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Abstract
Data envelopment analysis (DEA) is a method of operations research that has not yet

been applied in the field of obesity research. However, DEA might be used to evaluate indi-

viduals’ susceptibility to obesity, which could help establish effective risk models for the

onset of obesity. Therefore, we conducted this study to evaluate the feasibility of applying

DEA to predict obesity, by calculating efficiency scores and evaluating the usefulness of

risk models. In this study, we evaluated data from the Takahata study, which was a popula-

tion-based cohort study (with a follow-up study) of Japanese people who are >40 years

old. For our analysis, we used the input-oriented Charnes-Cooper-Rhodes model of DEA,

and defined the decision-making units (DMUs) as individual subjects. The inputs were de-

fined as (1) exercise (measured as calories expended) and (2) the inverse of food intake

(measured as calories ingested). The output was defined as the inverse of body mass

index (BMI). Using the β coefficients for the participants’ single nucleotide polymorphisms,

we then calculated their genetic predisposition score (GPS). Both efficiency scores and

GPS were available for 1,620 participants from the baseline survey, and for 708 partici-

pants from the follow-up survey. To compare the strengths of the associations, we used

models of multiple linear regressions. To evaluate the effects of genetic factors and effi-

ciency score on body mass index (BMI), we used multiple linear regression analysis, with

BMI as the dependent variable, GPS and efficiency scores as the explanatory variables,

and several demographic controls, including age and sex. Our results indicated that all fac-

tors were statistically significant (p < 0.05), with an adjusted R2 value of 0.66. Therefore, it
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is possible to use DEA to predict environmentally driven obesity, and thus to establish a

well-fitted model for risk of obesity.

Introduction
Personalized medicine considers the patient’s genetic characteristics and history of exposure to
environmental factors, and is expected to comprise the next generation of therapy. In this con-
text, personalized medicine has the potential to provide preventive and curative interventions
that are personalized for each individual, and is anticipated to reduce the incidence of disease.
Furthermore, the completion of the Human Genome Project has paved the way for significant
developments in the field of personalized medicine [1]. However, genomic information alone
is not sufficient for providing personalized medicine, because the development of non-commu-
nicable diseases is a multifactorial process that also involves environmental influences, lifestyle
choices, and genetic influences on the individual’s susceptibility. Therefore, population-based
prospective cohort studies that incorporate genomic measurements have recently been recom-
mended for determining the risk factors and etiologies of chronic diseases, while also account-
ing for gene-environment interactions [2–4]. However, these studies are expensive to conduct,
and typically require 20–30 years to gather the relevant information [2–4]. Therefore, these
challenges are major obstacles in establishing personalized preventative medicine, as the devel-
opment of predictive models for disease susceptibility are essential to establishing personalized
preventative treatments, and these models must incorporate both genetic and environmental
factors. Historically, multivariate regression models have commonly been used to identify dis-
ease risk factors, although more flexible methods (such as machine learning) are currently used
to predict the onset of disease [5].

In this context, data envelopment analysis (DEA) is a measure of efficiency that considers
multiple inputs and outputs, and can be used to evaluate outputs while controlling for the in-
puts [6–8]. The DEA process calculates efficiency scores (a measure of relative efficiency) with-
in a given sample of decision making units (DMUs) [9,10]. A completely efficient subgroup
will provide an efficiency score of 1, while a DMU that achieves a score of<1 is considered in-
efficient, and these scores can be used to calculate an individual’s disease susceptibility. For ex-
ample, if a person who has a high body mass index (BMI), consumes too much food, and never
exercises, that person may be obese due to his/her environment. In contrast, if a person with a
high BMI eats appropriately and exercises a regularly, that person’s obesity may be hereditary,
which is independent of his/her environment. Therefore, by calculating and comparing indi-
viduals’ efficiency scores via DEA, we can evaluate individuals’ susceptibility to obesity. In that
model, the inputs would be the individual’s caloric intake and energy expenditure, and the effi-
ciency score risk model would be highly fitted for the onset of obesity, due to the use of BMI as
the objective variable (output).

In the field of healthcare, DEA has already been adopted in hospital management [10,11],
and one recent study has used DEA to evaluate the efficiency of physical activity programs
for elderly women [12]. In that study, the inputs were defined as the amount of time spent
performing strength, flexibility, and aerobic exercises, and the outputs were defined as the
levels of strength, flexibility, static balance, dynamic balance, and maximal oxygen consump-
tion that were verified at the end of the physical activity program. The authors found that
DEA facilitated the assessment of the exercise program using the time spent performing
physical activity, and subsequently concluded that DEA has promising applications in
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preventing fitness-related conditions. However, that study’s findings have limited application
in clinical or preventive practice.

