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Abstract: Deterioration of materials and structures is an unavoidable fact, and prestressed concrete
structures are not an exception. The evaluation of load-carrying capacity and remaining service
life includes collecting various information. However, one type of information is essential and the
most important, the state of prestressing, which inevitably decreases over time. Currently, many
possible methods for the evaluation of prestressing are available. These techniques are part of
the structural assessment and provide residual prestressing force value which is later used in the
evaluation process. Therefore, it is suitable to provide the value of prestressing force based on
certain probabilistic backgrounds. This study addresses the determination of residual prestressing
force in pre-tensioned railway sleepers one year after their production, using the so-called Bayesian
approach. This technique is focused on the validation of results obtained from the application of the
non-destructive indirect saw-cut method. The Bayesian approach considers analytic calculation as
the primary method of prestressing determination. In this paper, Monte Carlo simulation was used to
determine the total variability that defines all Bayesian systems of probability functions. Specifically,
a total of 1000 simulations was applied, and the current random vector of prestressing force derived
from the analytical calculation has been assumed as a normally distributed function. Finally, obtained
results for different depths of saw-cuts are compared. The results of the experimental and statistical
determination of residual prestressing force provide its value with a 95% confidence level. This study
suggests that the implementation of the probability approach can be an effective tool for determining
prestress losses.

Keywords: Bayesian approach; prestressing force; saw-cut method; assessment; pre-tensioned
members

1. Introduction

When assessing existing prestressed concrete structures, the determination of the
residual prestressing force is an essential and inevitable task [1,2]. Prestressing force value
obviously decreases over time and its determination should consider all potential prestress
losses [3,4]. However, acquiring crucial knowledge about the exact value of prestressing
force acting on the structure is quite difficult. Of course, for reliable assessment additional
information considering the structure’s condition needs to be obtained [5,6]; it is possible to
collect this data using common testing methods [7]. This general knowledge includes many
material properties, such as information about the real geometry of structural members
and reinforcement, damage and deterioration (obtained from visual inspections); data
containing the effect of significant overloading of the structure, etc. [8,9].

Generally, the analytical or numerical calculation of prestressing force value is the
standard approach. Therefore, required input data consists of the age of the structure, its
geometry, reinforcement parameters, and layout. Moreover, necessary material properties
can be obtained using a wide range of standard material testing procedures [10–12]. How-
ever, all collected data that affect the prestressing force have a natural strongly stochastic
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character, especially due to effects such as the rheology of concrete (creep and shrinkage)
or steel relaxation [13].

In Bayesian philosophy, the analytic calculation (the primary method of prestress
determination) can be considered as the prior hypothesis, together with its probability.
Nevertheless, other new or additional relevant information can also be desirable and
useful, especially regarding the unknown value of a prestressing force that is acting on
the structure [14–16]. Likewise, several indirect techniques or structural tests can be used,
such as the saw-cut method or structural response method [17–19]. These methods are
based on observation of the structural behavior after the application of a known load. In
the case of the saw-cut method, normal stress (strain) relief is observed. On the other
hand, the structural response method evaluates prestressing based on the measurement
of deflection, strain (normal stress) change or width of crack resulting from the external
load [20,21]. All new relevant information can be taken into account and combined with the
prior probabilistic model using updated techniques. These results are so-called posterior
probabilistic models, which may be used to obtain an enhanced assessment of current
prestressing force.

Updating the probability distribution of a basic variable is commonly based on the
Bayesian approach described briefly below. Two individual events, A and B, are studied.
The conditional probability P (A|B) of event A, given event B has occurred with a non-zero
probability P (B), is defined as:

P (A|B) = P (A ∩ B)/P (B) = [P (A) × P (B|A)]/P (B) (1)

where P (A|B) is a conditional probability, i.e., the probability of event A occurring given
that B is true. It is also called the posterior probability of A given B. P (B|A) is also a condi-
tional probability, i.e., the probability of event B occurring given that A is true. It can also
be interpreted as the likelihood of A, given a fixed B, because P (B|A) = L (A|B) × P (A)
and P (B) are the probabilities of observing A and B, respectively, without any given condi-
tions; they are known as the marginal probability or prior probability. A and B must be
different events.

