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Comparative survival analysis of breast cancer
microarray studies identifies important prognostic
genetic pathways
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Abstract

Background: An estimated 12% of females in the United States will develop breast cancer in their lifetime.
Although, there are advances in treatment options including surgery and chemotherapy, breast cancer is still the
second most lethal cancer in women. Thus, there is a clear need for better methods to predict prognosis for each
breast cancer patient. With the advent of large genetic databases and the reduction in cost for the experiments,
researchers are faced with choosing from a large pool of potential prognostic markers from numerous breast
cancer gene expression profile studies.

Methods: Five microarray datasets related to breast cancer were examined using gene set analysis and the cancers
were categorized into different subtypes using a scoring system based on genetic pathway activity.

Results: We have observed that significant genes in the individual studies show little reproducibility across the
datasets. From our comparative analysis, using gene pathways with clinical variables is more reliable across studies
and shows promise in assessing a patient’s prognosis.

Conclusions: This study concludes that, in light of clinical variables, there are significant gene pathways in
common across the datasets. Specifically, several pathways can further significantly stratify patients for survival.
These candidate pathways should help to develop a panel of significant biomarkers for the prognosis of breast
cancer patients in a clinical setting.

Background
Developing genomic based biomarkers for breast cancer
prognosis is an active research area with clinicians and
researchers considering genomic expression data as a
potential valuable source of information to be mined for
such markers. In addition to considering the BRCA
mutation status of a patient, three genetic markers, estro-
gen receptors (ER) [1], progesterone receptors (PR) [2],
and the HER2/neu receptor (HER2) [3] are commonly
used for assessing prognosis and/or assigning treatment.
More recently TGF- has also been considered as a poten-
tial prognosis biomarker [4].
One of the biggest challenges in developing valid prog-

nostic genomic based biomarkers for breast cancer is
obtaining large enough datasets with sufficient patient

follow-up time [5,6]. To address this, we employ a com-
parative analysis approach. In a comparative analysis, sev-
eral datasets gathered to test related hypotheses are
combined to obtain more powerful estimates for a com-
mon hypothesis. We combine five genomic studies exam-
ining prognosis in breast cancer patients to assess the
ability of the genetic biomarkers to stratify or distinguish
patient survival. Datasets under consideration were chosen
based on sample size and the availability of gene expres-
sion microarray data derived from RNA extracted from
breast cancer tumors with sufficient follow-up data. At the
time of this analysis, five datasets were publicly available;
we reference these by primary author: Desmedt [7] (data
accessible at NCBI GEO database [8], accession GSE7390),
Miller [9] (accession GSE3494), Pawitan [10] (accession
GSE1456), VAN DE Vijver [11] http://microarray-pubs.
stanford.edu/wound_NKI/, and Bild [12] (accession
GSE3143). While we find that that individual gene analysis
results are highly variable across similar datasets, using a
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gene pathways analysis approach shows promising evi-
dence that genetic pathways can further stratify survival
across datasets.

Methods
Data Collection and Pre-processing
The breast cancer microarray datasets were either
downloaded from the NCBI GEO database or provided
by the authors through their public websites. Among
the five datasets, three were based on the Affymetrix
U133 platform, one on the Affymetrix U95 platform,
and one using the Agilent two-color platform (Table 1).
The four Affymetrix based datasets were processed
using the RMA algorithm in the “affy” R library within
the Bioconductor suite to generate expression summary
values [13-15]. The expression summary values for the
Agilent platform were directly taken from Chang et al.
[16]. The NCBI entrez gene names were assigned to all
of the Affymetrix probes and Agilent cDNA clones
based on latest Bioconductor annotation package
[13,17]. Note that only 12,649 Agilent cDNA clones
were successfully mapped to the latest entrez gene
annotation used in our analysis. We obtained the patient
specific clinical data through the primary author’s public
website or via communication with the authors. The
clinical demographics for each of the datasets is pro-
vided in the Additional File 1.

