A3 VS A1 5 5 5 7 3 5 5 5 3 1

A1 VS A4 5 5 3 3 5 5 1 5 5 5

A3 VS A2 5 5 1 1 5 5 5 3 5 5

A2 VS A4 3 3 1 1 5 3 1 3 3 3

A3 VS A4 9 9 7 7 7 9 5 7 3 9

Criteria 4. Training and Development Costs

A1 VS A2 7 7 5 9 7 7 3 5 5 9

A3 VS A1 9 9 7 9 9 9 5 7 9 5

A1 VS A4 9 9 9 5 7 9 9 9 7 9

A3 VS A2 1 1 3 5 3 3 5 5 1 3

A2 VS A4 7 7 5 3 1 5 7 5 5 5

A3 VS A4 1 1 1 3 1 1 1 3 1 2

Criteria 5. Maturity of Technology and Market Availability

A1 VS A2 1 3 3 5 5 5 5 3 3 3

A3 VS A1 3 3 3 1 1 1 1 3 3 5

A1 VS A4 7 7 7 5 1 5 9 7 7 5

A3 VS A2 1 1 3 1 1 1 1 0.2 1 1

A2 VS A4 9 9 9 9 5 9 5 9 9 5

A3 VS A4 7 7 5 5 3 9 7 7 7 7
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Appendix 3. The results of Monte-Carlo random number generation for the criteria evaluation.
C1 vs C2 C1 vs C3 C1 vs C4 C1 vs C5 C2 vs C3 C2 vs C4 C2 vs C5 C3 vs C4 C3 vs C5 C4 vs C5
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X
 1.8000
 3.4000
 4.6000
 8.4000
 3.2000
 3.2000
 6.8000
 2.2000
 2.8000
 4.0000
s
 1.0328
 0.8433
 0.8433
 0.9661
 0.6325
 0.6325
 0.6325
 1.0328
 0.6325
 1.0541
Number of iteration
1
 2.235
 2.666
 4.969
 7.049
 4.683
 3.502
 6.547
 5.350
 3.506
 4.875
2
 0.939
 4.262
 5.418
 8.988
 3.070
 2.489
 7.713
 3.143
 1.613
 2.636
3
 1.663
 3.520
 4.123
 7.586
 3.536
 2.704
 7.024
 3.109
 3.006
 5.485
4
 1.552
 2.951
 4.948
 7.399
 2.719
 3.437
 6.947
 3.369
 2.675
 1.739
5
 1.434
 2.316
 3.825
 9.128
 3.379
 4.093
 7.102
 2.241
 2.790
 2.216
6
 2.628
 3.382
 4.605
 5.209
 3.799
 3.457
 8.145
 2.291
 2.743
 4.011
7
 1.567
 2.804
 4.938
 8.434
 2.897
 4.424
 6.686
 1.504
 2.754
 5.610
8
 2.347
 4.243
 3.940
 7.199
 2.112
 2.489
 6.961
 2.800
 2.707
 2.696
9
 1.898
 4.857
 3.544
 7.924
 3.150
 2.801
 7.480
 0.756
 1.476
 4.755
10
 -0.038
 3.964
 3.801
 7.729
 4.048
 3.217
 6.306
 2.850
 2.777
 3.280
11
 2.094
 2.962
 4.520
 9.508
 3.781
 1.944
 6.107
 1.049
 3.378
 6.266
12
 1.331
 3.879
 5.296
 7.716
 3.470
 4.490
 6.368
 3.738
 2.692
 4.657
13
 1.707
 4.896
 3.750
 9.857
 3.426
 2.833
 5.836
 1.738
 3.410
 3.936
…
 …
 …
 …
 …
 …
 …
 …
 …
 …
 …
1000
 0.295
 3.411
 4.737
 7.861
 2.903
 4.357
 6.151
 2.533
 3.180
 3.483
μ
 1.8020
 3.3947
 4.6165
 8.3898
 3.1842
 3.1946
 6.8009
 2.1725
 2.8109
 4.0390
σ
 1.0477
 0.8296
 0.8096
 0.9671
 0.6422
 0.6611
 0.6323
 1.0480
 0.6423
 1.0793
Random a
 1.7371
 3.3433
 4.5664
 8.3298
 3.1444
 3.1536
 6.7617
 2.1075
 2.7711
 3.9721
Random b
 1.8020
 3.3947
 4.6165
 8.3898
 3.1842
 3.1946
 6.8009
 2.1725
 2.8109
 4.0390
Random c
 1.8669
 3.4461
 4.6667
 8.4497
 3.2240
 3.2356
 6.8400
 2.2374
 2.8507
 4.1059
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Appendix 4. The results of Monte-Carlo random number generation for the alternatives corresponding to the criteria.