The Bayesian theorem can also be applied to the hypothesis verification tool, and
graphically interpreted using probability density functions as presented in Figure 1.
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Figure 1. Bayesian concept.

In fact, the input data are random variables, thus the probability distribution function
can be used to represent the data {x1, x2, . . . , xn} with distribution parameters of θ. The
concept of conjugacy in Bayesian statistics is used. Conjugacy occurs if the posterior
distribution is in the same family of probability density functions as the prior belief, but
with new parameter values. These values are updated to reflect what has been understood
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from the obtained data. Bayes’ theorem, expressed in terms of probability distributions,
appears as:

f (θ|data) = [f (θ) × f (data|θ)]/[
∫

f (data|θ) × f (θ) × dθ] (2)

where f (θ|data) is the posterior distribution for the parameter θ; f (data|θ) is the sampling
density for the data, which is proportional to the likelihood function, only differing by
a constant that makes it a proper density function; f (θ) is the prior distribution for the
parameter θ; and f (data) is the marginal probability, f (data) =

∫
f (data|θ) × f (θ) × dθ.

A number of closed-form solutions for Equation (2) can be found for special types of
probability distribution functions known as the natural conjugate distributions. In cases
where no analytical solution is available, first order reliability method (FORM)/second
order reliability method (SORM) techniques can be used to assess the posterior distribution.
If the normal–normal conjugate family N (µ,σ2) is taken into account, Bayes’ theorem leads
to the posterior distribution for µ and σ2 given the observed data to take the form:

p (µ,σ2|x1, x2, . . . , xn) = [p (µ,σ2) × p (x1, x2, . . . , xn|µ,σ2)]/Normalizing Constant (3)

where p (µ,σ2) is the joint prior distribution function. The likelihood function for (µ,σ2) is
proportional to the sampling distribution of the data, L (µ,σ2) ∝ p (x1, x2, . . . , xn|µ,σ2),
so that the posterior distribution can be re-expressed in proportional form. The symbol
∝ means “proportional to“. According to the Joint Committee on Structural Safety (JCSS)
Probabilistic Model Code described in [14] and [22], Equation (3) can be expressed for
normal distribution in engineering-acceptable form for µ and σ, given as:

f′(µ,σ) = k × σ − [δ(n′) + v′ + 1] exp {−[(1/2 × σ2)] × [v′ × (s′)2 + n′ × (µ −m′)2]} (4)

where k is the normalizing constant; δ (n′) = 0 for n′ = 0; δ (n′) = 1 for n′ > 0; m′ is the
sample mean; s’ is the sample standard deviation; n is the sample size; and v′ = n − 1 is the
number of degrees of freedom. Then, the predictive value of {X} can be found from:

{X} = m′′ + tv” × s′′ × {1 + 1/n′′} 0.5 (5)

where tv′′ has a central Student‘s t-distribution.
The present study is based on results from the application of the non-destructive

saw-cut method performed on pre-tensioned members—e.g., railway sleepers. The method
aims to isolate concrete block from acting forces by means of saw-cuts. Residual prestress-
ing force is subsequently calculated from normal stress relief initiated by sawing [17,18].
The ratio of isolation of concrete block is dependent on the parameters of saw-cuts—depth
and axial distance [23]. One of the main advantages of this technique is that it has negli-
gible local impact on the prestressed concrete structure. When using the saw-cut method
on an unloaded structure, the prestressing force value is easy to calculate because the
determination of normal stress resulting from the dead load is obvious. However, if the
investigated member is also loaded by an external load, additional normal must be taken
into account [20,21].

