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T regulatory cells suppress a variety of immune responses to self-antigens and play a role
in peripheral tolerance maintenance by limiting autoimmune disorders, and other
pathological immune responses such as limiting immune reactivity to oncoprotein
encoded antigens. Forkhead box P3 (FOXP3) expression is required for Treg stability
and affects functional activity. Mutations in the master regulator FOXP3 and related
components have been linked to autoimmune diseases in humans, such as IPEX, and a
scurfy-like phenotype in mice. Several lines of evidence indicate that Treg use a variety of
immunosuppressive mechanisms to limit an immune response by targeting effector cells,
including secretion of immunoregulatory cytokines, granzyme/perforin-mediated cell
cytolysis, metabolic perturbation, directing the maturation and function of antigen-
presenting cells (APC) and secretion of extracellular vesicles for the development of
immunological tolerance. In this review, several regulatory mechanisms have been
highlighted and discussed.

Keywords: Treg-regulatory T cells, FOXP3, T-effector cells, immunosuppression mechanisms, Tip60, autoimmune,
antitumor immunity
INTRODUCTION: A HISTORICAL PERSPECTIVE

The immune system maintains a pool of Regulatory T cells (Tregs), a discrete population of CD4+
lymphocytes that regulates both innate and adaptive immune responses towards self-antigens,
virulent agents, cancer, commensal microbiota, and various other allergens (1–5). Tregs play a
prominent role in the maintenance of immune tolerance and normal functioning of the immune
system or immune homeostasis by eliminating the autoreactive T cells, induction of self-tolerance,
and curbing inflammatory processes (6–10).

The suppressive function of a class of T cells was first reported by Gershon and Kondo in the
1970s (11). Gershon’s laboratory discovered that the negative interference exerted by T cells during
inflammation was distinct from helper T cells (TH cells), hypothesizing that T cells not only
enhanced but also weakened immune responses by downregulation of some biological functions
(11). This suppressor T cell field was interrupted in the mid-1980s when analysis of mouse MHC
gene failed to define the I-J DNA region, presumed to encode a molecule or domain of a molecule
associated with their suppressive functions (12–14).

Other reasons that diminished interest in Regulatory cells was the inadequacy of specific markers
for differentiating Tregs from other T cell populations, uncertainty in the molecular features of
suppression, and difficulty in developing antigen-specific suppressor T-cell clones (13, 15).
However, in the 1990s, the notion of T cell-mediated suppression resurfaced when a novel
org October 2021 | Volume 12 | Article 7505421
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subgroup of CD4+ T cells were distinguished that co-expressed
the interleukin-2 receptor (IL-2R) alpha-chain (CD25) and its
ability to suppress autoimmunity in thymectomized mice (16).

Researchers have investigated the relationship between Tregs
and tumors in the tumor microenvironment. Treg participation
in anti-tumor immunity was first discovered in 1976 by Fujimoto
and Greene (17). In 1999, others showed that in T cell-deficient
animals transplanted with CD25+ cell-depleted splenocytes,
anti-CD25 Ab depleting CD4+CD25+ Tregs inhibited tumor
development (18). Reports have shown that Tregs infiltrate
tumors and suppress the function of various immune cells
including CD4+ T helper cells, CD8+ cytotoxic T cells, NK
cells, and NK T cells (19–21). Thus, Tregs are able to suppress
antitumor immunity, enabling tumors to progress faster, and
their presence in the tumor microenvironment is directly
correlated to a poor prognosis (22).

In humans roughly, 5-10% of the CD4+ T cell population in
peripheral blood are comprised of naturally arising Tregs
characterized by constitutive expression of CD25 and Forkhead
Box 3 (FOXP3) (23–25). Mutations in FOXP3 were discovered
to be associated with an autoimmune lymphoproliferative
illness in humans termed X-linked autoimmunity-allergic
dysregulation syndrome (XLAAD), which was later renamed
Immunodysregulation, polyendocrinopathy, enteropathy, and
X-linked (IPEX) syndrome (26). IPEX is one of the most well-
known Mendelian disorders, characterized by a loss of
immunological tolerance caused by a lack of functioning Treg
cells (27, 28). As a result of these discoveries, effective Treg
suppression is clearly necessary to avoid autoimmune and
chronic inflammatory diseases.
FOXP3: THE MASTER REGULATOR
OF TREGS

Expression of FOXP3 serves as a dominant regulatory pathway
in Treg development and function and is vital for Treg cell
lineage identity (9, 29). FOXP3 is a member of the forkhead/
winged-helix family of transcriptional factors. The gene is
located on the X -chromosome and is highly conserved among
different species. The FOXP3 protein is a 431 amino acid
structure that is encoded by the FOXP3 gene in humans. The
protein has four domains: an amino-terminal proline-rich
domain mediating transcriptional repression, a central zinc
finger, and leucine zipper domains facilitating homo or hereto-
dimerization and the C-terminal forkhead domain implicated in
nuclear localization and DNA binding activity.

