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Abstract

Computational methods to identify functional genomic elements using genetic information have been very successful in
determining gene structure and in identifying a handful of cis-regulatory elements. But the vast majority of regulatory
elements have yet to be discovered, and it has become increasingly apparent that their discovery will not come from using
genetic information alone. Recently, high-throughput technologies have enabled the creation of information-rich
epigenetic maps, most notably for histone modifications. However, tools that search for functional elements using this
epigenetic information have been lacking. Here, we describe an unsupervised learning method called ChromaSig to find, in
an unbiased fashion, commonly occurring chromatin signatures in both tiling microarray and sequencing data. Applying
this algorithm to nine chromatin marks across a 1% sampling of the human genome in HeLa cells, we recover eight clusters
of distinct chromatin signatures, five of which correspond to known patterns associated with transcriptional promoters and
enhancers. Interestingly, we observe that the distinct chromatin signatures found at enhancers mark distinct functional
classes of enhancers in terms of transcription factor and coactivator binding. In addition, we identify three clusters of novel
chromatin signatures that contain evolutionarily conserved sequences and potential cis-regulatory elements. Applying
ChromaSig to a panel of 21 chromatin marks mapped genomewide by ChIP-Seq reveals 16 classes of genomic elements
marked by distinct chromatin signatures. Interestingly, four classes containing enrichment for repressive histone
modifications appear to be locally heterochromatic sites and are enriched in quickly evolving regions of the genome. The
utility of this approach in uncovering novel, functionally significant genomic elements will aid future efforts of genome
annotation via chromatin modifications.
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Introduction

In eukaryotes, DNA is packaged into nucleosomes, each consisting

of an octamer of histone proteins [1–3]. Histones are subject to an

assortment of post-translational modifications including phosphory-

lation, acetylation, and methylation [4–6]. Many of these modifica-

tions have been linked to transcriptional activation, silencing,

heterochromatin formation [1,3,7–9], DNA damage sensing and

repair [10], and chromosomal segregation [11]. Evidence is

accumulating to support the hypothesis that different combinations

of histone modifications confer different functional specificities [12].

For example, in Saccharomyces cerevisiae, the nucleosomes near active

promoters are marked by H3K9ac and H3K4me3, while inactive

promoters generally lack these marks [1,13,14]. In human, active

promoters are associated with H3K4me3, and enhancers are

associated with H3K4me1 but lack H3K4me3 [15]. With dozens

of covalent modifications already detected on histones, it is

conceivable that additional patterns of chromatin modifications exist,

and may reveal novel functional elements of the genome.

High-throughput experimental techniques, such as chromatin

immunoprecipitation on a microarray (ChIP–chip) [16,17] and its

sequencing-based variant ChIP-Seq [18], have been used to map

the enrichment of modified histones on a large scale [15]. This

data has revealed that the profiles of chromatin modifications over

large genomic regions define functional domains. In principle,

analysis of the chromatin modification patterns should allow

identification of different classes of functional elements associated

with the different histone modifications. However, tools for finding

chromatin modification patterns have been lacking [1,13,14].

Previously, supervised classification methods have been used to

identify chromatin modification patterns at known functional sites

[13,15,19–21]. For example, many studies focus entirely on well-

defined transcriptional promoters [3,8,9,13,15]. But this super-

vised approach of focusing only on annotated loci trivializes the

problem of finding commonly occurring histone modification

patterns on a global scale. One of the main motivations for

developing an unsupervised learning method is that we do not

know a priori what functional elements are associated with specific

histone modification patterns.

Here, we develop a novel, unbiased method for identification of

histone modification patterns occurring repeatedly in the genome.

We assume that a consistent repertoire of chromatin modification
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patterns exists, and that a pattern search algorithm should identify

such patterns in an unbiased fashion without using any annotations.

We treat this problem as a variant of the standard motif finding

problem: given a sequence over an alphabet, find subsequences that

are repeated more often than would be expected by chance. Here,

rather than working with a sequence over a discrete alphabet such as

nucleotides or amino acids, we have a sequence of real-valued

enrichment of chromatin modifications over a genomic region. To

perform motif finding over chromatin modifications, we develop a

probabilistic method called ChromaSig. Applying ChromaSig to a

panel of chromatin maps from ChIP–chip experiments performed in

HeLa cells on ENCODE arrays, we recover eight distinct clusters of

chromatin signatures. We recover known patterns observed at

putative active promoters and enhancers [15], as well as several

previously uncharacterized patterns. Furthermore, the distinct

chromatin signatures found at enhancers mark distinct functional

classes of enhancers in terms of transcription factor and co-activator

binding. Finally, we also apply ChromaSig genomewide to 21

chromatin marks mapped using ChIP-Seq in CD4+ T cells,

recovering 16 distinct and frequently occurring chromatin signatures.

ChromaSig reveals frequent and redundant cross-talk between

different histone modifications at a previously unappreciated level,

and reveals a unique class of quickly-evolving genome elements

consistently marked by repressive histone modifications. These results

support the utility of ChromaSig in discovering of novel chromatin

signatures.

Methods

Overview of ChromaSig
We represent large-scale chromatin modifications maps as

enrichment over consecutively tiled 100-bp bins. To find frequent-

ly-occurring chromatin signatures, ChromaSig is divided into two

parts. In the first part, we find all loci of width 2-kb that are highly

enriched in chromatin modifications, and therefore likely to contain

chromatin signatures. But as known chromatin signatures at

promoters and enhancers are typically larger than 2-kb [15], these

enriched loci are likely part of a larger chromatin signature, which

may be found in the vicinity of the enriched locus and oriented on

either strand of DNA. Thus, we define a search region of 7-kb

around each enriched locus where we search for a chromatin

signature motif of size 4-kb. This choice of search region and motif

sizes ensures that at least 75% of the enriched locus is covered by the

motif. In the second part, ChromaSig clusters, aligns, and orients

these enriched loci on the basis of chromatin modifications, using a

Euclidean distance measure. A given locus i can either align to the

motif M, the background B, or some other motif M9. For a given

histone mark h, the likelihood of accepting locus i at location offset l

and orientation p into M is given by:

Li,h,l,p~
Pr M locus i atj l, pð Þ

Pr B locus i atj l, pð ÞzPr M 0 locus i at l, pjð Þ

We then employ a greedy algorithm to align and orient each locus i

to M by choosing the l and p that maximize the following objective

function over all members of the motif:
P
i[M

P
all h

Li,h,l,p.