2. Analytical Calculation of Prestressing Force Value

The analysis was performed on a prestressed concrete sleeper, which is one of the
standard pre-tensioned members produced in the manufacturing process. In particular,
our specimen is sleeper type B70 W-49G, as illustrated in Figure 2.



Materials 2022, 15, 3548 4 of 17Materials 2022, 15, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 2. Analyzed prestressed concrete sleeper B70 W-49G. 

Declared basic parameters entered into the analytical calculation of prestressing force 
Pm (t) (kN) are listed in Table 1. 

Table 1. Characteristics of analyzed sleeper. 

Ac 
(m 2) 

Ic 
(m 4) 

zbott 
(mm) 

zupp 
(mm) 

ϕw 
(mm) 

No. of ϕw 
(-) 

fpk 
(MPa) 

fp0.1k 
(MPa) 

Ep 
(GPa) 

0.0324 0.0000816 82 93 7 8 1740 1560 195 

The prestressed concrete sleeper was designed from concrete class C50/60 [24]. 
Therefore, the modulus of elasticity, Ecm = 37,000 MPa, was assumed. Calculation of pre-
stressing force Pm (t) in time t = 365 days was performed according to the Eurocode 2—
Slovak national implementation STN EN 1992-1-1 [25]. Prestressing of the sleeper was 
provided by eight wires with a smooth surface and a diameter of 7 mm. The initial pre-
stressing force was derived from Equation (6) considering the value of initial stress in the 
wire, σp,in = 1380 MPa. The bending moment due to self-weight is MGo = 0.798 kNm. 

σpm,max = min [0.80 × fpk; 0.90 × fp,0.1k] (6)

Long-term prestress losses have the highest influence on the prestressing force 
value’s decrease over time. They were determined using standard Equations (7) and (8). 
Prestress losses due to steel relaxation are: 

Δσp,r (t,t0) = −σpi × k1 × ρ1000 [%] × 10−5 × e μ × k2 × [t/1000]0.75 × (1 − μ) = −169.3 MPa (7)

where k1 = 5.39; k2 = 6.7; ρ1000 = 8.0; μ = 0.79. 

Δσp,r+s+c = −{0.8 × Δσp,r (t,t0) + εcs (t,t0) × Ep + (Ep/Ecm) × φ (t,t0) × σc,(Pm0+G0) (t,t0)}/{1 + 
(Ep/Ecm) × (Ap/Ac) × [1+ (Ac/Ic) × ep2] × [1 + 0.8 × φ (t,t0)} = −310.3 MPa 

(8)

where εcs (t,t0) = 5.01; and φ (t,t0) = 1.69. 
Corresponding prestressing force, considering the prestress losses after 365 days in 

one prestressing wire, is Pm (t) = 41.2 kN. 
All analytical systems contain a certain degree of variability. When these systems are 

formed by a combination of random variables, the resulting variability of the system gen-
erally cannot be found in a closed-form approach. An alternative approach that allows the 
estimation of variability in a system, given the variability of its components, is Monte 

Figure 2. Analyzed prestressed concrete sleeper B70 W-49G.

Declared basic parameters entered into the analytical calculation of prestressing force
Pm (t) (kN) are listed in Table 1.

Table 1. Characteristics of analyzed sleeper.

Ac
(m2)

Ic
(m4)

zbott
(mm)

zupp
(mm)

φw
(mm)

No. of φw
(-)

fpk
(MPa)

fp0.1k
(MPa)

Ep
(GPa)

0.0324 0.0000816 82 93 7 8 1740 1560 195

The prestressed concrete sleeper was designed from concrete class C50/60 [24]. There-
fore, the modulus of elasticity, Ecm = 37,000 MPa, was assumed. Calculation of prestressing
force Pm (t) in time t = 365 days was performed according to the Eurocode 2—Slovak
national implementation STN EN 1992-1-1 [25]. Prestressing of the sleeper was provided
by eight wires with a smooth surface and a diameter of 7 mm. The initial prestressing
force was derived from Equation (6) considering the value of initial stress in the wire,
σp,in = 1380 MPa. The bending moment due to self-weight is MGo = 0.798 kNm.

