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Abstract

Background/Objective

Despite multiple attempts, no surrogate biomarker of Parkinson disease (PD) has been

definitively identified. Alternatively, identifying a non-invasive biomarker is crucial to under-

standing the natural history, severity, and progression of PD and to guide future therapeutic

trials. Recent work highlighted alpha synuclein-containing extracellular vesicles and Poly

(ADP-ribose) polymerase (PARP-1) activity as drivers of PD pathogenesis and putative PD

biomarkers. This exploratory study evaluated the role of alpha-synuclein-positive extracellu-

lar vesicles and PARP-1 activity in the plasma of PD patients as non-invasive markers of the

disease’s severity and progression.

Methods

We collected plasma of 57 PD patients (discovery cohort 20, replication cohort 37) and com-

pared it with 20 unaffected individuals, 20 individuals with clinically diagnosed Alzheimer’s

disease, and 20 individuals with dementia with Lewy bodies. We analyzed alpha-synuclein-

positive extracellular vesicles from platelet-free plasma by nanoscale flow cytometry and

blood concentrations of poly ADP-ribose using sandwich ELISA kits.

Results

Median concentration of α-synuclein extracellular vesicles was significantly higher in PD

patients compared to the other groups (Kruskal-Wallis, p < .0001). In the discovery cohort,

patients with higher α-synuclein extracellular vesicles had a higher Unified Parkinson
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Disease Rating Scale score (UPDRS III median = 22 vs. 5, p = 0.045). Seven out of 20

patients (35%) showed detectable PAR levels, with positive patients showing significantly

higher levels of α-synuclein extracellular vesicles. In the replication cohort, we did not

observe a significant difference in the PAR-positive cases in relationship with UPDRS III.

Conclusions

Non-invasive determination of α-synuclein-positive extracellular vesicles may provide a

potential non-invasive marker of PD disease severity, and longitudinal studies are needed

to evaluate the role of α-synuclein-positive extracellular vesicles as a marker of disease

progression.

Introduction

Parkinson disease (PD) and dementia with Lewy Bodies (DLB) are common disorders related

to the accumulation of α-synuclein aggregates as Lewy bodies and Lewy neurites in the ner-

vous system [1, 2]. Lewy bodies correlate with intracellular toxicity and cell-death-promoting

events, including oxidative stress, impaired vesicular transport, lysosomal function, and neu-

roinflammation. Spatial progression of Lewy neuropathology may reflect spreading of abnor-

mal fibrillary α-synucleins between cells [3–5]; however, the underlying propagation

mechanisms are unclear. One possible spreading mechanism may be via extracellular vesicles

(EVs), including exosomes [6]. Alpha-synuclein is a ubiquitous protein presenting on EVs [7].

Whether α-synuclein positive EVs are relevant in disease progression is undetermined [8].

In addition to impaired vesicular dynamics promoting cell-to-cell spreading, oxidative

stress, mitochondrial dysfunction, neuroinflammation, and other interactive mechanisms may

drive the pathological cascade leading to PD and DLB cell death. Poly (ADP-ribose) polymer-

ase (PARP-1) mediates α-synuclein toxicity [9]. PARP-1, a fundamental component of DNA

damage-response machinery, utilizes nicotinamide adenine nucleotide (NAD+) and ATP to

synthesize poly-ADP-ribose (PAR) residues added to target proteins. Hyper-activated PARP-1

leads to regulated cell death or parthanatos. Parthanatos occurs in response to DNA damage,

oxidative stress, inflammatory signals, and nitric oxide (NO). PARP-1 activation in PD may be

secondary in part to excessive NO production [10] generated by LB accumulation [9]. PARP-1

activity can be elevated in the cerebrospinal fluid and brains of PD patients. In addition, in

experimental mice models, PARP-1 induction increases cell death and leads to a faster, more

diffuse spreading of the disease [9].

The function of α-synuclein-containing EVs in cell-to-cell transmission and excessive

PARP-1 activation in neurotoxicity suggest that these biomarkers in peripheral PD blood/

plasma dictate the pathodynamics of this disease. However, this has not been systematically

explored. Our study sought to assess the role of α-synuclein-positive EVs and PAR levels in

plasma as biomarkers of PD presence and progression and whether the combined determina-

tion of EVs (a putative surrogate of α-synuclein accumulation and impaired autophagy) and

PAR (product of PARP-1 activity) better assesses PD pathobiology.