Survival Analysis
The Cox proportional hazards regression model was
used to discover significant variables correlated with risk
with reported p-values obtained from a Wald test [18].
Overall survival was used as the endpoint in each analy-
sis, except in the Miller dataset where disease specific
survival was the only available endpoint. Both univariate
and multivariate survival analysis were performed to
select the clinical variables and/or their interactions sig-
nificant in each of the datasets. Model fitting for each
gene expression profile was determined by using each
gene 1) individually, 2) in conjunction with ER status
and tumor size, 3) with the best model from minimizing

Akaike’s information criterion (AIC), and 4) minimizing
the Bayesian information criterion (BIC) [19]. The sum-
mary for each AIC and BIC based model using only the
clinical variables in each dataset is shown in Table 2.
For each gene model, the statistical significance for indi-
vidual genes was determined by controlling the false dis-
covery rate (FDR) for testing multiple genes at 0.2 using
a Benjamini and Hochberg scheme for the p-values
obtained from log-rank tests [20].

Pathway Analysis
The pathway database was compiled from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [21] with
the addition of curated pathways from the human pro-
tein reference database (HPRD) [22]. The combined
KEGG and HPRD pathway database contains 232
human pathways that include metabolism, genetic

Table 1 Microarray Dataset Summary

Dataset Total Samples Array Description Total Probes Years of Diagnosis

Desmedt
(GSE7390)

198 Affymetrix U133A 22283 1980-1998

Miller
(GSE3494)

251 Affymetrix U133A 22283 1987-1989

Pawitan
(GSE1456)

159 Affymetrix U133 22283 1994-1996

VAN DE Vijver 295 Agilent 24481* 1984-1995

Bild
(GSE3143)

158 Affymetrix Hu95Av2 12625 -

* only 12649 probes were used for analysis

Table 2 AIC and BIC Model Summary

Datasets

Variables Desmedt Miller Pawitan VAN DE
Vijver

Bild

ER status √ † √ † √ †

tumor size √ √ † n.a. √ † √ †

tumor grade √ n.a.

patient age √ √ n.a.

lymph status n.a. √ † n.a. n.a. n.a.

number positive
lymph (NPL)

n.a. n.a. n.a. √ † n.a.

p53 status n.a. √ n.a. n.a. n.a.

x70 status [34] n.a. n.a. n.a. √ † n.a.

Surgery type √ n.a. n.a. n.a. n.a.

subtype n.a. n.a. √ n.a. n.a.

patient age*surgery
type

√ n.a. n.a. n.a. n.a.

patient age*grade n.a. n.a. n.a. √ n.a.

x70* NPL n.a. n.a. n.a. √ n.a.

x70*tumor grade n.a. n.a. n.a. √ n.a.

Note: √ = variable is significant in AIC model, † = variable is significant in BIC
model, n.a.= variable not available.
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information processing, environmental information pro-
cessing, cellular processes, human diseases, and drug
development. Note, for the sake of interpretation, 175
pathways passed our gene pathway size filter criteria
(min = 15 probes; max = 250 probes). Since the devel-
opment of the gene set enrichment analysis (GSEA)
algorithm [23], researchers have been able to use gene
pathways (sets) to capture molecular dysregulation even
when individual genes are highly variable. A modified
Gene Set Analysis (GSA) method was used to measure
gene correlation with overall survival after accounting
for ER status and tumor size [24]. GSA offers two
potential improvements to GSEA, namely the maxmean
statistic for summarizing gene sets and restandardization
for more accurate inferences. The restandardization pro-
cess consists of a randomization step and a permutation
step. The randomization step standardizes the maxmean
statistic with respect to its randomized mean and stan-
dard deviation then the permutation step computes the
p-value for the statistic from a permutation distribution.
The generalized Šidàk-Holm method was used to

determine the significance of a given pathway, where
the generalized family wise error rate (gFWER) was con-
trolled at 0.20 with the number of false discoveries lim-
ited to five [25]. In short, our gFWER procedure
controls the probability of committing five or more false
positives to be no larger than 0.20. To further explore
and graphically display the large number of significant
gene pathways associated with the survival results from
GSA, we devised a voting mechanism to stratify subjects
by pathway activity. In this way, we can explore the con-
tribution of each gene in a significant gene pathway. We
define the pathway risk index (PRI) for subject j and
pathway k as