σpm,max = min [0.80 × fpk; 0.90 × fp,0.1k] (6)

Long-term prestress losses have the highest influence on the prestressing force value’s
decrease over time. They were determined using standard Equations (7) and (8). Prestress
losses due to steel relaxation are:

∆σp,r (t,t0) = −σpi × k1 × ρ1000 [%] × 10−5 × e µ × k2 × [t/1000]0.75 × (1 − µ) = −169.3 MPa (7)

where k1 = 5.39; k2 = 6.7; ρ1000 = 8.0; µ = 0.79.

∆σp,r+s+c = −{0.8 × ∆σp,r (t,t0) + εcs (t,t0) × Ep + (Ep/Ecm) × ϕ (t,t0) × σc,(Pm0+G0) (t,t0)}/{1 + (Ep/Ecm) ×
(Ap/Ac) × [1 + (Ac/Ic) × ep

2] × [1 + 0.8 × ϕ (t,t0)} = −310.3 MPa
(8)

where εcs (t,t0) = 5.01; and ϕ (t,t0) = 1.69.
Corresponding prestressing force, considering the prestress losses after 365 days in

one prestressing wire, is Pm (t) = 41.2 kN.
All analytical systems contain a certain degree of variability. When these systems

are formed by a combination of random variables, the resulting variability of the system
generally cannot be found in a closed-form approach. An alternative approach that allows
the estimation of variability in a system, given the variability of its components, is Monte
Carlo simulation (MCS). In this study, MCS was used to determine the total variability that
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defines all Bayesian systems of probability functions. In our case, a total of 1000 simulations
were applied.

The current random vector of prestressing force {Pcalc} derived from the analytical
calculation has been assumed as a normally distributed function, as in [15], based on a
random generation with a known mean value of 40.96 kN and a standard deviation of
10.20 kN. In the first approximation, this level corresponds to the estimated variation
coefficient of 25%. Of course, it is appropriate to have all components in Equation (7) or (8)
as a random variable. Specifically, they have mean values according to Table 1, and the
strength and modulus of elasticity parameters have a common coefficient of variation (CV),
CV = 5%, and for the cross-sectional parameters, CV = 3%. However, in this simulation,
the consequence of the central limiting theorem was applied. Estimated prestress force is
presented using a histogram, probability density function (PDF) and cumulative distribu-
tion function (CDF) in Figures 3 and 4. It can be considered as the joint prior probability
function, as in Equation (3). Statistical parameters are listed in Table 2.
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Table 2. Statistical parameters for Pcalc.

Mean m’
(kN)

Median
(kN)

St. Dev. s’
(kN)

Kurtosis
(-)

Skewness
(-)

Min.
(kN)

Max.
(kN)

Conf (95)
(kN)

40.96 41.04 10.02 0.3586 –0.0036 5.60 75.59 0.6218

3. Experimental Program—Saw-Cut Method

The application of the saw-cut method on prestressed concrete sleepers consisted of
three saw-cuts. Their axial distance was 120 mm, and sawing was performed gradually
(depths of 10, 20 and 30 mm). The maximal depth of saw-cuts was chosen with regard
to the layout of prestressing wires in the sleepers, as we intended to avoid cutting them
and affecting the structural integrity of pre-tensioned members. For the experiment, the
upper edge of the specimen with a straight and smooth surface in the mid-span area was
chosen. This location provided suitable conditions for the installation of strain gauges and
subsequent measurement of strain release after sawing. The measurement is presented in
Figure 5. For strain recording, linear foil strain gauges HBM LY41-50/120 made of ferritic
steel (temperature matching code “1”: 10.8 × 10−6/K) with a measuring grid length of
50.0 mm and a total length of 63.6 mm were installed. The position of strain gauges can
be seen in Figure 6. The prestressed concrete sleepers were supported by two lines at a
distance of 0.1 m from the ends. Supports were provided using so-called steel rollers; as a
consequence, the specimens behaved as simply supported beams with an effective length
of 2.4 m.