Therefore, in the present study, we evaluated DEA in the field of preventive medicine, and
investigated its feasibility using clinical and genetic data from a large prospective cohort of a ge-
nome-wide association study (GWAS). Using this information, we hoped to estimate personal
susceptibility to obesity, using the efficiency scores for the DMUs (individual subjects), and to
evaluate the feasibility of applying DEA in the field of preventative medicine.

Methods

DEA analysis
In this study, we employed the input-oriented Charnes-Cooper-Rhodes model of DEA, which
is a constant returns-to-scale model that is particularly relevant, given its ability to include mul-
tiple inputs and outputs without requiring an a priori function specification [13]. In this con-
text, a DMU is defined as the entity that is responsible for converting the inputs into outputs
[14]; therefore, we defined the DMUs as individual subjects. The inputs were defined as (1)
total physical expenditure (measured as calories expended) and (2) the inverse of food intake
(measured as calories ingested). In DEA, efficiency is defined as high if the input is minimized
when the outputs are held constant, or if the output is maximized when the inputs are held
constant. Therefore, to fit this definition, we used the inverse of BMI and of caloric intake as
the outputs for our models, as subjects can only directly control the inputs (e.g., exercise and
food intake), and cannot directly control the output (BMI) [15].

Each subject’s efficiency score was calculated using DEA-Solver-Pro Software (Saitech, Inc.,
Tokyo, Japan) [6]. In that model, the efficiency scores range between 0 and 1, and the individu-
als who are most efficient at burning calories are assigned an efficiency score of 1 [16].

Genotyping and imputation
Whole blood samples were used to obtain the subjects’DNA samples, and the single nucleotide
polymorphisms (SNPs) were genotyped using an Infinium 660W BeadChip assay (Illumina, San
Diego, CA, USA). For our analyses, SNPs with a minor allele frequency of<0.5% and a call rate
of<95% were excluded. After confirming the quality of the genotyped SNP data, we performed
genotype imputation using the MACH-Admix program [17], using a data set from the 1000 Ge-
nomes Project (194 ASN, 68 CHB, 25 CHS, 84 JPT, and 17MXL, released in August 2010).

Genetic predisposition score
The genetic predisposition score (GPS) was calculated using the β coefficients of the SNPs, via
a previously reported weighting method [18]. In this method, the GPS is calculated by multi-
plying the number of effect alleles (0, 1, or 2) at each locus by the β coefficient of that SNP (as
obtained from the GWAS), dividing by the maximum allowable sum of the β coefficients, and
then multiplying by twice the number of alleles. Higher scores indicate a greater genetic predis-
position to obesity. The GPSs from the β coefficients of 29 SNPs from East Asian subjects were
used to conduct these analyses [19,20].

Statistical analysis
The statistical analyses for this study were conducted during September 2014. The statistical
analyses were performed using R software (version 3.1.1, R Foundation for Statistical Comput-
ing, Vienna, Austria), and differences with a p-value of<0.05 were considered statistically signif-
icant. Pearson’s correlation coefficients were calculated to evaluate the relationships between the
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efficiency scores, GPS, and BMI. Robust multiple linear regression analyses were also conducted
to evaluate the effect of obesity risk factors, using the “robustbase” function in the R software.
Five multiple linear regression models were used to evaluate the coefficients for BMI at baseline
or yearly changes in BMI (the dependent valuables). Model 1 evaluated the effect of environmen-
tal factors (energy expenditure and energy intake) as the explanatory variables, while Model 2
evaluated the effect of the efficiency score. Model 3 evaluated the effect of genetic factors using
the GPS, Model 4 evaluated the effect of genetic and environmental factors (energy expenditure,
energy intake, and GPS), and Model 5 used the GPS and efficiency scores to compare the effect
of genetic factors to that of the efficiency score. All models were adjusted for age and sex.