PRI( , ) ( )j k I x x
i

G

ij i

k

= >
=
∑

1

where I () denotes the indicator function, xij is the

expression value of the ith gene on subject j, xi is the

sample mean for the ith gene, and Gk is the number of
genes in pathway k. For each pathway, the PRI score for
a subject is further stratified into low PRI (below median
PRI) or high PRI (above median PRI). Low PRI indicates
that many of the genes in pathway k for subject j tend
to be expressed below their mean expression, while high
PRI for a subject indicates that many genes in pathway
k tend to be expressed above their mean expression.
The PRI is well suited for molecular stratification when
combined with the results of GSA. By using the modi-
fied version of GSA, we stratify study populations
according to both clinical and molecular covariates.
Thus, the PRI score for a pathway provides the marginal

benefit of that pathway to explain survival in light of
tumor size and ER status. Note that PRI does not
account for mixed direction of gene expression change
in a gene set, but rather is a global signature designed
to summarize the gene activity within a pathway across
the set of patients. We then used the PRI score to
further stratify survival within a subset of patients.

Comparative Analysis
Our goal was to discover shared genes and/or pathways
that represent pseudo-global biological and molecular
mechanisms associated with breast cancer survival while
accounting for clinical covariates that can explain inter-
study dissemblance, that is, known clinical predictors of
clinical outcome. To this end we compared the results
from the gene and gene pathway inference across data-
sets for each analysis. The results are displayed in the
graphical and tabular summaries (Tables 1,2,3,4 and
Figures 1,2) including Venn diagrams in Additional File
1. For significantly enriched pathways in more than one
study, we perform multivariate analysis on pathway gene
expression between datasets using the PRI scores to
learn of pseudo-types. In other words, for enriched
pathways, we examine the pathway signature within
patient cohorts, such as the cohort of ER positive
patients and the cohort of patients with the same tumor
grade (see Pathway Analysis section).

Results
Exploratory graphical analyses of the clinical covariates
with survival are available in our Additional File 1.
Treatment regimens and survival distributions are
known to differ by dataset. Figure 1 shows the Kaplan-
Meier curves for each dataset. Note, all datasets
included tumor size and ER status with the exception of
Pawitan. We modeled the overall survival using the gene
expression microarray datasets with a series of Cox pro-
portional hazards models. It is noteworthy that tumor
size was significant (when available) for all datasets
while ER status was highly significant (p-value < 0.01) in
three out of five datasets. Table 2 displays the significant
variables for the AIC and BIC models using only the
clinical variables as described in the Materials and
Methods section. From Table 2, the AIC models tend to

Table 3 Number of Significant Genes

Desmedt Miller Pawitan VAN DE
Vijver

Bild

Univariate 5 1886 1404 3246 138

ER status + tumor
size

3 534 1487 483 6

AIC Best Model 3 31 2 22 6

BIC Best Model 1 123 1404 35 6
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yield larger models than the BIC models while tumor
size and ER status are significant in most cases.
Table 3 shows the results from the survival analysis

using the gene expression data with the four models dis-
cussed in Material and Methods. Table 3 shows that the
Miller, Pawitan and VAN DE Vijver have a large num-
ber of discoveries in the univariate gene models and the
gene models including ER status and tumor size, but
very few discoveries in the AIC models. Also, the Des-
medt dataset shows very few discoveries regardless of
the model. Ultimately, the molecular variability of the
genes within these pathways tended to be discordant,
that is, the genes with the strongest correlation with risk
were miscellaneous.
The gene pathway analysis results are displayed in

Table 4. For the four datasets including ER status and
tumor size (Desmedt, Miller, VAN DE Vijver, Bild), we
performed pathway analysis, accounting for ER status
and tumor size. Table 4 shows that the biosynthesis of
phenylpropanoids pathway and cell cycle pathway were
discovered in four data sets. Other pathways found in
three of the datasets include the pyrimidine metabolism,
tAminoacyl-tRNA biosynthesis, DNA replication, IL-7
Signaling and bladder cancer pathways. Accounting for