Materials and methods

Case identification/ascertainment

We used three tissue repositories to perform blinded experiments. We included 20 consecu-

tive cases of PD from the Mayo Clinic Rochester Movement Disorders Division (1/1/2019-
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8/1/2019), all of which fulfilled the UK Brain Bank clinical diagnostic criteria for PD. A

movement-disorders specialist examining patients confirmed criteria and diagnosis. We

used two comparison cohorts. First, we included patients and controls from the bioreposi-

tory of the Alzheimer Disease Research Center (ADRC) of Mayo Clinic, Rochester (col-

lected from 2005–2018). Second, we included 20 unaffected individuals and 20 cases of

clinically diagnosed AD dementia and DLB. All the cases and controls were age/sex

matched. We used an additional 37 cases (replication cohort) with a diagnosis of PD from

the Mayo Clinic Florida Clinical and Genetic Studies, all of which fulfilled the UK Brain

Bank clinical diagnosis for PD.

Approvals and consents

Mayo Clinic and Olmsted Medical Center Institutional Review Boards approved this study.

Participating patients (or legally authorized representatives) provided informed written con-

sent for the use of medical information for research.

Detection of α-synuclein extracellular vesicles in plasma

Stored plasma samples were thawed and centrifuged at 13,000 x g for 5 minutes to remove

aggregates. Plasmas were diluted 1/10th in PBS, and 10 microliters of diluted plasma were

incubated with fluorescent-labeled primary antibodies against total α-synuclein (syn211,

Thermo Fisher) and CD235a (clone HI264, Biolegend). EV populations were quantified

from platelet-free plasma by nanoscale-flow cytometry using the Apogee A60-Micro Plus

(Apogee Flow Systems Inc.). Before sample analysis, A60-Micro Plus sensitivity for detecting

EVs was evaluated using a reference bead mix, as previously described [11] (S1 Fig). Sample

flow rate was set at 1.5μL/min for all measurements, and acquisition time held constant for

all samples at 60 seconds. Event rate was kept below 5,000 events per second to avoid swarm

effect. Antibody-matched isotypes in the same condition were used to subtract unspecific

binding. Data were analyzed using FlowJo v10.5 software. A one-way ANOVA test and a

nonparametric t test identified differences between the control and patient groups in terms

of clinical variables.

Western blot

We selected 500 microliters of plasma from a subset of PD patients and age-matched healthy

donors. Plasma was subjected to ultracentrifugation 100,000 x g for 2 hours at 4C using a Beck-

man Coulter Optima XPN-100 ultracentrifuge with a SW 55 Ti rotor. Following lysis, 25 ug of

total proteins were analyzed by SDS-PAGE and western blot. Antibodies were used as follows:

CD63 (abcam ab231975, 1/1000), Hsp70 (SBI, EXOAB-Hsp70A-1, 1/1000), aSyn phosphoS129

(abcam ab51253, 1/1000), aSyn (abcam MJFR1, 1/2000). Goat HRP-anti-Rabbit (Sigma,

A0545) was used at a final dilution of 1/10000. ECL Pico Plus and ChemiDoc XRS+ were used

for chemiluminescence imaging of proteins.

Measurement of poly (ADP-ribose) concentration in plasma

The sandwich ELISA kit (XDN-5114, Cell Biolabs Inc.), per manufacturer’s instructions, deter-

mined PAR plasma levels. Plasma samples (50 μl) and standards were tested in duplicate.

Color change was measured using the Varioskan LUX (Thermo Fisher). Data were analyzed

using GraphPad Prism 7.0.
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Results

Demographics and clinical characteristics

We included 20 consecutive patients diagnosed with PD according to the UK Parkinson’s Dis-

ease Society Brain Bank diagnostic criteria [12]. All PD cases were examined in “ON” state.

Median-onset age was 70.5 years; 30% (6/20) were women. Median Hoehn and Yahr Scale

(HYS) was 1 (ranges: 1–3); median UPDRS part III was 15 (2–30). Tremor was present in 40%

(8/20); 12\20 had significant rigidity; 6/20 had severe postural reflex impairment; 17/20 had

bradykinesia; 9/20 (45%) had cognitive decline; and 4/20 had evidence of visual hallucinations.

All patients reported a significant response to levodopa intake. Randomly selected ADRC par-

ticipants included 20 age-matched, unaffected controls (CU), 20 with probable AD dementia,

and 20 with DLB. The groups’ median ages were similar: CU, 74.6 years old; AD dementia,

74.6 years old; and DLB, 75.4 years old. In the replication cohort, median-onset age was 73

years; and 40% (15/37) were women. Median Hoehn and Yahr Scale (HYS) was 2 (Ranges:

1–3); median UPDRS part III was 16 (7–44).