Algorithmically, we first define the seed motif by finding a small

group of loci sharing a common chromatin signature. We then

expand this seed to include other loci, simultaneously refining the

motif being searched. Let D represent the set of loci already assigned

to a motif, initially empty. We sequentially visit each locus not in D a

total of 5 times. All aligned loci having the motif are output and added

to D, to be excluded for future rounds of pattern searching. This

procedure is repeated with a new seed until no more seeds are found.

An overview of the algorithm is given in Scheme 1 and Figure 1.

Scheme 1: Overview of the ChromaSig

N = number of loci

D = the set of all assigned loci, initially empty

Repeat while (N?|D|)

Find a seed motif M of loci1D sharing a chromatin signature

(described below)

Repeat 5 times

For each locus i1D

Compute the likelihood of adding i into M

Choose to exclude i from M, or add i to M in a

specific

location and orientation

Update M

D = D<M

Print M

Chromatin Modification Data for ChIP–chip
We use published histone profiles for H4ac, H3ac, H3K4me1,

H3K4me2, H3K4me3, and core histone H3 [15] (GEO accession

GSE6273), as well as H3K9ac, H3K18ac, and H3K27ac

(Heintzman et al., submitted) (GEO accession GSE7118). These

data were obtained from ChIP–chip experiments performed in

HeLa cells using oligonucleotide tiling arrays spanning the

ENCODE regions, a set of 44 genomic regions with a total length

of 30 Mbp. We bin the data into 100-bp bins, averaging the

probes falling into each bin.

Finding Loci near Chromatin Signatures
To reduce the search space for finding chromatin signatures, we

first focus on enriched loci of width of w = 2-kb containing ChIP–

Author Summary

The DNA in eukaryotes is packaged by histones. Interest-
ingly, histones can be marked by a variety of posttrans-
lational modifications, and it has been hypothesized that
distinct combinations of histone modifications mark at
distinct functional regions of the genome. The study of
histone modifications has been aided by the development
of high-throughput techniques to map a wide assortment
of histone modifications on a global scale. However,
because much of our current understanding of the human
genome is concentrated on promoters, most studies have
only examined histone modifications at these well-defined
sites, ignoring the vast majority of the genome. To aid in
the discovery of functional elements outside of these well-
annotated loci, we develop an unbiased method that
searches for commonly occurring histone modification
patterns on a global scale without using any annotation
information. This method recovers known patterns asso-
ciated with transcriptional enhancers and promoters.
Supporting the histone code hypothesis, we discover that
the different functional activities of enhancers are closely
associated with the presence of different histone modifi-
cation patterns. We also discover several novel patterns
that likely contain other potential regulatory elements. As
the availability of large-scale histone modification data
increases, the ability of methods such as the one
presented here to concisely describe commonly occurring
chromatin signatures, thereby abstracting away irrelevant
or redundant data, will become increasingly more critical.

ChromaSig
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chip signals significantly deviating from background. For each

histone modification hM1…H, let xh,i be the average log-ratio of bin

i. After array normalization, xh,i approximately follows a Gaussian

distribution N(mh, sh). To find both histone modification rich and

poor loci, we assign a x2 statistic to each locus of size w starting at

the jth bin:

yh,j~
Xw

k~1

z2
h,jzk*x2

w

where zh,j+k = (xh,j+k2mh)/sh is a standard normal variate. We

perform the above separately for each histone modification and

use a p-value cutoff of 1.0E-5 to assess significant loci. To create a

non-redundant list of significant loci over all histone modifications,

we represent the score of a locus j as the sum of all significant yh,j.

Also, as it is likely that loci adjacent to significant loci will also be

significant, we keep a statistically significant high-scoring locus

only if all other loci #2.5-kb away have a lower score. Finally, we

remove all loci poorly represented on the tiling microarray, here

defined as containing fewer than 75% of the total number of

possible probes in the locus.

Finding Distinct Chromatin Signatures
The enriched loci above are not grouped by chromatin

signature, may not be aligned, and, in the case of asymmetric

patterns, may not be in the same orientation. Our goal is to reverse

these statements. But first, we begin with some notation. We are

given a set of enriched loci from above and a seed motif of width

wM = 4-kb from initialization (described below). For a given locus,

we want to determine if it contains the seed motif. But since the

loci is not aligned a priori, we expand our search to all width wM

windows containing at least 75% of the locus, in both forward and

reverse orientations. Thus, we are searching for a 4-kb motif in a

7-kb search region. For simplicity, we allow each locus to contain

at most one motif.

ChromaSig refines one motif at a time. The chromatin

signature of each motif is defined by the elements belonging to

the motif. More specifically, it is defined as: a set of loci

{i1,…ij,…in} that contain the motif, a set of relative locations

{l1…lj…ln} where lj indicates the location offset of the motif in

locus ij, and a set of polarities {p1…pj…pn} where pj indicates the

orientation of the motif in locus ij. Here, n is the total number of

loci containing the motif, which can range from 1 to N (N is the

number of loci, which is 1558 here), and pj can be either ‘‘+’’

Figure 1. Schematic overview of ChromaSig. In Step 1, we scan genome-scale histone modification maps to find signal-rich loci that potentially
contain chromatin signatures. In Step 2, we generate a seed pattern to initialize ChromaSig. In Steps 3 through 5, we visit each enriched locus in turn,
enumerate all possible 4-kb windows spanning at least 75% of the locus, and align each window to the seed. This is repeated until each locus has
been visited 5 times. Loci that align well to the seed are added to the seed.
doi:10.1371/journal.pcbi.1000201.g001
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indicating the forward orientation or ‘‘2’’ indicating the reverse

orientation. Let sh,ij ,lj ,pj
(denoted by sh,j) be the real-valued

sequence of the length wM window corresponding to locus ij at

location lj and orientation pj for histone modification h. Let

sh,ij ,lj ,pj
kð Þ (denoted by sh,j(k)) be the value of the kth bin in this

sequence. Given a seed pattern and a locus ij, we search over all

possible sh,j around ij for an optimal match to the motif.