ER status and tumor size dramatically reduced the num-
ber of significant pathways present in at least three data-
sets. Figure 2,3,4, and 5 shows the Kaplan-Meier curves
stratified by the PRI scores (Low vs. High) for two of
the selected pathways in Table 4; the cell cycle pathway
and the biosynthesis of phenylpropanoids pathway.
The cell cycle pathway for ER positive patients signifi-

cantly stratifies survival in the VAN DE Vijver dataset
and the Miller dataset as shown in Figures 2 and 3,
respectively. In other words, the cell cycle pathway stra-
tification appears to explain additional variation beyond
ER status alone. We found these results encouraging, as
the cell cycle pathway is known to be disrupted in gen-
eral cancers [26] and Specifically breast cancer [27,28].
Note, that similar results for patient survival apply to
the pyrimidine metabolism pathway which is known to
be connected to energy metabolism, cell growth and
proliferation and is an active pathway in human leuko-
cytes [29]. In addition to the cohort of ER positive
patients, the PRI scores also stratify survival within a
cohort of patients with the same tumor grade. Figures 4
and 5 show the biosynthesis of phenylpropanoids path-
way can significantly stratify survival in a cohort of

Table 4 Comparative Analysis Results

Pathway (# of probes) Desmedt Miller Pawitan VAN DE Vijver Bild

pyrimidine metabolism (77) √ √ √

Carbon fixation (21) √ √ √

biosynthesis of phenylpropanoids (31) √ √ √ √

DNA replication (34) √ √ √

cell cycle (104) √ √ √ √

IL-7 Signaling (16) √ √ √

bladder cancer (39) √ √ √

Note: √ = pathway is significant.
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Figure 1 Kaplan-Meier Curves: The survival curves for each
dataset. The p-value is from a Wald test. The survival probabilities
are obtained from Kaplan-Meier estimates.
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Figure 2 Pathway PRI Stratifies Grade and Survival: Survival for
the ER positive patients stratified by PRI score for cell cycle pathway
in VAN DE Vijver. The p-value is from a Wald test. The survival
probabilities are obtained from Kaplan-Meier estimates.
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intermediate tumor grade patients in the VAN DE Vij-
ver dataset and a cohort of tumor grade three patients
in the Miller dataset, respectively.
The differentiation and proliferation of some haemato-

logical malignancies is known to be induced by Interleu-
kin-7 (IL-7), a haematopoietic growth factor. While not
much is known about its role in solid tumors, recently it
was shown that aberrant expression of IL-7 and its sig-
naling intermediates in invasive breast cancers could
have significant diagnostic and prognostic implications.
Thus measuring these molecules in breast cancer tissues
may provide important molecular indicators of tumor
differentiation, aggressiveness, nodal status, prognosis
and patient survival [30].

Discussion
With the increasing availability of genome wide data,
comparative meta-analyses offer researchers an exciting
opportunity to obtain generalizable results with appro-
priate statistical power. There are several examples of
meta-analyses and re-analysis of publicly available data-
sets related to breast cancer research [31-33]. However,
there are challenges to consider when performing a
meta-analysis, including inter-study differences, lack of
variables in common, significant sample size differences,
and the inability to validate results across datasets.
These concerns are especially relevant in cancer datasets
where there can be large differences in results due to
the genetics, race, epidemiology, treatment, and age dif-
ferences in the patient cohorts. Further the nature of
microarray based datasets can suffer from lab specific
variability, probe variability, chip to chip variation and
sample preparation(s) required for each experiment.
These individual breast cancer studies each have their
own complexities and the inter-study differences are
well documented.
Ultimately, sample size, distinct study disease popula-