All the equations and assumptions mentioned are based on the linear distribution
of normal stress which can be assumed in the case of the uncracked prestressed concrete
structure. Therefore, in the case of an already pre-cracked structure, such an assumption
should not be considered. After sawing, some local nonlinearities could be observed, but
the area adjacent to installed strain gauges should not be significantly influenced given an
axial distance of 120 mm.
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Normal stress readings from the measurement are displayed in Figure 7 and listed
in Table 3. Evaluation of obtained results was based on the real value of the concrete’s
modulus of elasticity, which was determined using removed cylindrical samples (37.4 GPa).
The real modulus of elasticity value was in compliance with Eurocode 2 [25].
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No.

SG1—∆σc,i (MPa) SG2—∆σc,i (MPa)

∆σc,10 ∆σc,20 ∆σc,30 ∆σc,10 ∆σc,20 ∆σc,30

1 2.14 5.78 10.32 1.31 4.92 9.44
2 1.56 4.80 9.16 1.90 4.89 9.68
3 1.48 4.11 8.02 1.49 4.24 8.16
4 1.37 4.72 9.38 1.50 4.74 9.28
5 1.31 4.39 8.37 1.22 4.45 9.55
6 1.42 4.74 8.73 1.21 4.26 8.60
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Depending on the depth of a saw-cut, experimentally determined prestressing force
value Pexp,i can be calculated according to Equation (9):

Pexp,i = {ki × ∆σc,I − [(MG0 × zupp)/Ic]}/CS (9)

where ki is the “calibration factor of the depth of saw-cut” determined according to a
parametric study based on nonlinear numerical simulations. This constant represents the
ratio between released normal stress after the application of saw-cuts and initial normal
stress in a prestressed concrete member. The deeper a saw-cut is in the shorter axial distance
we choose, the more normal stress is released, and the calibration factor has a lower value.
More information about the calibration factor and its determination can be found in [23].
∆σc,i is the released normal stress value dependent on the depth of a saw-cut, and CS is a
cross-sectional function, as in Equation (10):

CS = −(8/Ac) − [(−4 × ep,bott + 4 × ep,upp × zupp)/Ic] (10)

where ep,bott is the distance from the cross-section center to the center of the bottom wires;
and ep,upp is the distance from the cross-section center to the center of the upper wires.
All cross-sectional parameters used in Equation (10) were considered as random variables
according to Table 4. A histogram and CDF of the cross-sectional function CS can be seen
in Figure 8.

Table 4. Cross-sectional parameters.

Ac
(m2)

Ic
(m4)

zbott
(mm)

zupp
(mm)

ep,bott
(mm)

ep,upp
(mm)

MG,o
(kNm)

Mean 0.0324 0.0000816 82 93 43 59 0.798
St. Dev. 1.619 × 10−3 4.082 × 10−6 4 4 2 3 0.040
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4. Prestressing Force Distribution Using Bayesian Approach

Measured released stresses {∆σc,10; ∆σc,20; and ∆σc,30} in prestressed concrete sleepers
were tested using the Q-Q-plot method as one of the principal testing methods, and
approximated using normally distributed data that were randomly generated using the MC
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simulations. Additionally, over 1000 simulations were performed. The results of Q-Q-plot
testing can be seen in Figure 9. The data with the best agreement with the linear regression
parameter R2 = 0.96 were gained from the 30 mm deep saw-cuts, in which the highest
stress relief was reached (approximately 72% of total assumed initial normal stress). This
corresponds with the calibration factor k30/120 = 1.39. On the other hand, a 10 mm deep
saw-cut released only 12% of initial normal stress. For this depth, the calibration factor is
k10/120 = 8.40.
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The random vector of prestressing force {P (imm)} = {P (10 mm); P (20 mm); P (30 mm)}
based on a measured data set of released normal stress is assumed according to Equation (9).
In this paper, only worst fitted data (a saw-cut depth of 10 mm) and best-fitted data (a
saw-cut depth of 30 mm) were chosen for graphical interpretation on histograms. PD and
CD functions are illustrated in Figures 10 and 11. Consequently, some differences between
the functions P (10 mm) and P (30 mm) are obvious from the basic statistical parameters of
both of chosen data sets, as listed in Table 5.
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Table 5. Statistical parameters for P (imm).