We define a seed motif as m = {m1,…,mH}, where H is the

number of histone modifications, h ranges from 1 to H,

mh~ mh,1, . . . ,mh,wM

� �
, mh,k~

1
n

Pn
j~1

sh,j kð Þ, and n is the number

of aligned windows. In words, each histone modification h has its

own length wM pattern, which is the average of all aligned

windows. We define the motif standard deviation similarly:

sh,k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n{1

Xn

j~1

sh,j kð Þ{mh,k

� �2

vuut

During the sampling step, we choose a locus i and attempt to align

every length wM window, at all possible locations l and orientations p,

to the current seed motif. We compute the probability of observing a

window’s sequence under the motif model as

Mh,l,p~ P
wM

k~1
P sh,i,l,p kð Þ; mh,k; sh,k

� �
where P(x;m;s) is a probability defined by dividing the Gaussian

probability density function by its maximum value:

P(x;m;s) = exp(2(x2m)2/(2s2)).

Given a locus to be aligned to the seed, we consider two

possibilities: 1) the locus aligns well to the seed and is accepted into

the seed, or 2) the locus does not align well and is rejected. In the

latter case, the locus may not align well because 2A) the locus

matches better to a null background or 2B) the locus matches

better to another motif.

To decide between these possibilities, we consider two

background models. To consider 2A, we define the null

background model by the mean of all bins in the entire ENCODE

regions for each histone modification h (mh) and the mean of the

motif standard deviations sh~
1

wM

PwM

k~1

sh,k. The probability of

observing a window under the null background model is then:

Bh,l,p~ P
wM

k~1
P sh,i,l,p kð Þ; mh; sh

� �

Ideally, we would consider 2B by aligning a locus to all other

possible motifs. But since we do not know a priori what motifs exist, we

model the probability that a window belongs to another motif by:

Ah,l,p~ P
wM

k~1
P sanother; 0; 1ð Þ

where sanother is a user-specified parameter (here set to an empirical

value of 1.75) that represents the expected quality of the match with

another motif, represented as the number of standard deviations from

the mean. Larger values of sanother indicate a looser background model

and higher values indicate a more stringent background model.

The Mh,l,p represent the probabilities to add the locus to the seed

at a specific location and orientation for a given histone

modification, while the Bh,l,p and Ah,l,p represent the probabilities

to exclude the locus. To determine which window aligns best to

the motif model, we form the likelihood:

Lh,l,p~
Pr accept Datajð Þ

Pr reject by 2A Datajð ÞzPr reject by 2B Datajð Þ

Applying Bayes rule,

Lh,l,p~
Pr Data acceptjð Þpa

Pr Data reject by 2Ajð Þp2AzPr Data reject by 2Bjð Þp2B

~
Mh,l,ppa

Bh,l,pp2AzAh,l,pp2B

where pa, p2A, and p2B are priors that sum to 1. Here, we let pa = p2B

and p2A = 0.01. When Lh,l,p,1, the chance of rejecting a window is

greater than accepting it into the motif. If this is true for all l and p

for a given h, then there can be no favorable alignment of any

window from the given locus to the motif that involves the histone

modification h. In such a case, we unilaterally reject the locus,

regardless of how well other histone modifications align.

Otherwise, we find the l and p that maximizes
PH

h~1

log Lh,l,p, and

add this aligned locus into the seed motif.

A cycle is defined to be the process of aligning each locus to the

seed motif. At the end of a cycle, we construct a new seed motif

containing all accepted windows in their aligned locations and

orientations. At the end of 5 cycles, we output the motif and

aligned loci belonging to it. To ensure generality of the chromatin

signatures, we reject clusters with fewer than 20 elements or

clusters having a maximum absolute log-ratio signal less than 0.5.

Initialization
While most of the loci input to ChromaSig will not be aligned,

we do expect that a small number of them will be nearly aligned.

To determine the seed motif, we attempt to create seeds starting

from 100 randomly chosen enriched loci. For each such locus i, we

compute the Euclidean distance to all other loci and then use a fast

approximate sorting method to find the closest ,20 loci to i, which

forms a potential seed. Specifically, we define the leaves of a tree as

the loci distances in random order and then construct a

tournament tree until there are #20 parent nodes. A good seed

contains both regions of high signal and low signal, with the

members of the seed sharing a very similar chromatin signature.

Notably, a seed saturated with signal is uninformative, as it will be

difficult to align. We distinguish good seeds by using the following

score:

seedscore~
XH
h~1

PwM=2

k~1

m0h,k

��� ���{ PwM

k~wM=2z1

m0h,k

��� ���
sh

where m0h,k is |mh| in descending order. A high seed score indicates

a motif with balanced amounts of high and low signal, together

with a small standard deviation. We use the seed with the highest

score to initialize ChromaSig.

Application of ChromaSig to Genomewide ChIP-Seq Data
To ensure that ChromaSig is sufficiently general, we also apply

it to genomewide distributions of 21 histone marks mapped by

ChIP-Seq in CD4+ T cells [18] (Table S2).

ChromaSig
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N Data normalization: We consider only those reads that

map uniquely to the genome (hg18) with a maximum of 2

mismatches, and count polyclonal reads once to reduce

sequencing bias. We partition the genome into 100-bp bins

and count the number of reads in each bin. The number of

unique monoclonal reads may be highly variable between

different histone marks. For example, there are 15.4 million

reads spanning H3K4me3 but only 1.9 million spanning

H3K79me2. This vast difference in coverage makes it

difficult to compare ChIP enrichment for different histone

marks by comparing tag counts. Even for a single mark, sites

of true ChIP enrichment can have a large difference in

ChIP-Seq tag density [22]. To address these concerns, we

normalize the number of reads in each bin xh,i with a

sigmoid function:

x0h,i~
1

1ze{ xh,i{median xhð Þð Þ=std xhð Þ

Where median(xh) and std(xh) are the median and standard

deviation of the number of tags in the 100-bp bins for

histone mark h, excluding spurious bins containing exactly 0

and 1 reads. By definition, x9h,i will be 0.5 for bins containing

the median number of tags, falls to 0 as tag counts decrease,

and saturates to 1 as tag counts increase.

