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Abstract: The trichothecene mycotoxin deoxynivalenol (DON) is commonly encountered 

in human cereal foods throughout the world as a result of infestation of grains in the field 

and in storage by the fungus Fusarium. Significant questions remain regarding the risks 

posed to humans from acute and chronic DON ingestion, and how to manage these risks 

without imperiling access to nutritionally important food commodities. Modulation of the 

innate immune system appears particularly critical to DON’s toxic effects. Specifically, 

DON induces activation of mitogen-activated protein kinases (MAPKs) in macrophages 

and monocytes, which mediate robust induction of proinflammatory gene expression—

effects that can be recapitulated in intact animals. The initiating mechanisms for  

DON-induced ribotoxic stress response appear to involve the (1) activation of constitutive 

protein kinases on the damaged ribosome and (2) autophagy of the chaperone GRP78 with 

consequent activation of the ER stress response. Pathological sequelae resulting from 

chronic low dose exposure include anorexia, impaired weight gain, growth hormone 

dysregulation and aberrant IgA production whereas acute high dose exposure evokes 

gastroenteritis, emesis and a shock-like syndrome. Taken together, the capacity of DON to 

evoke ribotoxic stress in mononuclear phagocytes contributes significantly to its acute and 

chronic toxic effects in vivo. It is anticipated that these investigations will enable the 

identification of robust biomarkers of effect that will be applicable to epidemiological 

studies of the human health effects of this common mycotoxin. 
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1. Introduction 

Consumption of bread made from overwintered cereal grains infested with the mold Fusarium 

during World War II in the USSR resulted in massive outbreaks of alimentary toxic aleukia (ATA) [1]. 

ATA, a frequently fatal disease, involves both the immune and gastrointestinal systems and, as its 

name implies, evokes symptoms that included diarrhea, vomiting, leukopenia, hemorrhage and shock. 

Human gastroenteritis with nausea, diarrhea and vomiting as primary symptoms has been similarly 

linked to Fusarium-contaminated foods in Japan, Korea [2], China [3] and India [4]. Retrospective 

studies have demonstrated that a commonality among the fusaria isolated from such outbreaks is their 

capacity to produce a class of highly toxic secondary metabolites known as trichothecenes. 

Trichothecene mycotoxins are low molecular weight (≈200–500 D) sesquiterpenoids that contain 

both a common 9, 10 double bond and 12, 13 epoxide group as well as varied substituent groups that 

contribute significantly to their toxic potential. Of the over 200 members of this intriguing family that 

have been so far described [5–7], deoxynivalenol (DON) is very commonly encountered in 

cereal-based foods throughout the world [8]. High dose, acute exposure of sensitive animal species to 

DON, most notably pigs (e.g., 15–20 ppm in diet), elicits abdominal distress, increased salivation, 

malaise, diarrhea and emesis [9–14]. Contrastingly, prolonged low dose feeding of DON to 

experimental pigs and mice (e.g., 1–10 ppm) impairs weight gain, causes anorexia and possibly 

interferes with nutritional efficiency [13]. DON can stimulate or suppress immune function depending 

on dose, exposure frequency, timing and the functional immune assay being used [15]. As will be 

discussed below, this diverse spectrum of effects is likely to result from differences in intensity and 

duration of kinase signaling and the extent of resultant gene expression. 

Large-scale epidemics of Fusarium infection in wheat, barley and corn with corresponding DON 

contamination are increasingly being observed in the U.S. and other parts of the world, possibly as 

inadvertent outcomes of expanded use of ―no-till farming‖, inappropriate crop rotation and climate 

change. Recent biomarker studies indicate that most persons who consume wheat-containing foods are 

regularly exposed to DON [16,17]. Not surprisingly, there is growing global concern over the 

possibility of adverse human health outcomes resulting from acute and chronic DON consumption. 

Understanding the mode of action of natural toxins such as DON facilitates accurate prediction of 

potential toxic effects, thereby enabling more precise science-based risk assessment and risk management. 

Studies in our laboratory and others have revealed that the innate immune system plays an intricate 

role in DON toxicity. The purpose of this review is to discuss (1) the molecular mechanisms that 

underlie DON toxicity with a specific focus on mononuclear phagocytes and (2) the relationship 

between DON-induced proinflammatory gene expression and downstream pathologic sequelae. 
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2. DON Targets Mononuclear Phagocytes 

2.1. In vitro effects of DON 

Primary cultures and cell lines derived from bone marrow, gut epithelium, liver, lymphoid tissue, 

kidney, lung and various cancers have been employed to assess DON’s toxic effects. Leukocytes, most 

notably those of mononuclear phagocyte lineage, appear to be particularly responsive to DON [15]. 