The N-terminal domain has a typical role in the development
and function of Tregs (30, 31). The role of foxp3 in modulating
immune tolerance was recognized by the discovery of “scurfy”
mice exemplified by multi-organ lymphocytic infiltration,
associated with mutations in the foxp3 gene (32). In humans,
the scurfy phenotype shared molecular and clinical features with
IPEX, which was later linked to the human orthologous FOXP3
gene (33).
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Tregs appear more resistant to thymic deletion processes and
are generated from the thymus during the early stages of fetal
development (19). Treg cell activation is antigen-specific,
inferring that Treg cells suppressive functions are antigen-
dependent. Although self-reactivity of Treg cells has been
proposed, extensive TCR repertoire analyses have revealed that
self-reactivity is more likely to be the exception instead of the rule
(34, 35).

A fraction of CD4+ expressing thymocytes/progenitor cells
can differentiate into CD4+ CD25+ FOXP3+ T cells, commonly
described as thymus derived Treg (or tTreg), or natural Treg
(nTreg). Treg cells can also be generated extrathymically
following antigenic stimulation of conventional CD4+ T cells/
naive T cells at peripheral sites (lymphoid or non-lymphoid
tissues) and therefore are designated as the peripheral (pTreg)
Treg cells (in vivo). Upon stimulation with anti-CD3 in the
presence of cytokines such as TGF- b and IL-10, induced Tregs
(iTreg) cells (in vitro) can be established in cell cultures (36–38).
While some investigations have also shown that Helios and
neuropilin-1 (Nrp1), a semaphorin III receptor, can be used to
identify tTreg and pTreg cells, there are several instances that
clearly do not distinguish between thymus and extrathymically
derived Tregs (39–41). Even though no one marker distinguishes
these three distinct subgroups of Tregs, FOXP3 expression is
indispensable for their suppressive function.

Studies have conjointly indicated that tTreg cells can develop
into specialized effector Treg subsets, such as tissue resident Treg
cells that play a significant role in non-lymphoid organ function
(42, 43). Tregs in visceral adipose tissue, muscle Tregs, and skin-
resident memory Tregs have been described emphasizing some
intriguing biological implications about their functional
interactions with local tissues (43–47).

FOXP3 interacts with various transcriptional and chromatin-
modifying factors and acts as a “master” regulator of Treg cell
development process (9, 48, 49). FOXP3 can modulate the
transcriptome of Treg cells by various mechanisms depending
on binding partners. FOXP3 forms large protein complexes
ranging from 300 KDa to over 12000 KDa encompassing many
proteins that have either a direct or indirect interaction within
this interactome per se (50, 51).

Binding of AML/Runx1 (Acute myeloid leukemia 1/Runt-
related transcription factor 1) to FOXP3 leads to upregulation of
Treg-related molecules by repressing IL-2 and IFN-g levels (52).
Runx1 also forms a complex with core-binding factor subunit
beta (CBFb) and precisely adheres to the FOXP3 promoter
region’s conserved non-coding sequencing region 2 (CNS2),
which is significantly de-methylated in Tregs and is required
for FOXP3 expression and Treg cell lineage stability (53).
Interaction of FOXP3 with the nuclear factor of activated
T cells (NFAT) complements the expression of CD25,
cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and
glucocorticoid-induced TNF receptor (GITR) while curbing the
expression of inflammatory genes IL-2 and IFN-g, serving as a
transcriptional activator of Treg cells (54–56). NFAT is required
by both iTregs and pTregs, but not by tTregs. NFAT binds to
FOXP3 and suppresses the expression of NFAT-targeted genes.
October 2021 | Volume 12 | Article 750542
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NF-kbmolecules Rels (both RelA and c-Rel) have a role in pTreg
formation as well as FOXP3-regulated gene expression and
repression (57, 58). RelA deletion, which is Foxp3-specific,
causes more severe autoimmune symptoms than c-Rel
deletion, indicating that RelA is more essential than c-Rel in
Treg function (58).