Elevation of circulating α-synuclein extracellular vesicles and red blood

cell-derived EVs in Parkinson disease

Median α-synuclein-EV concentration was significantly higher in PD patients than in other

groups (138,8667 EVs/μl [10,173–2,758,267 min-max]) (Fig 1A). Median concentration of α-

synuclein EVs was 13,253 Evs/μl (3,880–81,847 min-max) in normal individuals, 11,603 Evs/μl

(4,920–43,207 min-max) in individuals with AD dementia, and 12,393 EVs/μl (5,553–47,800

min-max) in individuals with DLB. Prior work showed that red blood cells (RBC) are a major

source of peripheral α-synuclein [25]. We sought to determine whether plasma-derived α-

synuclein-EVs origin from RBC. We measured the concentrations of RBC-EV with the marker

CD235a and determined the percentage of α-synuclein-EVs that were positive for CD235a

(Fig 1B and 1C). Median RBC-EV concentration was significantly higher in the PD group

(6,593 EVs/μl [1,200–26,827]) compared to the AD dementia and DLB groups (p = 0.059; Fig

1B). Median RBC-EV concentration was 2,910 EVs/μl (1,200–6,453 min-max) in the CU; and

4,017 EVs/μl (0–10,340) for individuals with AD dementia; and 3,480 EVs/μl (480–13,340) for

individuals with DLB. The percentage of α-synuclein-EVs positive for CD235a (α-synu-

clein+CD235+EVs) did not differ significantly between groups (Fig 1C). The median percent-

age of α-synuclein+CD235a+EVs was 0.76%, 0.87%, 0.80%, and 0.604% in the CU, AD, DLB,

and PD groups, respectively. We used a ROC curve (Fig 1D) to determine the diagnostic accu-

racy of α-synuclein-EV levels to distinguish PD patients from healthy individuals. The AUC

was 0.929 (p<0.0001), with a sensitivity of 92.98% and a specificity of 78.95% at a cut-off of

20,700 α-synuclein-EVs per microliter of blood.

To validate our findings, we analyzed the presence of phosphorylated and total α-synuclein

in EVs isolated from blood of age-matched healthy individuals (N = 3) and PD patients

(N = 5) (Fig 2). We used CD63 and HSP70 as positive control for EV-enriched proteins. Total

α-synuclein and α-synuclein phosphoS129 were only detectable in 4 out of 5 samples of PD

patients. No α-synuclein was detected in healthy donors. In addition, we did not observe any

difference between total aSyn and aSyn S129 in PD patients, thus suggesting that both forms

are found in peripheral EVs from PD patients.

Our observations suggest that peripheral α-synuclein EV do not origin from RBC and α-

synuclein-EV levels can distinguish PD patients from healthy individuals free of cognitive

impairment or parkinsonism and from patients with Alzheimer disease or Lewy body

dementia.
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High UPDRS scores and elevated α-synuclein extracellular-vesicle levels

Our analyses included UPDRS III as a disease-severity measure. In our original cohort, PD

patients with available UPDRS scores (N = 15) had non-significant correlations between

RBC-EVs and their UPDRS score (Fig 3A and 3B). We observed a moderate correlation

between α-synuclein EV levels and UPDRS scores, which was insignificant (Pearson coeffi-

cient r = 0.349, p = 0.20) (Fig 3C). Interestingly, patients with higher α-synuclein EV levels

Fig 1. Levels of α-synuclein extracellular vesicles distinguish Parkinson disease (PD) patients from age-matched healthy individuals,

Alzheimer disease (AD) patients, and patients having dementia with Lewy bodies (DLB). Comparison between levels of a-syn EVs in normal,

AD, DLB, and PD patients. A) Levels of a-syn positive EVs in the four groups; B) Levels of CD32 a-syn EVs in the four groups C) Percentage of

CD32 a-syn in the four groups; D) Receiving Operator Curve of identifying a-syn positive EVs compared to controls: sensitivity of 92.98% and a

specificity of 78.95% at a cut-off of 20,700 α-synuclein-EVs per microliter of blood. ��� indicates the first batch of samples where CD235a was used.

https://doi.org/10.1371/journal.pone.0264446.g001
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showed higher UPDRS scores (median = 22 versus 5, p = 0.045) than patients with lower α-

synuclein-median EV levels (Fig 3D). One patient out of 7 presented below-the-median levels

of α-synuclein-EVs and a UPDRS score of 27.5. Inversely, 2 patients out of 8 presented high α-

synuclein-EV levels and UPDRS scores of 2.0 and 7.5. The replication cohort revealed no cor-

relation between α-synuclein-EVs and UPDRS scores (Pearson coefficient r = -0.027, p = 0.86)

(Fig 3E and 3F). Similarly, we observed no significant difference when comparing UPDRS

scores in patients above and below the median level of α-synuclein-EVs. These findings sug-

gest that levels of α-synuclein-EVs at a single timepoint do not predict disease severity.