N Finding ChIP-Seq signal-rich loci: As we cannot

assume a Gaussian distribution of normalized enrichment,

we model the background empirically using all 2-kb

windows in the ENCODE regions. Furthermore, there are

twice as many chromatin marks in the ChIP-Seq dataset

compared to the ChIP–chip dataset, and being genomewide

the coverage is 100 times higher. To focus on the highest

quality loci, we keep a statistically significant high-scoring

locus only if all other loci less than 5.0-kb away have a

lower score, rather than the 2.5 kb used for ChIP–chip.

Furthermore, several chromatin marks including H3K9me3

and H3K36me3 are known to be enriched over large

domains. To focus on chromatin signatures smaller than 10-

kb, when creating a non-redundant list of significant loci, we

only consider those loci yh,j with p-value smaller than 1E-5

and that are more than 2.5-kb away from any other

significant locus in h.

N Motif with pseudocounts: As ChIP-Seq provides a digital

readout of ChIP enrichment, many bins are empty, and it is

possible that the motif mean mh,k = 0 for some h and k, which

results in sh,k = 0. To relieve this prohibitive constraint, we add

a pseudocount of 0.5 to each position of the motif:

m
seq
h,k~

1

nz1
0:5z

Xn

j~1

sh,j kð Þ
 !

sseq
h,k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
0:5{mseq

h,k

� �2

z
Xn

j~1

sh,j kð Þ{mseq
h,k

� �2

 !vuut
As the number of elements in the motif increases, the

contribution of the pseudocount decreases.

N Parameters: We run ChromaSig on ChIP-Seq data with

the same parameters as for ChIP–chip data. But to focus

only on the most frequently-occurring chromatin signatures,

we consider only those clusters with an average normalized

enrichment greater than 0.25 and with at least 500 loci.

Software Availability
ChromaSig is open source and freely available at http://

bioinformatics-renlab.ucsd.edu/rentrac/wiki/ChromaSig.

Results

ChromaSig Identifies Distinct Chromatin Signatures
Starting with ChIP–chip data for H4ac, H3ac, H3K9ac,

H3K18ac, H3K27ac, H3K4me1, H3K4me2, H3K4me3, and core

histone H3 spanning the ENCODE regions, we first use a sliding

window approach to identify signal-rich loci likely to contain histone

modification patterns (see Methods, Figure 1). Our goal is to find

commonly-occurring patterns in this set of loci. But because this

sliding-window approach is quite crude, it is unlikely that the loci will

be aligned. Furthermore, a chromatin profile can be observed in two

possible orientations corresponding to the two DNA strands running

in opposite directions, and the sliding window approach does not

account for these orientations. As such, it is unlikely that the collection

of signal-rich loci is oriented optimally to preserve asymmetric

chromatin signatures, such as those found at promoters [15]. We

employ ChromaSig to align and orient these loci into clusters with

similar chromatin signatures. Different chromatin signatures can be

distinguished by different enrichment of one or more histone

modifications, or they may share similar enrichment for all

modifications but contain a different enrichment profile for one or

more modifications. We find eight clusters spanning 1118 loci

(Figure 2 and Table S1).

Loci in the same cluster share the same chromatin signature, and

each cluster has a distinct chromatin signature (Figure 2), indicating

that the method is functioning as designed. To highlight the

similarities and differences of each cluster, we perform hierarchical

clustering on the average profiles of each cluster (Figure 1). This

reveals that, while some clusters are strikingly distinct from one

another, others are only subtly different. On the more distinct side,

CS1 is the only cluster to have strong enrichment of H3K4me3,

while cluster CS8 is the only cluster to be enriched solely in

H3K4me1. More subtly, the chromatin marks present at CS2 and

CS3 are the same, but are consistently weaker in CS3 than CS2.

Along the same lines, CS6 has narrower and weaker enrichment of

H3K4me1 that distinguishes it from the other clusters bearing the

H3K4me1 mark. The smallest cluster CS6 contains 44 aligned loci,

suggesting that the patterns occur frequently, and may likely be

found outside of the ENCODE regions. At the same time, loci in the

same cluster also share similar profiles for functional marks

(RNAPII, TAF250, p300), which were not the criteria used by

ChromaSig. This enrichment of functional marks implies that the

clusters group together functionally related genomic loci.

Comparing ChromaSig Clusters to Clusters from a
Supervised Learning Method

To assess the performance of ChromaSig in finding distinct

chromatin signatures, we compare ChromaSig signatures to those

recovered by a supervised learning approach. Using a training set of

chromatin signatures at promoters and enhancers, Heintzman et al.

predicted 198 promoters and 389 enhancers [15]. Because their

method relied on a sliding window approach that considers aligning

chromatin signatures from both strands, each set of predictions

should be aligned and oriented. To find distinct clusters of histone

modifications on the basis of the nine chromatin marks studied here,

we perform k-means clustering on the chromatin modifications near

each of these two sets of predictions, giving promoter clusters SP1–4

and enhancer clusters SE1–4 (Figure S1A and S1B).

To assess the quality of ChromaSig clustering and alignment,

we compare the clusters of predicted enhancers and promoters

ChromaSig
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that recover at least 25% of the loci from each ChromaSig cluster

(Figure 3 and Figure S2). The two ChromaSig clusters CS2 and

CS7 show striking similarity with clusters SE3 and SE4,

respectively (Figure 3B and Figure S2B). Remarkably, even

without a training set, ChromaSig employing an unsupervised

learning method recovers chromatin signatures found by a

supervised learning technique.