Additionally, Eos (IKZF4), GATA3, Interferon regulatory
factor 4 (IRF4), signal transducer and activator of transcription
(STAT3), Retinoic acid receptor-related orphan receptor
(RORgT), RORa, YY1, hypoxia-inducible factor 1-alpha
(HIF1a), FOXO1, FOXO3, and Satb1 are among the
transcription factors that have been reported to interact with
FOXP3 to promote Treg identity (50, 59–67). As a result of these
numerous descriptions, it has been shown that the presence of
these components upstream of FOXP3 orchestrates Treg lineage
and makes FOXP3 indispensable for Treg suppressor activity.

The function of FOXP3 can also be regulated by several
posttranslational modifications (PTMs) including acetylation,
phosphorylation, ubiquitination, and methylation (29).
These PTMs govern its DNA binding capability, stability,
and protein-protein interactions (transcriptional co-activators,
transcriptional repressors, and chromatin remodelers) that
modulate Treg suppressive functions. The process of
acetylation involves acetylation and deacetylation of specific
lysine residues catalyzed by the activities of both Histone
acetyltransferases (HATs)/lysine acetyltransferases (KATs) and
Histone deacetylases (HDACs). The principal acetylase include
Tip60 (KAT5), a member of the MYST family, and p300
(KAT3b) belonging to the p300/CBP family (68, 69). Both
Tip60 and p300 act cooperatively to acetylate FOXP3 (70).

p300 interacts with Tip60 to stimulate auto-acetylation and
this interaction affects the stability of Tip60. Following this
interaction, p300 acetylates the K327 of Tip60, which changes
its substrate interaction and acts as a “molecular switch”,
permitting Tip60 to change binding partners. Because of this,
Tip60 associates with FOXP3, acetylates FOXP3 leading to
release of p300. Throughout these events, Tip60 itself
acetylates p300, which is indispensable for its HAT activity.
Synergistic actions of both Tip60 and p300 contribute to
maximal stimulation of FOXP3 repressive transcriptional
activity and enhanced stability by preventing its polyubiquitylation-
mediated degradation (70, 71).

In an earlier study from our laboratory, we first showed that
Tip60, HDA7, and HDAC9 were associated with FOXP3 in a
dynamic ensemble forming a chromatin remodeling complex
where Tip60 constituted as a vital subunit in the repression
complex. We found that FOXP3 exerted higher repression in the
presence of over-expressed Tip60 levels when compared to its
HAT deficient mutant forms. Further, the knockdown of Tip60
eased transcriptional repression (69). In subsequent studies from
our laboratory, we showed that the conditional knockout of
Tip60, but not p300 in vivo, leads to scurfy like an autoimmune
disease by significantly lowering the Treg cell population in
spleen and lymph nodes (70). Further, naïve CD4+ T cells
transduced with foxp3 and Tip60 mutants (Q377/G380E and
K327Q) exhibited lowered Treg suppressive function compared
to foxp3 and wild type (WT) Tip60.
Frontiers in Immunology | www.frontiersin.org 3
In disease processes such as IPEX, one of the most common
mutations (A384T) occurring in the C-terminal forkhead
domain disrupts the Tip60-FOXP3 interaction affecting Treg
functions. Our laboratory has identified small allosteric modifiers
(SGF003 and B7A) that are able to target Tip60. We employed a
cavity-induced allosteric modification (CIAM) approach that
can help stabilize Tip60-FOXP3 interaction and can restore
Treg suppressive capacity (71, 72). These observations identify
some of the important roles of Tip60 in Treg biology [Figure 1,
adapted from (70, 71)].

Methylation of FOXP3 occurs on arginine residues by the
activity of Protein methyl transferases (PRMTs) exerts a pivotal
role in Treg function. PRMT5 is the core type II protein arginine
methyltransferases found abundant in all eukaryotic species (73,
74). In recent studies, it was demonstrated that the cholesterol
biosynthesis metabolic gene expression program that induces
RORgt agonistic activity and promotes Th17 differentiation
and experimental autoimmune encephalomyelitis is dependent
on “PRMT5 expression” in newly activated T cells (75).
Additionally, recruitment of STAT3 by PRMT surmounted the
inhibition of Th17 differentiation mediated by STAT5 activation
induced by IL-2. As a result, PRMT influenced Th17
differentiation by controlling the reciprocal recruitment of
STAT3 and STAT5. Identifying PRMT members that act as a
potential target for reducing RORgt-dependent production of
pathogenic Th17 cells may be relevant to therapeutics that may
relieve Th17-mediated autoimmunity (76).