Exposure of macrophages and monocytes to DON at low or moderate concentrations (i.e., partially 

inhibit translation) will selectively induce proinflammatory gene expression, but extended exposures to 

high concentrations (i.e., completely inhibit translation) can cause cell death. Susceptibility to 

apoptosis induction can vary greatly among cell types, with primary cells sometimes being more 

resistant [18]. 

2.2. Mechanisms for DON inhibition of translation 

It has been proposed that trichothecenes including DON inhibit protein synthesis by binding to the 

peptidyl transferase region of the ribosome and interfering with initiation and elongation [19,20]. In 

addition to this canonical mechanism, DON might suppress protein synthesis in at least three other 

ways. For example, incubation of cloned macrophages with DON can result in lesions in the 28s rRNA 

which might render the 60s subunit non-functional [21]. In addition, DON induces activation of a 

ribosome-associated kinase known as double-stranded RNA-associated protein kinase (PKR) [22]. 

Upon activation, PKR can phosphorylate eukaryotic initiation factor 2α (EIF2α), thereby preventing 

translation [23]. Finally, it has recently been observed that DON can upregulate a large number of 

microRNAs (miRNAs) associated with selective gene downregulation [24]. Since many of these 

DON-induced miRNAs specifically correspond to ribosomal proteins, it is possible that those miRNA 

downregulate ribosome synthesis thus enabling DON-exposed cells to economize and redistribute 

resources needed for survival. 

2.3. Mechanisms for DON-induced proinflammatory gene upregulation 

Robust upregulation of specific cytokines, chemokines and other inflammation-related proteins by 

DON in vitro is preceded by elevations of their corresponding mRNAs [15] (Table 1). For example, 

DON induces mRNAs for TNF-α and IL-6 in macrophages [25,26], IL-8 in monocytes [27,28] and  

IL-2 expression in T cells [29,30]. The premise that DON and other translational inhibitors selectively 

drive overexpression of specific proteins appears at first to be intuitively contradictory. However, it is 

not unreasonable to predict that the rapid (e.g., 1 to 2 h) and marked (e.g., 10- to 1000-fold) 

upregulation of selected mRNAs in cells with partially suppressed translation would dramatically skew 

the expressed proteome. This concept is supported by comparable observations made for the ribotoxic 

proteins ricin and Shiga toxin [31–33]. 

Upregulation of mRNA expression by DON involves both transcriptional and post-transcriptional 

processes [15,34–36]. DON induces transcription factor expression (e.g., c-Fos, Fra-2, c-Jun , JunB, 

EGR1, ATF3) [37,38] and transcription factor activation (e.g., NF-κB, CREB, AP-1 and C/EBP) 

[29,39–42]. These transcription factors specifically regulate expression of inflammation- and 
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immune-related genes. DON-induced transactivation has been confirmed using promoter-reporter 

studies assays [28,34,43,44]. 

Table 1. Genes upregulated by deoxynivalenol in mice. 

Gene Family Gene 

Proinflammatory Cytokines IL-1α, IL-1β, IL-6, IL-11, TNF-α, TGF-β 

T Cell Cytokines IFN-γ, IL-2 

Chemokines MIP-2, MCP-1, Crg-2, CINC-1, MCP-3 

Transcription Factors cFos, cJun, Fra-2, Jun-B, NR4a1 

Phosphatases MKP1, CNAb, Ptpn8, Ptprj 

Suppressors of Cytokine Signaling (SOCS) CIS1,SOCS1, SOCS2 ,SOCS3 

Other Cox-2, C3aR 

See references [26,34,48,83,100,120]. 

DON also stabilizes mRNAs for TNF-α, IL-6 and COX-2 [25,43,45], and IL-8 [39]. Enhanced 

mRNA stability relates to AUUUA motifs in the 3'-untranslated region (3'-UTR) of mRNAs that target 

transcripts for rapid degradation. Involvement of these 3’ UTRs has been verified in studies of  

DON-induced COX-2 [43] and IL-8 mRNAs [39] stabilization. Notably, mRNA stability in the latter 

investigation was related to translocation of HuR/Elav-like RNA binding protein 1 (ELAVL1) from 

the nucleus to the cytosol and its association with 3'-untranslated region of the IL-8 transcript. 

Transcriptional and post-transcriptional gene upregulation by DON is mediated by mitogen-activated 

protein kinases (MAPKs) known to be critical for signal transduction in the immune response. 