Association of PAR plasma levels with aSyn-positive EVs and UPDRS

scores in PD patients

We measured PAR plasma levels and determined the association with α-synuclein-EV levels

and UPDRS scores (Fig 4). In the initial cohort, 7 out of 20 patients (35%) showed detectable

PAR levels; and 13 out of 20 (65%) were undetectable. For patients with detectable PAR levels

(PAR+), the median concentration was 255 pM (0.038–613 min-max). PAR+ patients had sig-

nificantly higher α-synuclein-EV levels than PAR- patients (median 23,347 versus 59,800 EVs/

μl–Fig 4A). Additionally, PAR+ patients had higher (albeit non-significant) UPDRS scores

(median 22.5 versus 7.5; p = 0.08) (Fig 4B). Patients with detectable serum PAR levels and

higher α-synuclein EV levels reported more severely progressive symptoms of disease (e.g.,

cognitive decline, hallucinations). In the second analysis, including the replication cohort,

higher α-synuclein-EV levels were still found in PD patients with detectable PAR levels

(p = 0.048) (Fig 4C). No significant difference was observed for PAR positivity and UPDRS

Fig 2. Western blot of plasma-derived EVs comparing healthy donors and PD patients. Total aSyn and aSyn S129

are detectable only on PD samples. No difference has been detected between total aSyn and aSyn S129.

https://doi.org/10.1371/journal.pone.0264446.g002
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scores (Fig 4D). A positive association between blood levels of α-synuclein-EVs and PAR posi-

tivity was observed, and the latter did not predict disease severity.

Discussion

Diagnosis and prognostication for PD and related disorders still rest upon clinical criteria and

clinical observation. Autopsy remains the gold standard for diagnosis despite increased

Fig 3. Levels of CD325a-syn EVs in PD and correlation with UPDRS scores. A) Levels of total a-syn EVs in PD and

correlation with UPDRS scores; B) UPDRS scores and median levels of CD325a-syn EVs in PD; C) Levels of total a-syn

EVs in PD and correlation with UPDRS scores; D) UPDRS scores and median levels of a-syn EVs in PD; E) Levels of

total a-syn EVs in PD and correlation with UPDRS scores in replication cohort; F) UPDRS scores and median levels of

a-syn EVs in PD in replication cohort.

https://doi.org/10.1371/journal.pone.0264446.g003
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knowledge of PD pathophysiology. Blood-based biomarkers are needed to predict disease

severity and progression and, potentially, to identify specific subtypes of disease.

Recent ground-breaking studies have provided important molecular and biological insights

on the role of α-synuclein in PD pathology. Transferring α-synuclein between neurons con-

tributes to disease development and progression [13]. Active intercellular α-synuclein transfers

occur through EV release [14]. EVs are submicron particles (50–1000 nm) released by cells

carrying surface antigens and cargo from donor cells; thereby, they may serve as disease bio-

markers in liquid biopsies [15]. In the context of synucleinopathies, EVs facilitate intercellular

Fig 4. A) Levels of total a-syn EVs in PD and correlation with PAR activity in PD. B) UPDRS scores and PAR activity

in PD; C) Levels of total a-syn EVs in PD and correlation with PAR activity in PD in replication cohort; D) UPDRS

scores and PAR activity in PD in replication cohort.

https://doi.org/10.1371/journal.pone.0264446.g004
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communication, contributing to LBD pathophysiology by transferring toxic forms of α-synu-

clein to healthy neurons. These findings suggest α-synuclein-positive EVs as a marker for diag-

nosis and progression of synucleinopathies [16]. Unlike previous reports using ELISA-based

methods, our approach relies on direct enumeration of α-synuclein-positive EVs by nano-

scale-flow cytometry, a state-of-the-art methodology for multi-parametric detection and anti-

body-based quantification of extracellular-vesicle subpopulations [11]. High-resolution flow

cytometry to develop EV-based blood biopsies is attractive for clinical practice, as it requires

no labor-intensive, time-consuming sample preparation. In addition, it requires a small sample

volume (<20 μl), with readings available within 2 hours after collection.