Conditional deletion of PRMT5 in Treg cells alters their
quantity and function, resulting in a scurfy phenotype,
according to recent data from our laboratory. We found that
in Foxp3+ cells, silencing PRMT5 resulted in reduced
suppressive activity, which affected the relevance of PRMT5 in
Treg function maintenance. Inhibiting PRMT5 affected anti-
tumor immunity by limiting the infiltration of Treg cells into
tumor sites. In a syngeneic mouse model of breast cancer (erbB2/
neu), we reported that DS-437, a PRMT5 inhibitor, dramatically
improved anti-HER2/neu therapy in rodents (77). Taken
together, these findings point to the critical functions of
PRMT5 and PRMT1 in regulating FOXP3 function by
regulating Treg cell activity and function.
SUPPRESSIVE MECHANISMS
OF TREG CELLS

Tregs have the potential to alter immune function in cells of both
the innate and adaptive immune systems. Treg cells suppress a
myriad of immune cells, notably B cells, CD4+ T cells, CD8+
cytotoxic T cells, NK cells, NKT cells, macrophages, dendritic
cells, neutrophils, and T cells (1, 78). Tregs use a variety of
immunosuppressive methods to dampen immune responses
(Figure 2). These include (a) immunosuppressive cytokines
such as TGF-b, IL-10, and IL-35 (b) Metabolic perturbations
involving CD25 (IL-2 receptor alpha) dependent cytokine
deprivation facilitated apoptosis, immunosuppressive
adenosine by ectoenzymes CD39 and CD73 and c-AMP
October 2021 | Volume 12 | Article 750542

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Grover et al. Mechanisms of Tregs Limiting Immunity
mediated inhibition, (c) granzyme and perforin mediated
cytolysis (d) Interaction with antigen-presenting cells (APC)
such as dendritic cells (DCs) to modulate their maturation and
function (CTLA4 and LAG3) and (e) extracellular vesicles (EVs)
generated from Tregs (8, 9, 24, 78–83).

Distinct processes may function in different situations, with
one taking precedence in one process and the other in the
another. Alternatively, multiple suppressive mechanisms act in
concert and may do so synergistically, such that limiting of any
one of these pathways not enough to compromise suppression
activity significantly (84).

Inhibitory or Immunosuppressive
Cytokines
Suppressive effects mediated by Treg cells can be achieved via the
release of soluble mediators or Treg-associated cytokines such as
TGF-b, IL-10, and IL-35 (member of IL-12 family) (79, 85). The
main mechanisms of action of these cytokines are (a) Restrict
stimulation and/or survival of effector T (Teff) cells in the state of
autoimmunity by inhibiting the autoreactive Teff cell activation
and (b) Production of iTreg cells supporting peripheral
homeostasis and survival of these cells (24).

Treg cells produce a significant amount of both soluble and
membrane-bound TGF- b, and blockage of TGF- b using anti-
TGF- b impairs T cell proliferation in vitro (both murine and
human T cells) (86). In another study, mice lacking TGF-b were
Frontiers in Immunology | www.frontiersin.org 4
shown to develop chronic autoimmunity and had low levels of
CD4+ CD25+ Treg cells following 4 to 5 weeks (87, 88). In the
presence of TGF-neutralizing antibodies, both murine and
human Treg responses were found to be impaired,
emphasizing the relevance of this immunosuppressive cytokine
(89). In a recent study, RING-type E3 ligase Arkadia, that
governs TGF- b signaling during development, was shown to
be required for iTreg but not Th17 and its ablation in T cells
resulted in a higher propensity to inflammatory bowel disease
(90). In yet another study, it was found that monoallelic deletion
of Tgfb1 in Treg cells resulted in allergic response by impairing
RORgT mediated Treg development. Tgfb1 deletion caused
catastrophic autoimmunity with a scurfy-like phenotype
involving autoantibody synthesis and impaired follicular T
helper and B cell responses in Treg cells (91). Together these
observations highlight the role of TGF-b in both allergic and
autoimmune responses.