This picture changes with ChromaSig cluster CS1, which is

recovered by SP3 and SP4. All three of these clusters are enriched

with the same chromatin modifications, indicating that the two

methods perform similarly, at least at a coarse scale. But

interestingly, while the asymmetric patterns SP3 and SP4 are

distinct, they appear to be mirror images of each other, and are

likely the same pattern observed in opposite directions. Since

ChromaSig considers strand orientation in its alignment, cluster

CS1 is essentially a merge of these two mirrored clusters, forming a

single distinct, consistent, and asymmetric pattern (Figure 3A).

Thus, patterns recovered by ChromaSig are less redundant. Also,

cluster CS8 contains only H3K4me1 enrichment, and the only

cluster that recovers it also contains numerous loci enriched in

H3K18ac and H3K27ac (Figure 3C). This, together with the fact

that clusters CS4–6 are not recovered by any of clusters SP1–4

and SE1–4, indicate that ChromaSig can find distinct patterns not

found by this supervised learning method.

ChromaSig clusters preserve pattern asymmetry, are better

aligned, are less redundant, contain loci with more consistent

patterns, and contain unique patterns that are not found by the

supervised learning method. Most importantly, ChromaSig does

not require the construction of training sets, nor does it require the

specification of arbitrary parameters such as the number of clusters

to find. Instead, ChromaSig finds the natural groupings of the

data, creating new clusters as necessary.

ChromaSig Identifies Known Patterns at Promoters and
Enhancers

To date only a handful of distinct histone modification patterns

have been broadly associated with specific functions. These

include active promoters that are generally marked by the

presence of H3K4me3 but absence of H3K4me1, and enhancers

marked by the presence of H3K4me1 but absence of H3K4me3

[3,13,15]. To assess whether ChromaSig clusters of chromatin

signatures correspond to specific biological functions, we first

compare them to existing genome annotation.

Transcription start sites (TSS). Catalogs of transcription

start sites (TSSs) are one of the most abundant and nearly

complete annotations for human genomic elements. Of the 559

unique Refseq TSSs [23] in the ENCODE regions, 208 (37.2%)

are proximal (hereafter defined as within 2.5-kb) to cluster CS1,

far more than any other cluster (Figure 4A). To assess the

significance of this overlap, we compare with 100 random sets of

clusters of the same size, sampled from regions on the ChIP–chip

array to avoid biases from probe-poor regions, giving a p-value of

3.2E-141 assuming a Gaussian distribution. The majority of

Refseq TSSs are not recovered, as roughly half of them do not

contain enrichment of these histone modifications [15].

Promoter and enhancer predictions. Heintzman et al. use

the same dataset but with a supervised learning approach to

predict active promoters and enhancers [15]. A majority (62.6%,

p,1.0E-300) of the predicted active promoters are proximal to

cluster CS1 (Figure 4B). In addition, the enhancer predictions

generally fall into clusters CS2–3 and CS6–8 (Figure 4C). These

results indicate that cluster CS1 is highly enriched in promoters

containing the active chromatin marks, while clusters CS2–3 and

CS6–8 are enriched in HeLa-marked enhancers.

DNase I hypersensitivity (HS) sites. DNase I

hypersensitivity is a hallmark for many types of cis-regulatory

elements. Using a list of putative HS sites found from high-

throughput, high resolution DNase-chip experiments [24], we find

significant enrichment of HS sites at clusters CS1 (p = 6.7E-165),

CS2–3 (pCS2 = 8.4E-36, pCS3 = 7.3E-16), and CS6–7 (pCS6 = 7.1E-6,

pCS7 = 2.5E-7) (Figure 4D), consistent with their proposed function

as promoters and enhancers. On the other hand, clusters CS4–5

shows marked depletion of HS sites (pCS4 = 9.7E-9, pCS5 = 3.7E-4).

Distinct Chromatin Signatures Associated with Distinct
Functions

We recover several distinct chromatin signatures associated with

predicted HeLa enhancers. CS8 is only enriched in H3K4me1,

while CS7 also contains H3K18ac and H3K27ac enrichment. In

addition to these marks, clusters CS2–3 also have H3K4me2

enrichment, with CS2 being more acetylated than CS3. As the

remaining cluster CS6 is the only one to have less than 25% of its

loci recovered by predicted enhancers and also has the weakest

enrichment of the enhancer hallmark H3K4me1, it may contain

loci other than enhancers and we exclude CS6 from this analysis.

If the histone code hypothesis is true, we would expect functional

differences between enhancers marked by different signatures. To

assess if the different enhancer-like clusters also have distinct

functional roles, we examine enrichment in binding sites for a

variety of transcription factors and co-activators mapped in HeLa.

We notice that binding sites for the transcription factor c-Myc is

significantly enriched at clusters CS2 and CS3 (pCS2 = 4.6E-50,

pCS3 = 3.6E-7) (Figure 5A). Visually comparing the chromatin

modifications at these clusters which have c-Myc enrichment to

clusters CS7–8 that lack c-Myc enrichment, we observe that CS2–3

have enrichment of H3ac, H4ac, and H3K4me2, while these

chromatin marks are absent in E3–4. Thus, one of these marks may

be important to c-Myc function. In contrast, the co-activator p300 is

highly enriched at clusters CS2, CS3, and CS7 (pCS2 = 1.5E-75,

pCS3 = 4.1E-8, pCS7 = 3.3E-8) (Figure 5B). Strikingly, the only cluster

lacking p300 enrichment, CS8, is also the only cluster to lack

enrichment of H3K18ac and H3K27ac, suggesting a connection

between these chromatin marks and p300 activity. Finally, binding

sites for a different co-activator MED1 are only enriched at clusters

CS2 and CS7 (pCS2 = 5.4E-50, pCS7 = 4.9E-4) (Figure 5C), distinct

from binding of p300 and c-Myc. These results suggest that

enhancers marked by different chromatin signatures have unique

functional roles dictated by distinct protein complexes.