Data from the cohort study
The Takahata study is a population-based cohort study (with a subsequent follow-up study) of
Japanese people who were>40 years old, which sought to clarify the risk factors for certain life-
style-related conditions, such as diabetes and obesity [21–24]. The details of the study design
have been reported previously [21–24], and the participants’ physical activity status was calcu-
lated as metabolic equivalents, using The Japan Arteriosclerosis Longitudinal Study Physical
Activity Questionnaire [25]. In addition, the daily intake of each nutrient was calculated using
a brief self-administered diet history questionnaire [26]. The baseline survey of 3,522 partici-
pants was conducted from 2004 to 2006, and 1,620 unique DNA samples were extracted from
the participants’ whole blood samples, and we were able to calculate the efficiency scores for
those 1,620 participants. Among these participants, 1,079 completed the follow-up survey in
2011, at 5–7 years after the baseline survey, and we classified these participants as underweight
(<18.5 kg/m2), normal (18.5–24.99 kg/m2), and overweight (�25 kg/m2) [27]. Written in-
formed consent was obtained from all participants for the original study. The protocols of both
the Takahata study and the present study were approved by the Yamagata University Faculty
of Medicine ethics committee.

Results

Efficiency score and baseline BMI
Among the participants in the Takahata study, both GPS and efficiency scores were available
for 1,620 participants (726 men and 894 women). The characteristics of these subjects are
shown in Table 1. The median age at the baseline survey was 62 years (range, 40–84 years), and
the mean baseline BMI was 23.4 kg/m2 (standard deviation [SD], 3.1). The mean efficiency
score of the participants was 0.51 (SD, 0.13), and the total physical expenditure and inverse of
food intake according to the efficiency score quartiles are shown in Fig 1.

The baseline BMI and efficiency scores were significantly correlated (r = −0.78, p< 0.01)
(Fig 2a), as were the baseline BMI and GPS (r = 0.14, p< 0.01) (Fig 2b) and the efficiency
scores and GPS (r = −0.12, p< 0.01) (Fig 2c) (Table 2). The results of the subgroup analysis ac-
cording to age are also shown in Table 2. We then evaluated the coefficients using the five mul-
tiple linear regression models, and found that the models that included efficiency score had
greater adjusted R2 values than those that did not include efficiency score. In Model 5, which
used the GPS and efficiency scores to compare the effect of genetic factors with that of efficien-
cy score, the equation for yearly changes in BMI was:

BaselineBMI ðkg=m2Þ ¼ 28:84 þ f0:25 � Sex ðwomenvs:menÞg þ f0:05 � Age

ðyearsÞg þ ð0:03 � GPSÞ þ ð�19:47 � efficiency scoreÞ ð1Þ

In this formula, all factors were statistically significant (p< 0.05) (Table 3).
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Efficiency score and yearly change in BMI
After excluding underweight and overweight participants, data regarding yearly changes in
BMI were available for 708 of the 1,079 subjects who participated in the follow-up survey. The
yearly change in BMI was correlated with the efficiency score (r = 0.038, p = 0.31) and the

Table 1. Participant characteristics (n = 1,620).

Variable Number

Age, years (median [range], mean [SD]) 62 (40–84), 61.3 (10.1)

Sex (men/women) 726/894

Baseline BMI, kg/m2 (median [range], mean [SD]) 23.2 (15.0–35.5), 23.4 (3.1)

Efficiency score (median [range], mean [SD]) 0.49 (0.23–1.00), 0.51 (0.13)

Efficiency score according to age group

40–49 years 0.49 (0.26–0.91), 0.50 (0.12)

50–59 years 0.47 (0.26–1.00), 0.49 (0.13)

60–69 years 0.49 (0.24–0.99), 0.50 (0.12)

�70 years 0.54 (0.23–1), 0.55 (0.14)

GPS (median [range], mean [SD]) 25.9 (14.5–42.3), 26.1 (3.1)

Total physical expenditure, METs-h/day (median [range], mean [SD]) 35.3 (25.8–74.8), 36.2 (5.8)

Food intake, kcal/day (median [range], mean [SD]) 2,175 (307–7090), 2,257 (673)

Change in BMI, kg/m2/year (median [range], mean [SD]) -0.01 (-0.92–1.14), -0.02 (0.22)

SD: standard deviation; BMI, body mass index; GPS, genomic predisposition score; METs,

metabolic equivalents.

doi:10.1371/journal.pone.0126443.t001

Fig 1. Total physical expenditure and the inverse of food intake according to the efficiency score quartiles.METs, metabolic equivalents.

doi:10.1371/journal.pone.0126443.g001
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yearly change in BMI and the GPS were also correlated (r = 0.048, p = 0.12) (Fig 3). Further-
more, we evaluated the coefficients for the change in BMI using the five multiple linear regres-
sion models, although the R2 values for these models were very low (<0.04). In Model 5
(Table 3), we used the GPS and efficiency scores to compare the effect of genetic factors with
that of efficiency score, which provided the following equation:

Changes inBMI ðkg=m2=yearÞ ¼ 0:19 þ f�0:02 � Sexðwomenvs:menÞgþ
f�0:004 � AgeðyearsÞg þ ð0:0001 � GPSÞ þ ð0:14 � efficiency scoreÞ ð2Þ

Fig 2. Correlations between clinical variables, genomic predisposition score (GPS), and efficiency score.Correlations are shown for (a) baseline
body mass index (BMI) and efficiency score (r = −0.78, p < 0.01), (b) baseline BMI and GPS (r = 0.14, p < 0.01), and (c) efficiency score and GPS (r = −0.12,
p < 0.01).

doi:10.1371/journal.pone.0126443.g002
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Discussion
In this study, we used DEA to estimate individuals’ susceptibility to obesity. First, we compared
a regression model that included the GPS with another model that included the efficiency
score. Second, we compared the resulting coefficients with the coefficient provided by the

Table 2. Factors associated with baseline bodymass index (n = 1,620).

Partial coefficient Standard error† p-value

Model 1 (adjusted R2 = 0.0083)

Intercept 22.19 0.92 N/A

Sex (women vs. men) -0.42 0.17 0.01

Age (years) 0.02 0.01 0.03

Energy expenditure (METs-h/day) 0.00 0.01 0.88

Energy intake (kcal/day) 0.0001 0.0001 0.33

Model 2 (adjusted R2 = 0.65)

Intercept 29.76 0.35 N/A

Sex (women vs. men) 0.24 0.10 0.01

Age (years) 0.05 0.0046 <0.01

Efficiency score -19.57 0.41 <0.01

Model 3 (adjusted R2 = 0.025)

Intercept 19.69 0.75 N/A

Sex (women vs. men) -0.42 0.16 0.01

Age (years) 0.02 0.01 0.02

GPS 0.10 0.02 <0.01

Model 4 (adjusted R2 = 0.024)

Intercept 19.39 1.07 N/A

Sex (women vs. men) -0.38 0.16 0.02

Age (years) 0.02 0.01 0.03

Energy expenditure (METs-h/day) 0.0001 0.01 0.99

Energy intake (kcal/day) 0.0001 0.0001 0.31

GPS 0.10 0.02 <0.01

Model 5 (adjusted R2 = 0.66)

Intercept 28.84 0.48 N/A

Sex (women vs. men) 0.25 0.10 0.01

Age (years) 0.05 0.0046 <0.01

GPS 0.03 0.01 0.01

Efficiency score -19.47 0.41 <0.01

Age <60 years (n = 672) (adjusted R2 = 0.65) Intercept 30.80 0.94 N/A

Sex (women vs. men) -0.02 0.16 0.92

Age (years) 0.02 0.01 0.09

GPS 0.03 0.02 0.08

Efficiency score -19.78 0.67 <0.01

Age �60 years (n = 948) (adjusted R2 = 0.66) Intercept 27.84 0.83 N/A

Sex (women vs. men) 0.44 0.12 <0.01

Age (years) 0.07 0.01 <0.01

GPS 0.04 0.02 0.02

Efficiency score -19.39 0.53 <0.01

N/A, not applicable; GPS, genomic predisposition score; METs, metabolic equivalents.
†Robust standard errors are reported.

doi:10.1371/journal.pone.0126443.t002
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model that included both valuables. Based on our results, the efficiency score had a better pre-
dictive power when using baseline BMI, compared to GPS, as evidenced by the greater adjusted
R2 value and greater partial efficiency value. These findings suggest that DEA is feasible for es-
tablishing a model of an individual’s risk of obesity. Similar to the previous study that used
DEA to evaluate a physical activity program [12], our data indicate that we can use DEA to pre-
dict the efficiency of interventions that are designed to prevent obesity. Therefore, the results of
this study highlight the potential applications of DEA in personalized preventative medicine.

Obesity is caused by various factors [19], including environmental (diet and physical activi-
ty), genetic, and epigenetic factors [19,28–33]. These genetic factors include common variants
(e.g., SNPs), rare variants, and gene-environment interactions [3,34]. In this context, GPS is
currently the optimal risk score for evaluating genetic factors, although it can only be measured
using a large-scale GWAS, and can only elucidate a subset of the genetic factors. In theory,
DEA can calculate an efficiency score that includes all factors, besides the input factors (e.g.,
food intake and energy expenditure in this study). This theory is strongly supported by our

Table 3. Factors associated with yearly change in bodymass index (n = 708).