IL-10 production by Treg cells appears to play an important
role in regulating intestinal inflammation by regulating tolerance
towards commensal microbiota. Mice lacking IL-10 in Tregs are
highly susceptible to colitis using Inflammatory bowel disease
(IBD) models and exhibit immune reactivity in the airways (92,
93). On a similar note, Treg cells lacking IL-10R in mice resulted
in dysregulation of Th17 cell responses and development of
colitis by inhibition of STAT3 signaling (94). Likewise, mutations
in genes encoding IL-10 and/or IL-10R are associated with
A B

D EC

FIGURE 1 | Importance of Tip60 in maintenance of peripheral Treg cell population [Figure adapted from (70, 71)]. (A) Average percentage of Treg cell populations
from Foxp3YFP-Cre, p300fl/fl Foxp3YFP-Cre, Tip60fl/fl Foxp3YFP-Cre and p300fl/fl Tip60fl/fl Foxp3YFP-Cre mice in spleen, lymph nodes, mesenteric lymph and thymus (B)
CD4+ T cells transduced with Foxp3 and WT TiP60 or TiP60 mutants (Q377/G380E and K327Q) (C–E) Effect of allosteric modifiers (SGF003 and B7A) targeting
Tip60 help stabilize Tip60-FOXP3 interaction and restoring Treg suppressive capacity. Here, in the presence or absence of SGF003 (8 mg/mL), 293T cells were
transfected with HA-FOXP3 (WT) and HA-FOXP3 (A384T) and FLAG-TIP60, or HA-FOXP3 (WT) and FLAG-TIP60, in the presence or absence of B7A (8 mg/mL).
Cells were washed with PBS 24 hours post transfection, and cell lysates were extracted for immunoprecipitation and western blot analysis. The effects of SGF and
B7A treatment on the interaction of FOXP3 with the flagged proteins are represented.
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Crohn’s disease and ulcerative colitis in humans (95). IL-10 also
plays an important role in tumor development. The tumor
microenvironment (TME) promotes the generation of Treg
cells that mediate IL-10 dependent immune suppression in a
cell-contact independent manner. However, the suppression
activity was abolished in the presence of neutralizing IL-10
antibodies (96). Similarly, IL-10 is also involved in antitumoral
immunity mediated by UV-induced carcinogenesis in mice (97).

IL-35 is a heterodimeric cytokine that belongs to the IL-12
family and has been implicated in some studies of Treg mediated
suppression to act as a novel inhibitory cytokine (85). IL-35 is
composed of the IL-12a chain (p35) and Epstein Barr virus gene
3 (EBI3) product. Treg cells impaired in either chain of the
dimeric IL-35 possess reduced suppressive activity and are
incapable of curbing IBD and homeostatic T cell expansion
symbolizing the role of IL-35 in Treg suppressive functions
in vivo (85). Moreover, IL-35 has been suggested to play a role
in human immunosuppression by suppressing the proliferation
of T cells and promoting the conversion of naive T cells to induce
regulatory T cells (iTr35) without the requirement of IL-10,
TGF-b, or FOXP3 (98) affirming the role of IL-35 in human
Treg function.

Another study discovered the effector population of Tregs
that produced IL-35 differed from that of Tregs that produced
IL-10. Blimp1 was found necessary for IL-10 production but not
for IL-35, whereas Foxp3 was required for IL-35 but not for
IL-10. Therefore, the TCR signal influences the discrete synthesis
Frontiers in Immunology | www.frontiersin.org 5
of IL-35 and IL-10 during the generation of effector Tregs,
implicating a mechanism of differential cytokine expression
that permits Treg functional characteristics to be tailored to a
range of immunological responses (99).

These cytokines modulate Treg functions and are associated
in the polarization of immune responses in a variety of diseases.

Metabolic Disruption
Metabolic effects are employed by Treg to inhibit the immune
response involves. These effects include competition for IL-2,
repression by c-AMP and CD39, and/or CD73 generated
adenosine receptor 2A mediated immunosuppression.

IL-2 promotes the survival and proliferation of T cells (100).
IL-2R is formed of a (CD25), b (CD122), and g (CD132)
subunits where IL-2Ra increases the affinity towards IL-2. Treg
cells express higher levels of CD25 and thus may possess a higher
affinity towards IL-2, competing with proliferating cells (101,
102). Thus, by limiting the IL-2 levels, Treg cells thwart the
stimulation of Teff cells in the periphery, triggering metabolic
disturbance culminating in cellular apoptosis (103). In one of the
studies, it was shown IL-2 signaling is requisite for Treg
suppressor function through STAT5b activation (104).