Corresponding to Criteria 1. Reliability and Precision
A1 VS A2
 A3 VS A1
18
A1 VS A4
 A3 VS A2
 A2 VS A4
 A3 VS A4
X
 1.7333
 2.9000
 3.2000
 2.7000
 2.6000
 5.4000
s
 1.4555
 1.3703
 1.1353
 1.3375
 1.2649
 1.2649
Number of iteration
1
 -0.058
 3.471
 3.175
 1.814
 4.102
 5.412
2
 1.810
 1.985
 2.430
 3.010
 5.214
 3.824
3
 1.479
 3.738
 2.519
 3.082
 0.841
 4.715
4
 1.853
 1.956
 4.600
 5.452
 4.125
 5.085
5
 3.069
 5.292
 4.374
 3.448
 3.441
 5.887
6
 1.169
 2.852
 1.103
 3.258
 2.407
 5.611
7
 2.867
 2.773
 2.695
 4.150
 1.788
 5.025
8
 1.707
 1.781
 4.173
 2.451
 2.656
 4.478
9
 -1.477
 0.327
 6.178
 2.715
 2.106
 7.839
10
 0.935
 3.340
 5.103
 2.760
 1.889
 2.617
11
 2.130
 2.930
 3.309
 1.709
 0.636
 5.284
12
 5.036
 3.825
 1.796
 3.405
 3.103
 6.925
…
 …
 …
 …
 …
 …
 …
1000
 0.457
 5.826
 4.786
 5.368
 4.188
 5.771
μ
 1.6925
 2.9013
 3.2038
 2.7291
 2.5185
 5.3682
σ
 1.4390
 1.3794
 1.1330
 1.3581
 1.3069
 1.2692
Random a
 1.6033
 2.8158
 3.1336
 2.6449
 2.4375
 5.2896
Random b
 1.6925
 2.9013
 3.2038
 2.7291
 2.5185
 5.3682
Random c
 1.7816
 2.9868
 3.2740
 2.8132
 2.5995
 5.4469
Corresponding to Criteria 2. Capital and Operational Costs
A2 VS A1
 A1 VS A3
 A4 VS A1
 A2 VS A3
 A4 VS A2
 A4 VS A3
X
 7.2000
 1.5333
 7.4000
 6.0000
 2.4000
 7.8000
s
 1.4757
 1.0328
 1.5776
 1.4142
 1.3499
 1.3984
Number of iteration
1
 6.699
 2.007
 7.475
 6.703
 2.573
 7.913
2
 7.213
 0.907
 7.997
 5.416
 0.948
 8.231
3
 7.977
 1.688
 8.221
 4.520
 2.794
 8.955
4
 9.781
 0.507
 8.673
 2.301
 1.166
 7.681
5
 7.932
 1.899
 7.940
 7.505
 1.730
 8.130
6
 7.602
 2.287
 9.083
 5.696
 -0.109
 7.029
7
 6.441
 0.740
 5.950
 4.459
 2.409
 8.883
8
 8.023
 0.576
 6.448
 4.131
 2.243
 6.236
9
 10.667
 0.340
 4.429
 6.778
 2.706
 7.603
10
 6.782
 3.181
 9.750
 10.883
 3.694
 8.469
11
 5.994
 1.534
 10.374
 8.173
 1.457
 11.061
12
 8.958
 1.595
 8.897
 4.498
 2.608
 7.633
…
 …
 …
 …
 …
 …
 …
1000
 9.965
 1.353
 9.785
 7.156
 1.974
 10.832
μ
 7.1338
 1.5402
 7.4621
 5.9369
 2.3976
 7.7338
σ
 1.4668
 1.0314
 1.5791
 1.3606
 1.3848
 1.3652
Random a
 7.0429
 1.4763
 7.3642
 5.8526
 2.3118
 7.6491
Random b
 7.1338
 1.5402
 7.4621
 5.9369
 2.3976
 7.7338
Random c
 7.2247
 1.6042
 7.5599
 6.0212
 2.4834
 7.8184
Corresponding to Criteria 3. Cracks Detection Coverage
A1 VS A2
 A3 VS A1
 A1 VS A4
 A3 VS A2
 A2 VS A4
 A3 VS A4
X
 2.8000
 4.4000
 4.2000
 4.0000
 2.6000
 7.2000
s
 1.4757
 1.6465
 1.3984
 1.6997
 1.2649
 1.9889
Number of iteration
1
 3.434
 5.224
 6.657
 7.833
 1.674
 7.728
2
 2.476
 5.097
 4.073
 8.257
 1.527
 4.783
3
 5.562
 1.697
 3.960
 3.773
 1.817
 7.454
4
 1.200
 3.298
 5.042
 4.677
 2.024
 6.241
5
 1.712
 2.928
 2.560
 2.915
 1.623
 7.423
(continued on next column)
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(continued )