ChromaSig Identifies Other Potential Regulatory
Sequences

Outside of promoters and enhancers, current knowledge on

common histone modification patterns is sparse. ChromaSig

identifies two novel signatures CS4–5 marking sites of unknown

Figure 2. ChromaSig clusters recovered from 9 chromatin marks mapped by ChIP–chip in HeLa cells on ENCODE arrays. Heatmaps
(top) and average histone modification profiles (bottom) for each cluster output by ChromaSig. Each horizontal line in the heatmap represents
chromatin marks for a single locus. The window size for each mark is 10-kb. Nine histone marks (H4ac, H3ac, H3K9ac, H3K18ac, H3K27ac, H3K4me1,
H3K4me2, H3K4me3, and H3) used by ChromaSig and three independent functional marks (RNAPII, TAF250, p300) are presented. To organize these
clusters visually, we use hierarchical clustering with a Euclidean distance metric (left).
doi:10.1371/journal.pcbi.1000201.g002
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function, as well as CS6 which is only slightly recovered by

enhancer predictions. To assess the possible functional significance

of these genomic sites, we first analyze sequence conservation.

Here, we use PhastCons scores from multiple alignments of 7

vertebrate genomes (chimp, mouse, rat, dog, chicken, fugu, and

zebrafish) and human [25] to determine the amount of between-

species conservation of each cluster (Figure 6). Conservation scores

for clusters CS4–6 are generally significantly greater than that

expected at random (pCS4 = 9.6E-5, pCS5 = 7.8E-2, pCS6 = 1.6E-3,

as assessed by the Wilcoxon signed rank test compared to 10000

random sites). Turning to RegPot, which scores the regulatory

potential of regions in the human genome, we find that these

Figure 4. Overlap of ChromaSig clusters with known functional sites in the human ENCODE regions. Percentage of (A) 559 unique
Refseq TSSs [23], (B) 198 putative active promoters [15], (C) 389 putative enhancers [15], and (D) 1042 hypersensitive sites [24] that are found within
2.5-kb to the aligned loci, as compared to 100 sets of random sites.
doi:10.1371/journal.pcbi.1000201.g004

Figure 3. Comparison of ChromaSig to a supervised clustering method from Heintzman et al. [15]. (A) Heatmaps (top) and average
histone modification profiles (bottom) for cluster CS1, together with those for SP3 and SP4, which recover CS1 (33.3% recovery by SP3 and 31.1%
recovery by SP4). (B) Heatmaps (top) and average histone modification profiles (bottom) for cluster CS2, together with those for SE3, which recovers
CS2 (61.2% recovery by SE3). (C) Heatmaps (top) and average histone modification profiles (bottom) for cluster CS8, together with those for SE4,
which recovers CS8 (26.5% recovery by SE4). The color of each curve is indicated by the color of the cluster label.
doi:10.1371/journal.pcbi.1000201.g003
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clusters also have greater regulatory potential than that expected

at random (pCS4 = 3.5E-11, pCS5 = 2.1E-2, pCS6 = 1.6E-7). Togeth-

er, these results suggest clusters CS4–6 contain biologically

functional loci.

Clusters CS4–5 are generally depleted of all histone modifica-

tions, as well as the functional marks RNAP II, TAF1, and p300

(Figure 2). The overlap of cluster CS4 at Refseq TSSs (Figure 4A)

and the lack of overlap at active promoters (Figure 4B) suggest that

some CS4 sites may contain inactive TSSs. To assess this, we

examine enrichment of clusters at promoters of expressed and

unexpressed genes (Figure 7A and 7B). We observe depletion of

clusters CS4–5 at the 59 ends of expressed genes (pCS4 = 7.5E-4,

pCS4 = 1.6E-2), and CS4 is actually enriched at promoters of

unexpressed genes (pCS4 = 2.4E-2). Thus, some members of CS4

may be inactive promoters. We also observe significant enrich-

ment of cluster CS6 at promoters of unexpressed genes (p = 1.7E-

3) (Figure 7B). This suggests that, in addition to containing

enhancers, this cluster of evolutionarily conserved sequences that

are marked by HS in HeLa cells may also contain inactive

promoters.

As the majority of clusters CS4–5 are not explained by

promoters, we next ask if these clusters recover other distal

regulatory elements. The depletion of HeLa HS sites in CS4–5

(Figure 4D) suggests that these clusters should also be depleted of

transcription factor binding sites (TFBSs). But when we examine the

overlap with STAT1 binding sites in HeLa cells treated with IFN-c
(Heintzman et al., in submission), we observe striking enrichment

with cluster CS4 (p = 5.4E-5) (Figure 7C). Interestingly, while

ChromaSig clusters are derived from HeLa chromatin profiles, the

STAT1 overlap occurs in a different cellular context, suggesting that

cluster CS4 may harbor TFBSs not bound in HeLa cells.

The PreMod database [26] contains 1655 putative conserved

TF modules in the ENCODE regions. As PreMod is determined

by static sequence data, its sites represent TFBSs under various

cellular conditions. To test the hypothesis that clusters CS4–5

mark TFBSs not bound in HeLa cells, we test the enrichment of

these clusters at PreMod sites distal to HeLa HS sites.

Interestingly, we find that CS4 members are enriched in these

sites (pCS4 = 7.6E-5), suggesting that this cluster contains sites that

potentially bind TFs, but not in HeLa cells (Figure 7D). As an

independent method to support this result, we combine HS sites

previously mapped in six non-HeLa cell lines [24,27]. Removing

those sites near HeLa HS sites, we find significant enrichment with

clusters CS4 and CS5 (pCS4 = 1.4E-4, pCS4 = 3.0E-2) (Figure 8E).

Finally, we compare clusters CS4–5 with enhancers predicted in

four cell types (Heintzman et al., in submission), using our

previously published chromatin signature-based method [15]. Of

those enhancers not marked by HS in HeLa cells, we observe

significant enrichment at clusters CS4–5 (pCS4 = 3.7E-2,

pCS5 = 7.7E-3) (Figure 7F). Together, these results suggest that

ChromaSig clusters having novel chromatin signatures also

contain regulatory sequences.