Activation of MAPKs by translational inhibitors was initially described in the landmark paper of 

Iordanov et al. [46] who termed it the ―ribotoxic stress response‖. Three MAPK families are activated 

by DON in macrophage and monocyte cultures. These include: extracellular signal regulated protein 

kinase 1 and 2 (ERK1 and 2); (ii) p54 and p46 c-Jun N-terminal kinase 1 and 2 (JNK 1/2) and (iii) p38 [15]. 

While both ERK and p38 contribute to DON-induced transactivation of TNF-α, IL-6 and COX-2, 

only p38 is essential for trichothecene-mediated mRNA stabilization [25,34,43]. Analogous results 

have been observed for IL-8 in U937 human monocytes [47] and primary human mononuclear blood 

cell cultures [48]. Consistent with in vitro studies, DON sequentially induces (1) p38, ERK and JNK 

phosphorylation, (2) activation of the transcription factors AP-1, C/EBP, CREB and NF-κB binding, 

and (3) proinflammatory cytokine mRNA expression in lymphoid tissues of the mouse [49]. 

When specific chemical inhibitors were used to screen for potential upstream kinases that could 

mediate DON-induced MAPK activation, both PKR and hematopoeitic cell kinase (Hck) were 

identified as candidate transducers [22,50]. PKR, a widely-expressed serine/threonine protein kinase, 

causes translational inhibition in an evolutionarily conserved antiviral response by phosphorylating 

[23]. PKR functions as a signal integrator for ligand-activated stress-activated protein kinase pathways 

leading to JNK and p38 activation as well as induction of TNF-α, IL-6 and IL-12 expression. Hck, a 

member of the highly conserved Src-family of cytoplasmic
 
protein tyrosine kinases, is specifically 

expressed in myelomonocytic
 
cell lineages [51]. Hck transduces extracellular

 
signals that regulate 

critical cellular processes such as proliferation, differentiation, migration and cytokine upregulation 

[52]. PKR and Hck are therefore likely to be essential for early steps in the ribotoxic stress response, 
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and, furthermore, mediate initial events resulting in innate immune activation associated with 

macrophage exposure to DON (Figure 1). 

Figure 1. DON-induced ribotoxic stress—Mechanism I. One mechanism for DON-induced 

ribotoxic stress is proposed to involve: (1) rapid DON uptake and binding to ribosome;  

(2) activation of ribosomal-associated PKR and Hck; (3) interaction of p38 with the 

ribosome; (4) p38 phosphorylation and (5) induction of proinflammatory genes. 

 

2.4. Mechanisms for DON-induced cell death 

MAPK activation also precedes trichothecene-mediated apoptosis in RAW 264.7 macrophage and 

U937 monocyte models suggesting they have an equally important regulatory role in cell death [53]. 

When the contribution of p38 in mediating apoptosis and survival was investigated in DON-treated 

RAW 264.7 macrophages [54], it was observed that at concentrations that inhibit translation partially, 

DON induces p38 and ERK 1/2 phosphorylation within 15 min and this lasts up to 3 h. DON-exposed 

cells exhibit increased caspase 3-dependent DNA fragmentation within 6 h that is suppressed and 

potentiated by p38 inhibition and ERK inhibition, respectively. DON evokes BAX translocation to 

mitochondria and cytochrome C release but does not affect mitochondrial membrane potential. In 

addition, DON also induces p38-dependent p53 activation. The p53 inhibitor PFT and p53 siRNA 

knockdown suppress DON-induced caspase-3 activation and consequent DNA fragmentation. 

Accordingly, it has been proposed that DON induces competing apoptotic 

(p38→p53→Bax→Mitochondria→Caspase-3) and survival (ERK→AKT/p90Rsk→Bad) pathways in 

RAW 264.7 macrophages. Since both PKR and Hck inhibition suppress DON-induced p53 activation, 
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caspase-3 activity and apoptosis, these kinases are also likely to be upstream transducers in  

MAPK-regulated apoptosis [22,42]. 

On a cautionary note, while potent trichothecenes such as T-2 toxin cause robust cell death in 

lymphoid tissues and bone marrow, generally by apoptosis, DON’s effects are more modest [20,53,55–61]. 