The concordant expression of ectoenzyme ATP apyrase
(CD39) and ecto-5’- AMP-nucleotidase (CD73) suppresses Teff
cell functions by activation of adenosine receptor 2A (A2A)
generates the purine nucleoside Adenosine (105). FOXP3
regulates the expression of CD39 in Treg cells that break down
A
B

D E

C

FIGURE 2 | Different modes of Immunosuppression by Treg cells. Various mechanisms include (A) suppression of dendritic cells (DCs) to modulate their maturation
and function via CTLA4 and LAG3 (B) release of extracellular vesicles (EVs) (C) secretion of suppressive immunoregulatory cytokines such as TGF-b, IL-10, and
IL-35 (D) Granzyme/perforin mediated cellular cytolysis and (E) metabolic perturbations involving CD25 dependent cytokine deprivation, generation of adenosine
by ectoenzymes CD39 and CD73 and c-AMP mediated inhibition.
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ATP to AMP and later CD73 rapidly degrades AMP to
adenosine. The adenosine receptor (A2A) expressed on T cells
is tightly coupled to G-protein-coupled receptor (GPCR) that
mediates an increase in c-AMP following adenosine signals to
mediate inhibitory signaling (106).

Treg cells can also transfer c-AMP to the Teff cells, a process
that involves membrane gap junctions where these secondary
messengers can activate c-AMP dependent protein kinase A
(PKA) (107, 108). Activation of PKA leads to phosphorylation
of C-terminal Src Kinase (CSK) that negatively regulates another
Src Family Tyrosine Kinase (LCK), involved in the proximal
activation of T cell receptors by downregulation of T cell receptor
(TCR) signaling (107, 109). PKA also phosphorylate cAMP
Response Element-Binding protein (CREB) that regulates the
expression of Foxp3 required for the development and function
of Tregs (110, 111).

Studies from our laboratory have shown that the transcription
of Foxp3 and Treg development is based on the formation of “c-
Rel enhanceosome” that contains CREB, p65, NFAT, and Smad3
providing an additional instance of CREB inhibiting immune
system (112). These findings suggest that elevation in
intracellular c-AMP following A2A activation optimizes Treg
activity leading to suppression of Teff cells.

Cellular Cytolysis
Treg cells are known to suppress target cells by a cytolysis-like
process involving granzymes in both humans and mice (113,
114). Use of granzyme/perforin-mediated cytolysis by NK and
CD8+ cytotoxic T cells to eliminate virus-infected and tumor
cells has long been recognized (115).

Exocytosis involves the extracellular space at the Treg-Teff
cell interface, mediated by Treg cells as granules containing
perforins and granzymes. These perforin glycoprotein
molecules attach to the target cell’s plasma membrane,
polymerize, and produce pores that permit granzyme
movement (116). Granzymes also use receptor-mediated
endocytosis to kill target cells by interacting to the mannose-6-
phosphate receptor (117).

Mice with Granzyme B knockout Treg were used for the first
study to verify that Treg cells possess cytolytic potential.
Granzyme deficient Treg cells have a diminished suppressive
capability (118). Treg cells also inhibit B-cell proliferation by
eliciting B-cell death through a granzyme-dependent but
partially perforin-dependent mechanism (119). Finally, in later
set of experiments Treg cells were found to be capable of
suppressing both NK and CD8+ cytotoxic T cell-mediated
antitumor responses in a granzyme-B and perforin-dependent
manner (120). Treg express Granzyme A and may eliminate
autologous target cells in a perforin-dependent fashion (113).

These studies indicate that Treg may act directly on B cells,
implying that the direct control of B-cell activity is at least
partially responsible for Treg ’s potential to suppress
autoimmunity. Furthermore, the perforin-granzyme pathway
is crucial not only for NK and CD8+ T cell function, but it
may also be used by Treg cells to restrict these cells’ activity.
Thus, the perforin/granzyme pathway appears to be one of the
ways that Treg cells utilize to regulate immunological responses.
Frontiers in Immunology | www.frontiersin.org 6
Hence, cytolysis may allow Treg cells to confine the number of
effector cells and contain an immune response.