Statistics Mean m”
(kN)

Median
(kN)

St. Dev. s”
(kN)

Kurtosis
(-)

Skewness
(-)

Min.
(kN)

Max.
(kN)

Conf (95)
(kN)

P (10 mm) 43.20 43.21 7.80 0.0587 0.0871 19.11 73.61 0.4839
P (30 mm) 43.17 43.15 3.98 0.1932 0.1220 30.20 57.32 0.2448



Materials 2022, 15, 3548 12 of 17
Materials 2022, 15, x FOR PEER REVIEW 13 of 18 
 

 

 
(a) 

 
(b) 

Figure 11. Δσc,30—(a) histogram of generated data and (b) PDF and CDF. 

The primary predictive data set of calculated prestressing force {Pcalc} can be set as a 
joint prior distribution function f′ (μ, σ), according to Equation (4), or prior information. 
The random vector {P (imm)} derived from normal stress releasing, determined given the 
depth of a saw-cut, can be used in the Bayesian theorem as a likelihood or conditional 
information. This function is based on a measured data set which specifies and moves 
assumed calculation. The resulting {Ppost = P} as a final distribution prestressing force can 
also be signed as a posterior data distribution f″ (μ, σ). These data were derived from 
Equation (5) using MC simulation and can be graphically interpreted in PD and CD func-
tions of {Ppost}. The resulting shape and parameters of posterior probability distribution f″ 
(μ, σ) depends on the distribution function of the measured data sets, as in Figures 12 and 
13. The final statistics of the {P} probability distribution function regarding the depth of a 
saw-cut are presented in Table 6. 

Figure 11. ∆σc,30—(a) histogram of generated data and (b) PDF and CDF.

The primary predictive data set of calculated prestressing force {Pcalc} can be set as a
joint prior distribution function f′ (µ, σ), according to Equation (4), or prior information.
The random vector {P (imm)} derived from normal stress releasing, determined given the
depth of a saw-cut, can be used in the Bayesian theorem as a likelihood or conditional
information. This function is based on a measured data set which specifies and moves
assumed calculation. The resulting {Ppost = P} as a final distribution prestressing force
can also be signed as a posterior data distribution f” (µ, σ). These data were derived
from Equation (5) using MC simulation and can be graphically interpreted in PD and
CD functions of {Ppost}. The resulting shape and parameters of posterior probability
distribution f” (µ, σ) depends on the distribution function of the measured data sets, as in
Figures 12 and 13. The final statistics of the {P} probability distribution function regarding
the depth of a saw-cut are presented in Table 6.
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Table 6. Statistical parameters for Ppost.

Statistics Mean m′′
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Median
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(-)
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(kN)

Max.
(kN)

Conf (95)
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Ppost (10 mm) 41.22 41.38 9.54 0.3869 0.0286 11.39 77.84 0.5920
Ppost (30 mm) 41.34 41.38 7.65 1.6388 0.2352 14.69 79.43 0.4748
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5. Discussion

Our investigation suggests that a relatively small intervention into the prestressed
member can cause sufficient local normal stress relief. Intervention in the form of a
maximum 30 mm deep saw-cut is insignificant compared to the dimensions of the cross-
section of the prestressed member; the global structural integrity is not affected. Moreover,
the saw-cut method can be performed without the application of an external load. Absence
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of additional external load leads to easier residual prestressing force derivation from the
obtained results.