Exposure of mice to 25 mg/kg DON induces apoptosis in the thymus, bone marrow, spleen and 

Peyer’s patches [62], whereas exposure to 12.5 mg/kg does not [63,64] suggesting that relatively high 

DON dose (i.e., 1/2 to 1/3 LD50) is required for this programmed cell death. At 100 to 1000 ng/mL, 

DON induces apoptosis in cloned macrophages and monocytes [22,54,65], T cells [66] and B cells 

[67]. Treatment with DON of thymus, spleen and bone marrow cultures at 250 to 500 ng/mL for 18 h 

induces apoptosis [68], but comparatively higher concentrations of DON (1–50 µg/mL) are required to 

cause modest apoptosis in T-cells, B-cells and IgA+ cells in mouse lymphoid cultures after 8 h [69]. 

Murine peritoneal macrophages are very resistant to DON even at concentrations up to 5 µg/mL for 

12 h [70]. Comparable variability in DON-induced death induction among hematopoietic precursors 

has been observed [57,71]. Over all, these observations strongly suggest that inherent differences may 

exist in the balance between pro-apoptotic and anti-apoptotic pathways within individual phenotypes. 

Extrapolation of apoptosis studies conducted in cloned cells, often derived from tumors, to those 

carried out in primary cultures or in intact animals must be therefore performed with caution. 

3. Initiating Events in the Ribotoxic Stress Response 

Although there is recent evidence that DON interacts with both the 40S and 60S ribosomal units 

[72], the specific role of the ribosome in DON-induced MAPK activation and proinflammatory gene 

expression has not been fully delineated. Two possible contributing mechanisms identified to date are 

the direct activation of ribosome-associated kinases (Figure 1) and indirect activation via endoplasmic 

reticulum (ER) stress response (Figure 2). 

It has been increasingly recognized that cells are able to sense damage-associated molecular 

patterns and evoke stress responses as a result [73]. We hypothesized that following DON-mediated 

perturbation or damage to rRNA, the ribosome acts as the initial staging site for MAPKs [74]. 

DON-treated U937 human monocytes and RAW 264.7 murine macrophages ribosomes were therefore 

subjected to sucrose density gradient fractionation and fractions immunoblotted for p38. Both total and 

phosphorylated p38 were found to increase in those fractions containing ribosomal subunits and 

monosomes. DON induced a similar segregation of JNK and ERK into the ribosomal fractions with 

concurrent phosphorylation. These data suggest that ribosome might serve as a scaffold in the 

ribotoxic stress response. It has now been demonstrated that PKR and Hck associate constitutively 

with ribosomal fractions where they potentially integrate the initial ―sensing‖ of DON-induced 

ribosomal RNA damage and subsequently mediate intracellular kinase signaling [75] (Figure 1). 

DON and other trichothecenes differ from ribosome-inactivating proteins (RIPs) such as ricin 

because, being small molecules, they do not possess the inherent enzyme capacity to promote 28S 

rRNA cleavage at the alpha-sarcin/ricin (S/R)-loop (A4256) under cell-free conditions [76]. However, 

incubation of RAW 264.7 cells with either DON or ricin promotes the cleavage of 28S rRNA at two 

other sites (A3560 and A4045) in the peptidyl transferase center. Furthermore, both DON and ricin 

induce RNase activity and RNase L mRNA expression. 
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Figure 2. DON-induced ribotoxic stress—Mechanism II. The toxin increases unfolded 

protein concentration resulting in sequestering and degradation of GRP78 thereby evoking 

an ER stress. The resultant response includes upregulation of ATF6 and XBP1 resulting in 

CREB activation. Another hypothetical effect is activation of ASK1-mediated p38 

activation (pink shade). Both actions could contribute to proinflammatory gene expression. 

 

Thus, DON can promote intracellular 28S rRNA cleavage, potentially by facilitating the action of 

endogenous RNases and/or by upregulating RNase expression. Although it remains to be resolved 

whether these cleavages are upstream or downstream to the actual ribotoxic stress response, the 

findings support the possibility that DON interacts with the peptidyl transferase region of the 28S 

rRNA in a similar fashion to ricin. It is tempting to speculate that DON-induced perturbation or 

damage at this site initiates kinase activation and recruitment. PKR is an attractive candidate for the 

sensing role since it has a dsRNA binding site that could bind to damaged rRNA. 

DON interaction with the ribosome also results in an ER stress response (Figure 2). In support of 

this contention, DON-treated macrophages markedly decrease expression of cytoplasmic glucose 

regulated protein (GRP) 78, a chaperone known to mediate ER stress in peritoneal macrophages [18]. 