ChromaSig Identifies Distinct Chromatin Signatures in
Genomewide ChIP-Seq Data

So far, we have shown that ChromaSig can find distinct

chromatin signatures using ChIP–chip data spanning the EN-

CODE regions. But the question remains as to whether

ChromaSig is applicable on a genomewide level or on ChIP-Seq

data from next-generation sequencing. To address this, we focus

on a recently published study by Barski et al. which used ChIP-Seq

to map the genomewide distributions of 21 chromatin marks in

CD4+ T cells [18]. We identify 16 clusters containing distinct

chromatin signatures spanning 49340 genomic loci (Figure 8).

Figure 5. Overlap of ChromaSig clusters with transcription
factors and coactivators mapped in HeLa cells in the ENCODE
regions. Percentage of (A) 499 c-Myc [35], (B) 125 p300 [15], and (C) 78
MED1 [15] binding sites found within 2.5-kb to aligned clusters, as
compared to 100 sets of random sites.
doi:10.1371/journal.pcbi.1000201.g005
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Using hierarchical clustering with a Euclidean distance measure to

categorize the average profiles of each cluster reveals that there are

essentially two main categories of genomic elements. One class,

GW1–10, contains combination of the activating marks

H3K4me1/2/3 and H2BK5me1. Another class, GW11–16, are

more prevalently marked by the repressive marks H3K9me3,

H3K27me3, and H3K36me3, and H3K79me3.

There are 5 clusters significantly enriched for promoters

(Figure 9A), each with a distinct combination of chromatin marks.

To assess significance, we compare with 100 random sets of

clusters of the same size, sampled from non-repeat masked regions

of the genome. In addition to being the only promoter cluster

enriched in H4K20me1, GW1 contains the strongest enrichment

of H3K4me3 with a corresponding wide valley of H3K4me1

enrichment, in contrast to GW7 which has weaker H3K4me3

enrichment followed by a narrower H3K4me1 enrichment profile

and GW5 which contains even weaker enrichment of these marks.

Of the remaining promoter-associated clusters, GW8 contains

‘‘bivalent’’ promoters enriched in active H3K4me3 and repressive

H3K27me3 marks [28], while GW16 is mainly enriched in the

repressive marks H3K9me3, H3K27me3, and H3K79me3.

Enrichment of H3K36me3 has been associated with the 39 ends

of highly expressed genes [18]. Consistent with this, we observe

that GW11–12, which contain the strongest enrichment of

H3K36me3, are also enriched at Refseq 39-ends (Figure 9B).

While the vast majority of histone modifications at these two

clusters are similar, it is also clear that GW11 is more enriched in

H3K9me1 and H4K20me1 than GW12.

Recently, Boyle et al. mapped DNase I hypersensitive sites

genomewide in CD4+ T cells [29]. Here, we observe that clusters

GW1–10, which generally contain active marks, are all enriched in

DHS sites. In contrast, the remaining clusters GW11–16 marked

by repressive marks all lack DHS enrichment (Figure 9C). Thus,

GW1–10 likely contain regulatory elements functioning in CD4+
T cells. Mirroring this observation, clusters GW1–10 are also

generally enriched in known regulatory elements as annotated by

ORegAnno [30] (Figure 9D).

This analysis reveals possible functional roles for GW1–12 and

GW16. Like these clusters, each remaining cluster contains loci

that share a consistent chromatin signature, suggesting that each

cluster contains loci that may function similarly. Interestingly,

GW13–16 are all consistently marked by repressive chromatin

marks, and in particular the heterochromatin mark H3K9me3.

But unlike large domains of heterochromatin, GW13–16 appear to

be localized to small heterochromatic loci spanning less than 5 kb.

To assess possible functionality for GW13–15, we next turn to

sequence conservation. Surprisingly, these clusters and GW16 are

actually less conserved than expected at random (p,1e-15)

(Figure 9E). Thus, GW13–16 contain quickly evolving but

consistently marked, locally heterochromatic regions of the

genome, though their specific functions remain unknown.

Discussion

Large-scale maps of histone modifications provide a global view

of epigenetic status and allow us to investigate the influence of

epigenetics in development and disease. Thanks to the develop-

ment of large scale experimental approaches including ChIP–chip

and ChIP-seq [16,31], datasets of histone modification profiles are

rapidly accumulating. However, while numerous methods have

been developed to identify the binding locations of transcription

factors (TFs) from these data [19–21,32], methods for analysis of

histone modification profiles are still lacking due to unique

challenges that have not been encountered with TF data. Binding

sites for TFs are generally discrete peaks and are sparsely scattered

throughout the genome [19], whereas histone modifications are

often repeated over many consecutive nucleosomes [1,3]. As such,

finding regions of interest in a histone modification landscape is

quite different from finding TF hits. While using standard peak-

finding on histone modifications is possible, this approach suffers

from several drawbacks. First, peak-finding ignores loci depleted of

binding signal, which can be important in mapping nucleosome-

depleted regions [15]. Second, analysis of histone modification

data is focused on identifying a specific pattern in regions often

spanning thousands of base pairs (bps) while peak finding for TFs

is generally focused on much smaller regions. Third, peak finding

ignores the binding profile’s orientation, but the orientation of

asymmetric histone patterns can be quite functionally revealing

[13,15]. Finally, peak-finding treats different proteins indepen-

dently, ignoring the correlation of different histone modifications,

and thereby reducing the likelihood of discovering novel biological

insights from the combinatorial presence of multiple histone

modifications [13,15].

In this study, we introduce a strategy called ChromaSig to find

commonly occurring chromatin signatures given a landscape of

histone modification profiles. Using an unsupervised learning

approach, ChromaSig simultaneously clusters, aligns, and orients

chromatin signatures without using any training sets or external

Figure 6. ChromaSig clusters are evolutionarily conserved. Distribution of maximum PhastCons conservation scores [25] over a 1-kb window
centered at the aligned loci, as compared to 10000 random sites.
doi:10.1371/journal.pcbi.1000201.g006
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annotations. Using histone modification data alone, ChromaSig is

able to distinguish subtle differences in chromatin signatures,

allowing it to find natural groupings of the data without relying

explicitly on heavily constraining parameters such as the number

of expected clusters, which can severely hamper pattern discovery.