Suppression of Antigen Presentation
APC interactions with Treg cell at the immune synapse has
relevance toimmune suppression. This interaction may alter the
maturation and function of DCs via contact-dependent
mechanisms by influencing the DCs costimulatory ability
required for the activation of Teff cells. One of the well-
recognized interaction sites involves CTLA4, the co-stimulatory
molecule constitutively expressed by Treg with CD80/CD86
expressed on DCs (121, 122). This process leads to the
production of Indoleamine 2,3 dioxygenase (IDO) that catalyzes
the catabolism of essential amino acid tryptophan to kynurenine.
The scarcity of tryptophan suppresses the protein synthesis
resulting in cell cycle arrest and thus inactivity or anergy of Teff
cells (101, 123, 124). Wing K et al., found that mice bearing Treg-
specific deletion of CTLA4 develop systemic and fatal autoimmune
lymphoproliferative disease (125). These results were further
corroborated when a similar phenotype was observed in humans
with heterozygous mutations in CTLA4 (126). These CTLA4 is
needed for immune suppression and plays a key role in both
biological and pathological immune responses.

Additionally, a CD4-related protein expressed on the surface of
Tregs, Lymphocyte-activation gene 3 (LAG3 or CD223), binds to
MHC-II molecules on DCs with high affinity and blocks their
maturation. It should be noted that despite its greater affinity for
MHC-II:CD4, LAG3 interferes with TCR but has no effect on
MHC-II:CD4 interaction (127). This binding activates
immunoreceptor tyrosine-based activation motif (ITAM)
mediated inhibitory signaling that involves activation of
extracellular-signal-regulated kinase (ERK) and recruitment of
protein tyrosine phosphatase 1 (SHP1) (128, 129). Together these
processes further suppress DC maturation and the antigen-
presenting/immunostimulatory ability of DCs. Hence, Treg cells
target the maturation and costimulatory functions of DCs.

Immune Tolerance Is Affected by
Generation of Extracellular Vesicles (EVs)
EVs are membranous structures produced from cells that have a
role in physiologic and pathologic processes. EVs generated from
Treg cells have been shown in several studies to be a precise
intercellular exchange mechanism governing immunological
responses and therefore establishing a tolerogenic milieu in a
cell-free manner. The hypothesized pathways include miRNA-
induced gene silencing, surface protein activity, and enzyme
transfer. Treg cells may undergo transformation into effector T
cells following exposure to inflammatory conditions lends
credence to these findings. EVs, on the other hand, are
unlikely to be changed under inflammatory circumstances, in
contrast to their cells of origin (82).

Tregs have also been found to communicate with one
another: intercellularly by releasing small extracellular vesicles
(EVs). Following TCR activation, CD4+CD25+ Tregs have been
shown to release EVs in rodents and human settings. These
vesicles exhibit immunological modulatory abilities in vitro,
comparable to the cell from which they were originated (81–
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83). Murine Treg EVs have been shown to reduce CD4+ Teff cell
proliferation, as well as IL-2 and IFNg release, and enhance IL-10
production by murine DCs in recent studies. This process has
been ascribed to the cell surface immune modulatory molecule
CD73, an ecto enzyme implicated in adenosine synthesis, as well
as miRNAs found in these vesicles, such as miR-142 and miR-
150 (83, 130). EVs generated from Treg cells have been found
able to inhibit T cell-mediated responses by transferring micro-
RNAs, namely miR-155, Let-7b, and Let-7d RNAs. While
isolated Treg cells derived EVs could suppress conventional T
cells, they were not as effective as Treg cells, indicating that
additional processes are necessary for optimum suppression
(131). These results raise a slew of new questions and
possibilities about the involvement of Treg cells derived EVs in
a variety of immunological settings.
CONCLUSIONS AND FUTURE
PERSPECTIVES

In the immune system, Treg cells perform both positive and negative
roles. Immune suppression mechanisms to limit autoimmunity,
transplantation and maintain immune homeostasis are positive
effects, whereas circumvention of antitumor immunity is a
negative effect. Tregs immunosuppressive activity in tumors
Frontiers in Immunology | www.frontiersin.org 7
environments represents a significant barrier to efficient anti-
tumor immunity. As a result, research into the roles and activities
of Tregs is needed to fully understand their potential as
immunotherapeutic targets and to develop new tumor
immunotherapy methods.

Treg biology is complex. Understanding the molecules and
detailed structural and functional domains of regulatory proteins
as well as signaling pathways in target cells affected by Treg may
be needed for potential therapeutic interventions of effective
immune response.
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