Partial coefficient Standard error† p-value

Model 1 (adjusted R2 = 0.032)

Intercept 0.22 0.09 N/A

Sex (women vs. men) -0.02 0.02 0.29

Age (years) -0.004 0.001 <0.01

Energy expenditure (METs-h/day) 0.0004 0.001 0.79

Energy intake (kcal/day) 0.000001 0.00001 0.94

Model 2 (adjusted R2 = 0.038)

Intercept 0.19 0.07 N/A

Sex (women vs. men) -0.02 0.01 0.16

Age (years) -0.0043 0.0009 <0.01

Efficiency score 0.14 0.07 0.06

Model 3 (adjusted R2 = 0.033)

Intercept 0.25 0.07 N/A

Sex (women vs. men) -0.02 0.01 0.25

Age (years) -0.0041 0.0009 <0.01

GPS -0.000045 0.0019 0.98

Model 4 (adjusted R2 = 0.031)

Intercept 0.23 0.11 N/A

Sex (women vs. men) -0.02 0.02 0.29

Age (years) 0.00 0.00 <0.01

Energy expenditure (METs-h/day) 0.0004 0.0015 0.79

Energy intake (kcal/day) 0.000001 0.000013 0.94

GPS -0.00002 0.0019 0.99

Model 5 (adjusted R2 = 0.036)

Intercept 0.19 0.08 N/A

Sex (women vs. men) -0.02 0.02 0.16

Age (years) -0.0043 0.0009 <0.01

GPS 0.0001 0.0019 0.97

Efficiency score 0.14 0.07 0.06

N/A, not applicable; GPS, genomic predisposition score; METs, metabolic equivalents.
†Robust standard errors are reported.

doi:10.1371/journal.pone.0126443.t003
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finding that the determination coefficient for the model that included the efficiency score was
higher than that for the model that included the GPS. Thus, the efficiency score from DEA is a
useful measure for the risk of obesity, given that most genetic factors for the onset of obesity re-
main unknown. Furthermore, we calculated these efficiency scores using existing clinical data,
which is much more cost-effective than personal genomic analyses. Therefore, our methodolo-
gy can be used as a foundational approach to establishing personalized preventive medicine.

However, there is a major limitation that should be considered when interpreting our find-
ings. For the change in BMI (between the baseline and follow-up surveys), we failed to establish
efficiently fitted models, due to the low R2 values and low partial efficiencies. This finding may
be partially explained by the small value of the absolute change in BMI, which may have been
affected by several factors. First, the baseline survey of the Takahata study was conducted when
the participants received health check-ups. However, based on the results of that health check-
up, the obese participants received preventive medical interventions, such as nutritional guid-
ance. Therefore, it is possible that participants with low efficiency scores had received an inter-
vention, which might have affected their change in BMI. Second, the biological significance of
BMI differs according to age, as larger BMI increases are observed in the adolescent period,
compared to those observed in adulthood, and BMI peaks at the age of 55 years among men
and at the age of 60 years among women [30–33]. However, in the Takahata Study, more than
half of the participants were>60 years old, and would likely experience a decreasing trend in
their BMI. Thus, the role of the efficiency score should be evaluated among all age groups in fu-
ture studies, including the adolescent period, as this additional data would facilitate more ap-
propriate use of the efficiency score in preventive medicine. Third, the Charnes-Cooper-
Rhodes model is one of many possible models that we could have selected for the present
study. However, the present study is the first to examine the application of DEA in predicting
obesity, and while model selection is an important consideration in DEA, we were unable to

Fig 3. Correlations between changes in bodymass index (BMI), genomic predisposition score (GPS), and efficiency score.Correlations are shown
for (a) yearly change in BMI and efficiency score (r = −0.012, p = 0.80) and (b) yearly change in BMI and GPS (r = 0.055, p = 0.21).

doi:10.1371/journal.pone.0126443.g003
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rely on existing studies to justify the model selection. Therefore, we do not reject the possibility
that better models may exist for this purpose [15]. Furthermore, we eagerly await future studies
in this field, as the better combination of DEA and genetic information would help establish
more effective risk models for obesity.

In conclusion, we estimated individuals’ susceptibility to obesity using DEA. Although the
results of the present study are preliminary, we are planning large-scale prospective studies to
confirm the feasibility and usefulness of DEA in this field. Nevertheless, our findings provide
novel foundational insights regarding methods to facilitate personalized preventive medicine.
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