Corresponding to Criteria 3. Cracks Detection Coverage
A1 VS A2
 A3 VS A1
19
A1 VS A4
 A3 VS A2
 A2 VS A4
 A3 VS A4
6
 0.526
 3.544
 4.805
 4.672
 5.160
 6.922
7
 1.995
 5.286
 4.622
 6.797
 5.288
 5.845
8
 3.345
 7.466
 3.649
 2.470
 5.015
 8.751
9
 4.726
 0.824
 4.433
 6.581
 2.052
 10.499
10
 1.033
 2.761
 1.705
 2.963
 2.498
 8.453
11
 3.176
 5.836
 7.776
 3.836
 1.687
 8.597
12
 3.510
 6.705
 3.359
 2.640
 0.637
 5.083
…
 …
 …
 …
 …
 …
 …
1000
 3.526
 6.878
 5.250
 1.182
 3.112
 7.360
μ
 2.7368
 4.4027
 4.1388
 3.9614
 2.5786
 7.2938
σ
 1.4580
 1.6755
 1.3909
 1.7479
 1.2514
 1.9819
Random a
 2.6464
 4.2989
 4.0526
 3.8531
 2.5010
 7.1709
Random b
 2.7368
 4.4027
 4.1388
 3.9614
 2.5786
 7.2938
Random c
 2.8271
 4.5066
 4.2250
 4.0697
 2.6561
 7.4166
Corresponding to Criteria 4. Training and Development Costs
A2 VS A1
 A3 VS A1
 A4 VS A1
 A3 VS A2
 A4 VS A2
 A3 VS A4
X
 6.4000
 7.8000
 8.2000
 3.0000
 5.0000
 1.5000
s
 1.8974
 1.6865
 1.3984
 1.6330
 1.8856
 0.8498
Number of iteration
1
 4.845
 8.006
 9.082
 1.086
 6.222
 1.719
2
 8.552
 8.681
 6.237
 4.269
 4.890
 1.139
3
 7.783
 5.649
 6.974
 2.907
 3.495
 2.101
4
 5.001
 8.101
 8.979
 2.729
 4.560
 0.260
5
 10.253
 7.549
 7.236
 4.725
 6.399
 2.191
6
 5.832
 8.417
 8.428
 4.710
 4.451
 2.358
7
 7.353
 10.231
 7.808
 3.517
 5.316
 2.513
8
 5.419
 9.461
 6.940
 2.411
 3.720
 1.024
9
 6.104
 9.281
 5.443
 4.097
 4.219
 1.145
10
 7.532
 10.383
 6.811
 2.701
 4.218
 3.360
11
 6.252
 7.058
 7.208
 6.412
 3.000
 2.659
12
 5.005
 10.238
 11.146
 4.853
 6.043
 1.454
…
 …
 …
 …
 …
 …
 …
1000
 7.523
 7.077
 9.708
 0.094
 8.526
 2.378
μ
 6.3922
 7.8124
 8.2317
 3.0550
 5.0034
 1.5013
σ
 1.8383
 1.6771
 1.3735
 1.5959
 1.8751
 0.8805
Random a
 6.2782
 7.7084
 8.1466
 2.9561
 4.8872
 1.4467
Random b
 6.3922
 7.8124
 8.2317
 3.0550
 5.0034
 1.5013
Random c
 6.5061
 7.9163
 8.3168
 3.1539
 5.1196
 1.5558
Corresponding to Criteria 5. Maturity of Technology and Market Availability
A2 VS A1
 A3 VS A1
 A1 VS A4
 A2 VS A3
 A2 VS A4
 A3 VS A4
X
 3.6000
 2.4000
 6.0000
 1.1200
 7.8000
 6.4000
s
 1.3499
 1.3499
 2.1602
 0.7068
 1.9322
 1.6465
Number of iteration
1
 2.176
 1.049
 4.391
 1.471
 9.988
 6.574
2
 3.426
 3.452
 5.006
 1.150
 8.023
 3.536
3
 4.727
 1.607
 6.275
 1.284
 7.839
 7.500
4
 4.901
 2.116
 5.571
 0.657
 11.869
 6.076
5
 4.298
 1.531
 5.882
 1.198
 8.706
 9.218
6
 4.212
 0.270
 7.051
 0.826
 12.591
 4.653
7
 4.603
 3.110
 4.695
 1.856
 8.997
 7.295
8
 6.174
 4.188
 6.398
 1.384
 7.567
 5.856
9
 4.355
 3.743
 7.138
 1.554
 7.503
 4.591
10
 3.309
 3.388
 5.154
 -0.060
 7.902
 6.149
11
 2.962
 3.681
 7.675
 2.030
 9.359
 6.513
12
 3.211
 3.661
 7.450
 1.461
 9.897
 7.920
…
 …
 …
 …
 …
 …
 …
1000
 1.151
 3.514
 8.857
 1.648
 10.209
 4.436
(continued on next column)
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Corresponding to Criteria 5. Maturity of Technology and Market Availability
A2 VS A1
 A3 VS A1
20
A1 VS A4
 A2 VS A3
 A2 VS A4
 A3 VS A4
μ
 3.6036
 2.3977
 5.9330
 1.1315
 7.8104
 6.3804
σ
 1.3200
 1.3230
 2.1429
 0.6903
 1.9297
 1.6230
Random a
 3.5217
 2.3157
 5.8002
 1.0887
 7.6908
 6.2799
Random b
 3.6036
 2.3977
 5.9330
 1.1315
 7.8104
 6.3804
Random c
 3.6854
 2.4797
 6.0658
 1.1743
 7.9300
 6.4810
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