tions, and departures in treatment regimens preclude
directly combining data, or pooling analyses, for the
sake of meaningful prediction. For example, the Miller
dataset has the highest mean patient age (see Additional
File 1) and the longest mean patient survival times (see
Figure 1). This evidence suggests that predominantly
post-menopausal women (most likely with sporadic dis-
ease) comprise the Miller dataset. Taken in conjunction
with the low proportion of women with ER negative
tumors (< 25%), one might not expect as prominent a
genetic signature. This may explain at least in part the
ability of PRI to stratify subject survival in grade three
cancers (see Table 3 and Figure 5). Attention to these
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Figure 3 Pathway PRI Stratifies Grade and Survival: Survival for
the ER positive patients stratified by PRI score for cell cycle pathway
in the Miller dataset. The p-value is from a Wald test. The survival
probabilities are obtained from Kaplan-Meier estimates.
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biosynthesis of phenylpropanoids pathway for intermediate tumor
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test. The survival probabilities are obtained from Kaplan-Meier
estimates.
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Figure 5 Pathway PRI Stratifies Grade and Survival: PRI score for
biosynthesis of phenylpropanoids pathway for the tumor grade three
patients in Miller dataset. The p-value is from a Wald test. The
survival probabilities are obtained from Kaplan-Meier estimates.
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details are important for correct interpretation of our
comparative analysis results. To overcome some of these
challenges for our comparative analysis, we examined
the marginal utility of well accepted clinical cancer bio-
markers, such as ER status and tumor size as measured
via computed tomography (CT) and magnetic resonance
(MR) imaging. We recognize that tumor grade may also
have utility in predicting patient prognosis, however, we
did not consider tumor grade within our class of models
due to the potential subjectivity of pathology scores and
the potential confounding with tumor size. Further,
tumor grade was not available for all of our datasets and
by using tumor size in our models, we believe we have
an adequate surrogate for tumor grade. Unfortunately
TNM (tumor-node-metastasis) classification is not avail-
able for all of our datasets, however, we do use tumor
size in our models which forms part of the TNM classi-
fication system. Besides ER status, other documented
genetic variables important in breast cancer research
include progesterone receptor status (PR), the HER2/
neu receptor, and the BRCA1 and BRCA2 mutation sta-
tus. Unfortunately, these variables were not consistently
available across all of the datasets, hence we were unable
to study their utility in assessing survival across each of
the datasets. Ultimately, the results from a gene pathway
analysis usually consist of a list of genetic pathways that
are significantly associated with prognosis. However, this
list of pathways is of little practical use for clinicians.
That is, a list of significant pathways does not directly
help a patient or an oncologist in choosing an optimal
treatment plan. However, these lists of significant path-
ways are important at a systems biology level in aiding
future exploration of drug targets and their effects on
critical nodes in specific pathways. To further extend
the gene pathway analysis results, we develop a scoring
metric called the pathway risk indicator (PRI) to sum-
marize the results for a given pathway. By using the PRI
to summarize the gene pathway signature for each
patient to a scalar score, we are creating a robust mea-
sure of that pathway’s ability to explain survival. This
method to reduce variability shows large reproducibility
across datasets and offer clinicians a chance to offer bet-
ter treatment options for their patients. The nature of
the PRI score for a given pathway allows for the follow-
ing interpretation. A high PRI score indicates that the
patient has a large number of gene expression values in
given pathway higher than the mean expression value
across all patients. A low PRI score implies the patient
had a smaller than average score for each gene in that
pathway. Thus the PRI score, in a sense, measures the
activity of the pathway for that patient. For the signifi-
cant pathways associated with survival as determined by
GSA (e.g. cell cycle and pyrimidine metabolism path-
ways), we find that the PRI score for these pathways can

further stratify patients after controlling for ER status
and tumor size. For further research our group is exam-
ining other potential metrics (equations) for PRI scores.

Conclusions
The comparative analysis on cancer datasets offers
researchers an opportunity to gain statistical power in
researching genetic biomarkers for cancer and the
opportunity to generalize the results to a larger popula-
tion. Previous studies for cancer prognosis have tended
to focus either on the molecular or genetic characteris-
tics for the patients or solely on the clinical characteris-
tics for the patients. This comparative analysis combines
the clinical and molecular data for each patient to deter-
mine the optimal set of variables that explain survival in
each dataset. Ultimately, ER status and tumor size were
the most significant molecular variables. In the molecu-
lar analysis, we have combined five microarray datasets
to examine the ability of genetic biomarkers to stratify
survival for breast cancer patients. Using a series of Cox
proportional hazards models, there is little overlap in
the sets of significant genes associated with survival in
each dataset. However, when extending the survival ana-
lysis to include gene pathway analysis, there are several
genetic pathways that are significant in a number of the
datasets. Using the pathway risk index (PRI), we show
that cohorts of patients, Specifically ER positive patients
and patients with the same tumor grade, can be strati-
fied for survival even when considering the clinical vari-
ables of ER status and tumor size. Specifically, the
pathways in Table 4 have the most significance across
the five datasets for stratifying survival using the PRI.
Ultimately, this analysis combines aspects of a patients
clinical profile with their molecular profile and allows
clinicians the opportunity to further stratify survival fol-
lowing surgery and chemotherapy in breast cancer
patients.

Additional material

Additional file 1: Additional Materials. metapaper.supp.pdf - An
additional file (PDF) showing additional tables and results.
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