Since GRP78 mRNA is unchanged following DON treatment, GRP78 loss likely results from 

degradation rather than reduced expression. The ubiquitin-proteasome and autophagy-lysosomal 

pathways constitute two major avenues for protein degradation [77]. DON-induced GRP78 

degradation is cathepsin- and calpain-dependent but not proteosome-dependent suggesting an 

autophagy pathway is involved [18]. Potential mechanisms for DON-induced GRP78 autophagy are 

not known. Ribosome disruption and/or translation arrest might cause accumulation of misfolded 
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proteins that are sequestered by GRP78. Resultant GRP-containing complexes could enter into the 

autophagy pathway and be degraded. It should be noted that while the autophagy-lysosomal 

predominates here, DON has been demonstrated to upregulate genes associated with regulation and 

structure of the proteosome complex [78] as well as proteins of the ubiquitin-proteosome complex [79]. 

GRP78 regulates two transcription factors, X-box binding protein 1 (XBP1) and activating 

transcription factor 6 (ATF6). These bind to cAMP-response element (CRE) and drive expression of 

CRE-dependent genes. DON treatment increases levels of ATF6 as well as IRE1α protein and its 

modified products spliced XBP1 mRNA and XBP1 protein [18]. ATF6 but not XBP1 knockdown 

partially inhibits DON-induced IL-6 expression.  

It is also possible that DON-induced ER stress contributes to MAPK activation. Specifically, it is 

known that (1) IRE 1 activation mediates ASK1 phosphorylation and (2) DON induces ASK1 

phosphorylation [75]. Accordingly, the ER stress response could thus be a second complementary 

pathway by which DON and other trichothecenes affect innate immune function (Figure 2). Three 

other translation inhibitors, T-2 toxin, Shiga toxin and ricin, also induce GRP78 degradation, further 

suggesting this pathway could be a common mechanism for ribotoxic stress. 

It should be further noted that while ER stress initially triggers evolutionarily conserved  

signal-transduction events designed to ameliorate unfolded protein accumulation in the ER, if these 

events are severe or protracted, they can induce apoptosis. In the future, it will be desirable to identify 

critical events upstream and downstream of GRP degradation as well as ascertain the comparative 

contributions of this pathway to upregulation of inflammatory genes and apoptosis. 

While two possible mechanisms of ribotoxic stress have been proposed here for DON, it does not 

preclude the existence of alternative mechanisms for this or other agents. For example palytoxin does 

not inhibit translating ribosomes under cell-free conditions but requires translating ribosomes to 

transduce signals that activate JNKI [81]. Osman et al. [79] observed in a proteomic analysis of EL-4 

thymoma cells that DON induced expression of My-binding protein A (MYBBP1A). This latter 

protein interacts with many ribosomal proteins and can interact with a number of transcription factors [82]. 

4. Pathological Sequelae to DON-Induced Innate Immune Activation 

What is the in vivo relevance of the DON-induced proinflammatory gene expression? DON is 

rapidly distributed throughout the body following oral exposure of mice [83,84] and thus would be 

present in many tissues containing mononuclear phagocytes. Consistent with in vitro studies, DON 

concomitantly induces a wide array of proinflammatory cytokines and chemokines that are detectable 

in spleen, liver, kidney and lung [37,49,84–89]. Ribotoxic stress in mononuclear phagocytes, with 

consequent induction of proinflammatory gene expression, is likely to be critical for the induction of 

acute and chronic sequelae associated with DON poisoning in experimental animals (Figure 3). 

Aberrant elevation of inflammatory mediators, often referred to as a cytokine storm [90], mediate 

the shock-like effects of lipopolysaccharide (LPS) [91] and might likewise contribute to acute toxic 

effects of DON. Indeed, LPS and other toll-like receptor (TLR) agonists potentiate DON toxicity in 

mice [62,89,92–95]. Interestingly, DON has been reported to damage the integrity of intestinal cells 

and allow increased bacterial translocation [96–99]. Such collateral damage could greatly magnify 

DON toxicity. 
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Figure 3. Potential downstream pathological sequelae associated with DON-induced 

ribotoxic stress. 

 

Proinflammatory cytokines induce several suppressors of cytokine signaling (SOCS). DON 

upregulates mRNA expression of four well-characterized SOCS (CIS [cytokine-inducible SH2 domain 

protein], SOCS1, SOCS2, and SOCS3) following cytokine upregulation [100]. DON specifically 

induces SOCS3 mRNAs in muscle, spleen and liver, in addition to CIS1, SOCS1, and SOCS2 in other 

tissues. Notably, hepatic SOCS3 mRNA and protein are sensitive indicators of DON exposure. SOCS 

induction could be an essential feedback mechanism for downscaling proinflammatory gene effects 

and their subsequent pathological sequelae. Another complementary feedback mechanism reported for 

DON is the upregulation of mitogen-activated protein kinase phosphatase 1 [86]. 