Interestingly, even with this limited input, ChromaSig recovers

chromatin signatures similar to a previously published supervised

learning method that used high-quality curated training sets. In

addition to discovering new chromatin signatures, the ChromaSig

clusters preserve pattern asymmetry, are better aligned, and are

less redundant.

ChromaSig is sensitive enough to recover known histone

modification patterns for active promoters and enhancers. This

recovery of known patterns further suggests that the novel patterns

are real. Our method is also able to clearly distinguish between

different classes of enhancers based on chromatin modifications.

Interestingly, we find that different functional activities of

associated with enhancers, such as binding of specific co-activators

Figure 7. Clusters CS4–5 contain regulatory elements. Percentage of the (A) promoters from expressed genes, (B) promoters from
unexpressed genes, and (C) STAT1 binding sites in IFN-c treated HeLa cells that are within 2.5-kb of the aligned loci. Percentage of (D) PReMod sites
[26], (E) combined 6-cell type HS sites [24,27], and (F) combined 5-cell type enhancer predictions distal to HeLa HS sites that are within 2.5-kb of
aligned loci. All overlaps are compared to 100 sets of random sites.
doi:10.1371/journal.pcbi.1000201.g007
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Figure 8. ChromaSig clusters recovered from 21 histone marks mapped by ChIP-Seq in CD4+ T cells genomewide. ChromaSig recovers
16 clusters spanning 49340 genomic loci. Each cluster is represented by a heatmap summarizing ChIP-Seq enrichment for all loci in the cluster. The
window size for each mark is 10-kb. To organize these clusters visually, we use hierarchical clustering with a Euclidean distance metric (left).
doi:10.1371/journal.pcbi.1000201.g008
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and transcription factors, are linked to specific histone modifica-

tions present at the enhancers. While the mechanism for this

phenomenon is unclear and will require further study, it is

tempting to speculate that additional maps of chromatin marks

and transcription factors in HeLa cells may uncover more specific

classes of enhancer chromatin signatures associated with more

specific functions, lending further support to the histone code

hypothesis. This phenomenon may also occur at other genomic

elements such as promoters and insulators.

ChromaSig also recovers several novel clusters CS4–5, which

are simultaneously depleted of 9 chromatin modification marks

and 3 general transcription factors. Such depletion may corre-

spond to special chromatin structures that are generally resistant to

immunoprecipitation. Indeed, depletion of ChIP/Input signals at

these loci is also observed in independent ChIP–chip experiments

against STAT1, c-Myc and other transcription factors using HeLa

S3 cells [15,33]. However, we find that these sites contain

evolutionarily conserved sequences and are enriched in inactive

promoters and TFBSs. These observations suggest that clusters

CS4–5 contain potential regulatory elements.

Application of ChromaSig genomewide recovers only 16

distinct chromatin signatures. With the 21 different histone

modifications studied here, the number of different possible

combinations is 2̂21. Strikingly, ChromaSig reveals that the

number of frequently-occurring histone modifications is actually

quite small in humans, a result mirrored in yeast [13], and some

chromatin signatures occur much more frequently than others.

Notably, GW1–10 are all enriched in DNase I hypersensitive sites,

indicating they are likely to mark function genomic elements in

CD4+ T cells. Of these, GW1/5/7/8 are highly enriched in

H3K4me3, and consistent with this, are also enriched in

promoters. The remaining hypersensitive clusters are enriched in

known regulatory elements, some of which may be enhancers.

Consistent with this, many of these clusters contain stronger

enrichment of H3K4me1 than H3K4me3. Extending from our

results focused on the ENCODE regions, we hypothesize that

these different clusters are bound by a different combination of

transcription factors and co-activators.

In recent years, numerous studies have used the genome

sequence, along with high-throughput expression and transcrip-

tion factor ChIP data, to characterize regulatory elements [21,34].

As the epigenetic code offers an abstraction over the genetic code,

using it alone may be viable in the study of some functional

genomic elements – including genes, enhancers, repressors,

insulators, and other regulatory elements. As the availability of

large-scale data for chromatin marks increases, the ability of

methods such as the one presented here to concisely describe the

underlying chromatin signatures, thereby abstracting away

irrelevant or redundant data, will become increasingly more

critical. Future efforts to unify both epigenetic and genetic content

will be quite powerful in further identifying and characterizing

regulatory elements that have eluded current methods.

Supporting Information

Figure S1 Heatmaps of promoter and enhancer predictions

from Heintzman et al. [15]. Heatmaps of chromatin modifications

and functional marks found at (A) promoter and (B) enhancer

predictions, after performing k-means clustering on the nine

chromatin marks (k = 4).

Found at: doi:10.1371/journal.pcbi.1000201.s001 (6.16 MB TIF)

Figure S2 Comparison of ChromaSig clusters to clusters from

Heintzman et al. [15]. Heatmaps (top) and average histone

modification profiles (bottom) for ChromaSig clusters (A) CS3 and

(B) CS7, together with those clusters in Heintzman et al. which

recover the ChromaSig clusters. Comparisons for CS1–2 and CS8

can be found in Figure 3. Clusters CS4–6 are not recovered by

Heintzman et al. clusters. The color of each curve is indicated by

the color of the cluster label.

Found at: doi:10.1371/journal.pcbi.1000201.s002 (6.36 MB TIF)

Table S1 ENCODE clusters in HeLa cells. Locations and

orientations of each predicted element (hg17), after applying

ChromaSig to 9 histone marks mapped by ChIP–chip in HeLa

cells on ENCODE arrays.

Found at: doi:10.1371/journal.pcbi.1000201.s003 (0.03 MB

DOC)

Table S2 Genomewide clusters in CD4+ T cells. Locations and

orientations of each predicted element (hg18), after applying

ChromaSig to 21 histone marks mapped by ChIP-Seq in CD4+ T

cells genomewide.

Found at: doi:10.1371/journal.pcbi.1000201.s004 (1.52 MB RTF)
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