Our study measured α-synuclein-positive EV levels in platelet-poor plasma of PD patients

and determined differences between PD patients, age-matched CU individuals, and patients

with other neurodegenerative diseases, including AD dementia and DLB. PD patients had

higher concentrations of α-synuclein-positive EVs compared to other groups. These findings

support previous studies demonstrating elevated α-synuclein-positive EV levels in the blood of

PD patients compared to healthy controls [17–20].

Recently, two independent studies have suggested that α-synuclein-positive EVs discrimi-

nate between PD, DLB, and healthy controls with similar areas under the curve results [21].

Another study highlighted how phosphorylated versus non-phosphorylated α-synuclein-posi-

tive EVs can help in the diagnosis of PD [22], thus confirming our results. There will likely be

a future role for α-synuclein-positive EVs in the confirmation of the clinical diagnosis of PD.

Surprisingly, we did not find any difference in levels of α-synuclein-positive EVs between

DLB and healthy controls. Our findings are in line with two previous studies. Jiang et al. used a

combination of L1CAM-derived EV immunocapture and ELISA for total α-synuclein [23]. No

statistical difference was observed between DLB and healthy controls. In a second study, prote-

omic profiling of plasma-derived EVs isolated from DLB and healthy controls did not reveal

alpha-synuclein as a biomarker of DLB [24].

Red blood cells have been shown to be the major source of α-synuclein in blood, represent-

ing >99% of total α-synuclein [25]. The remaining <1% in plasma may originate from other

sources (e.g., neurons). To avoid contaminating RBC-derived α-synuclein, previous studies

performed immuno-purification of brain-derived EVs using the L1CAM marker prior to

quantifying α-synuclein levels [17]. We directly quantified α-synuclein levels on RBC-derived

EVs and observed <1% of total α-synuclein detected on EVs originating from red blood. This

suggests that, unlike RBC-derived EVs, α-synuclein is located on the EV outer membrane, and

its extracellular accessibility is suitable for direct antibody-based detection [26].

We also assessed the relationship between α-synuclein-positive EV levels and poly ADP-

ribose levels in the blood of PD patients. Interestingly, we found that PD patients with detect-

able blood PAR levels have significantly higher levels of α-synuclein-positive EV. Through a

positive feedback loop, PARP-1 activity accelerates aSyn propagation and neuronal cell death

[9]. Compared to healthy donors, cerebrospinal fluid of PD patients showed higher levels of

poly(ADP)-ribose (PAR), a product generated from PARP-1 activity. While preliminary, our

findings suggest that PARP-1/α-synuclein cross-talk involved in PD pathogenesis translates to

systemic circulation of PAR and α-synuclein-positive EV levels.

Using the UPDRS score, we found no correlation between disease severity, PAR levels, and

α-synuclein-positive EV levels. Future larger, longitudinal studies may elucidate this suggested

relationship between PD severity and PARP. PD is a complex and multifactorial neurodegen-

erative disease, and in addition to the dominant role of alpha-synuclein, other mechanisms

such as mitochondrial dysfunction, autoimmune response, and central and peripheral inflam-

mation may be involved in the development and progression of PD [27–29]. In addition, sev-

eral studies, including ours, have focused on exploring one blood component (immune cells,
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extracellular vesicles, cytokines, or soluble proteins) at a single timepoint. Considering the het-

erogeneity of the disease [8], it is unlikely that a single marker can capture the variability of dis-

ease through the population and within the different phases of the disease. Therefore, deep

molecular profiling of longitudinally collected blood samples is critical for identifying multiple

markers and capturing variability and endophenotypes of the disease.

Limitations of our study include its exploratory nature and the sample size. A larger longi-

tudinal cohort study may confirm our findings and elucidate relationships between PARP

activity and soluble α-synuclein release (e.g., aggregates, extracellular vesicles). In addition, we

did not perform PARP activity in AD and DLB; in the future, these studies are needed to

understand the relationship between PARP and neurodegeneration. Also, we were not able to

collect multiple longitudinal samples from the same patients; therefore, we could not explore

the correlation between the blood biomarkers and disease progression. We did not perform

any experiment differentiation between the tetrameric, dimeric, and/or monomeric form of α-

synuclein; in the future, our findings must be replicated to explore the possible difference

between different toxic species of α-synuclein in PD. Finally, blood and CSF from matched

patients must be tested in parallel to evaluate the performance of potential α-synuclein and

PAR-based biomarker assays.

Conclusions

In conclusion, our study suggests that non-invasive determination of α-synuclein-positive

EVs, with or without PARP activity, offers a non-invasive marker of disease progression in PD

and may also identify a subtype of PD with unique biological and biochemical characteristics.

PARP inhibitors may represent a future adjuvant, neuroprotective approach to alleviate dis-

ease severity.
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