Induction of proinflammatory cytokines could contribute DON impairment of appetite and weight 

gain observed by either directly affecting the brain and nervous system [101] and/or SOCS-mediated 

deregulation of growth hormone (GH) signaling [102]. In support of the latter, subchronic dietary 

exposure of young mice to DON decreases hepatic insulin-like growth factor acid labile subunit 

(IGFALS) mRNA expression and downregulates plasma insulin-like growth factor 1 (IGF1) and 

IGFALS levels, as well as attenuates weight gain [103]. Liver IGFALS mRNA levels decrease 

within 2 h of oral exposure to DON (0.5 to12.5 mg/kg body weight), while 0.1 mg/kg body weight 

DON is without effect. The latter effects co-occur with robust hepatic SOCS3 upregulation with and 

without exogenous GH treatment. Oral DON exposure in the mouse therefore appears to dysregulate 

the GH axis by impairing two critical growth-related proteins, IGFALS and IGF1. While their specific 

contributions to DON-induced food intake and growth retardation still remain to be elucidated, both 

proteins might be useful as serum biomarkers for DON effect [104]. 

Prolonged DON feeding to mice causes dramatic elevations in total serum IgA and serum IgA-immune 

complexes (IgA-IC) and polymeric IgA [105,101]. DON-exposed mice further exhibit kidney 

mesangial IgA accumulation, electron dense mesangial deposits and hematuria [106]—all hallmarks of 



Toxins 2010, 2                   

 
1309 

human IgA nephropathy, the most common type of glomerulonephritis worldwide [107]. Following 

removal of DON from mouse diet, toxin-induced elevations in serum IgA, IgA-IC, mesangial IgA and 

hematuria persist for several months [108]. Peyer’s patches (PP) from DON-exposed mice contain 

increased numbers of membrane IgA-bearing cells [109]. PP lymphocytes from PP and spleens of 

DON-fed mice produce significantly more IgA than control cultures prepared from mice fed clean diet 

[110]. Accordingly, in mice exposed to DON, there is rapid polyclonal activation of IgA-secreting 

plasma cells in the gut at the PP level and this is similarly reflected in the systemic compartment. 

DON does not exert adjuvant effects when orally administered with exogenous mucosal antigens, 

but rather, polyclonally induces production of IgAs that are reactive with a variety of intestinal and self 

antigens [111–114]. Polyspecific, autoreactive IgA may contribute to kidney immune complex 

deposition or direct binding to the kidney mesangium. IL-6, which is robustly induced upon DON 

exposure in vivo and ex vivo [87,115] is known to drive differentiation of B cells to IgA production 

[116]. The macrophages appear to contribute to IgA production and IgA nephropathy in DON-exposed 

mice by upregulating IL-6 [117]. Serum IgA, IgA immune complexes, kidney mesangial IgA and 

hematuria were significantly higher in DON-fed wild-type mice than toxin-fed IL-6 KO [118] 

suggesting that IL-6 is a requisite cytokine for DON-induced IgA production and resultant IgAN. 

Taken together, DON-induced proinflammatory cytokine production by mononuclear phagocytes in 

vivo is likely to contribute to many pathological sequelae associated with exposure to trichothecene. 

5. Conclusions 

Substantive questions remain regarding the risks posed to humans from acute and chronic DON 

ingestion and how to manage these risks without threatening food security. As demonstrated here, 

DON dramatically induces MAPK activation in vitro and in vivo in macrophages and monocytes 

which in turn, mediate robust induction of both proinflammatory gene expression and, at very high 

doses, apoptosis. Mechanisms for the DON-induced ribotoxic stress response appear to involve the  

(1) activation of constitutive ribosomal kinases and mobilization of MAPKs to the damaged ribosome 

(Figure 1) and (2) autophagy of GRP78 with consequent action of an ER stress response (Figure 2). 

Downstream pathophysiologic sequelae of DON-induced ribotoxic stress in mononuclear phagocytes 

include chronic toxic effects such as anorexia, growth and aberrant IgA production as well as acute 

toxicity at high doses. It is anticipated that current and future investigations will identify robust 

biomarkers of effect that when coupled with biomarkers of exposure [119] will facilitate 

epidemiological studies of potential DON-associated human illnesses. 
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