Undoubtedly, prestressing force is the decisive factor in the assessment of existing pre-
stressed concrete structures. However, it is very difficult to obtain its exact value at the time
of testing. In addition to the standard analytical evaluation that should be used in all cases,
some experimental methods have been verified and applied worldwide [17,18,20,21,26,27].
Nevertheless, these methods provide different results compared to the analytically cal-
culated value. The reason for this is the wide range of factors that affect prestress losses,
including the creep and shrinkage of concrete and steel relaxation. It is also possible that
the corrosion effect or issues related to inadequate concrete or duct grout quality could
influence the analysis.

Generally, Monte Carlo simulation is known as a technique that constructs probability
distributions for the possible outcomes of decisions. In the presented study, the MCS was
applied to the generation of random variable vectors which were normally distributed. The
Bayesian concept can more precisely define the estimated residual value of prestressing
force at a certain time Pm (t). Usually, the evaluation can only take analytically derived
prestress losses into account using the standard approach, as in Eurocode 2 [25], which is
similar to the presented study. However, standard calculation of residual prestressing force
value is not often sufficient or adequate to deal with such important parameters for global
structure reliability evaluation.

6. Conclusions

In our paper, there is an obvious coincidence between the prior {Pcalc} and posterior
{Ppost} probability distribution functions, with only a 95% confidence level. The reason for
such close agreement of both probability functions is that the sleeper specimens were in a
very good state after being stored for one year in a covered warehouse without any service
or deterioration factors that could affect their structural condition. Moreover, they were
kept in a relatively stable environment which inevitably affected the volumetric changes
in the concrete. This is why prior and posterior functions are in such good agreement.
The kurtosis of posterior functions was higher in both cases, especially for the best-fitted
curve for Ppost (30 mm), due to the strong consistency of the experimental results that form
likelihood function. Naturally, if the shape, distribution and displacement of the predictive
function of prestress losses on the x-axis were distant from the likelihood function, the
posterior probability distribution function would be different.

Unquestionably, it is very important to present the results of methods for determining
the state of prestressing in statistical form. This makes it possible to define the probability
of the obtained state of prestressing, which is a crucial aspect of the evaluation of the
load-carrying capacity of the existing prestressed concrete structure. The implementation
of the probability approach to determine prestress losses can be an effective tool, since the
evaluation process of existing prestressed concrete structures considers model uncertainties
and any possible deteriorations.
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Nomenclature
P (A), P (B) Probability of event A and B.
P (A|B), P (B|A) Conditional probability.
FORM First order reliability method.
SORM Second order reliability method.
JCSS Joint Committee on Structural Safety.
Pm (t) Prestressing force value in time “t” (kN).
CV Coefficient of variation.
σp,in Initial stress in prestressing steel (MPa).
MG Moment due to dead load (kNm).
σpm,max Maximum stress in prestressing steel according to Eurocode 2 (MPa).
fpk Characteristic tensile strength of prestressing steel (MPa).
fp,0.1k Characteristic 0.1% proof-stress of prestressing steel (MPa).
∆σp,r Prestress losses due to steel relaxation (MPa).
∆σp,r+s+c Long-term prestress losses (MPa).
MCS Monte Carlo simulation.
{Pcalc} Current random vector of prestressing force.
PDF Probability density function.
CDF Cumulative distribution function.
SC Saw-cut.
SG Strain gauge.
Pexp,i Experimentally determined prestressing force value (kN).
ki Calibration factor of the depth of saw-cuts (-).
∆σc,i Released normal stress after the application of saw-cuts (MPa).
CS Cross-sectional function (1/m2).
ep,bott Ideal eccentricity of bottom wires from the neutral axis (m).
ep,upp Ideal eccentricity of upper wires from the neutral axis (m).
zbott Position of the neutral axis of an ideal cross-section from the bottom edge (m).
zupp Position of the neutral axis of an ideal cross-section from the upper edge (m).
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