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Abstract Background/purpose: Mesenchymal stem cells (MSCs) transplantation has previ-
ously been used in the field of regenerative medicine. Although bone regeneration is known
to occur through the interaction between osteoblasts and osteoclasts, the effect of MSCs on
osteoclasts is unknown. Therefore, the purpose of this study was to investigate the effect of
MSCs on the chemotaxis of osteoclast precursor cells (RAW264 macrophage cells).
Materials and methods: Bone defects were created in mice skulls, and MSCs and a scaffold of
carbonated hydroxyapatite were transplanted into the bone defects. RAW264 cells were then
transplanted into the mouse tail vein, and their dynamics were observed by an in vivo imaging
system.
Results: The fluorescent intensity of the MSCs transplant group at the bone defect region was
significantly higher on days 3, 5, and 7 compared with the MSCs non-transplant group.
Conclusion: Increased RAW264 chemotaxis to the bone defect region occurred following the
simultaneous implantation of MSCs in the skull defect.
ª 2018 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
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Introduction

The evaluation of cell transplantation experiments has
mainly been conducted by histological examination. How-
ever, it is not possible to evaluate the same laboratory
animal when assessing experiments over time. Therefore,
in vivo imaging is a useful method to evaluate cellular dy-
namics within the body.1

Mesenchymal stem cells (MSCs) are relatively easy to
harvest and cultivate, and have bone differentiation ca-
pabilities, so are often used for bone regeneration experi-
ments. The paracrine effect of growth factors, cytokines,
and chemokines secreted by MSCs is believed to promote
bone repair and to affect the dynamics of other cells.2e4

Therefore, cell chemotactic factors are being recognized
as useful elements for bone regeneration.

Osugi et al.5 previously reported the enhancement of
MSCs chemotaxis using an in vivo imaging system. However,
although macrophages have been shown to accumulate at
MSCs,6 few reports have been conducted over time using
in vivo imaging. We have carried out bone regeneration
treatment involving the transplantation of MSCs and
carbonated hydroxyapatite (CAP) scaffolds to artificial
bone defects in the jaw cleft of beagle dogs.7 Furthermore,
it has been revealed that MSCs promote cell chemotaxis
in vitro by the RAW264 macrophage paracrine factor.8

However, the in vivo details of these mechanisms remain
unclear. In the present study, we used an in vivo imaging
device to investigate the dynamics of MSCs after trans-
plantation and the chemotaxis-promoting effect on
RAW264 cells involving the paracrine mechanism.
Materials and methods

Cell culture

We used Balb/c mouse bone marrow-derived MSCs (Cyagen
Biosciences, Santa Clara, CA, USA). The cells were cultured
according to the supplier’s recommendations and as previ-
ously reported,9 and were used for experiments during pas-
sages 8e11. The Balb/c mouse cell line RAW264, as an
osteoclast precursor (Riken Cell Bank no. RCB 0535, RIKEN,
Tokyo, Japan),was cultured as recommended by the suppliers
and as previously reported.10 Cells were used for experiments
during passages 6e9. MSCs and RAW264 cells were cultured in
a-minimum essential medium (a-MEM; Sigma Aldrich, St.
Louis, MO, USA) supplemented with 10% fetal bovine serum
(Biological Industries, Hartford, CS, USA), 10% sodium bicar-
bonate, and 0.7mg/ml L-glutamine. All cultures were incu-
bated at 37 �C in a humidified atmosphere with 5% CO2.

Experimental animals and feed

Male Balb/c nude mice (Japan Charles River, Yokohama,
Japan) at 6 weeks of age were used as experimental animals.
D10001 solid food (AIN-76A; Research Diet, EPS Masuzo,
Tokyo, Japan) without a fluorescent component (alfalfa-free
feed) was provided, from 1 week before the start of exper-
iment. Animal experiments were approved by the Animal
Experiment Committee of Hiroshima University (A15-137).
MSC transplantation and time course of localization
and survival

Prior to the experiment, CAP was polished to a diameter of
4mm and a thickness of 0.5 mm using a Grinder Polisher
Model 900 (South Bay Technology, San Clemente, CA, USA),
and gas sterilization was performed.

Three mice were anesthetized using 10% somnopentyl
(Kyoritsu Pharmaceutical, Tokyo, Japan) and 10% atro-
pine sulfate (Wako, Tokyo, Japan). Subsequently, skin
incisions were made at the top of the head, and the
periosteum was detached. Then, bone defects 5 mm in
diameter were made using a dental low-speed engine
(Nagata Electric Co., Tokyo, Japan) and a 5-mm diameter
trephine bur (Implatex, Tokyo, Japan). CAP was then
implanted into the defect site, and the skin was tightly
sutured.

After 5 days, the wound site was closed. MSCs were then
labeled with the cellular fluorescent labeling reagent DiD
(Thermo Fisher Science, Carlsbad, CA, USA), which has an
excitation wavelength of 644 nm and a fluorescence wave-
length of 665 nm, and were suspended in a-MEM at
1.0� 106 cells/ml. A Flowmax 30 G� 1/2 RB GA needle
(NIPRO, Osaka, Japan) was then attached to a 1.0ml Ter-
umo syringe (Terumo, Tokyo, Japan), and 100 ml MSCs
(1.0� 105 cells) were transplanted into the subcutaneous
skull defect area of three mice. The region was observed
using the IVIS Spectrum CT system (Sumisho Pharma Inter-
national, Tokyo, Japan) just before transplantation, 1 day
after transplantation, and daily thereafter. Isoflurane
inhalation anesthesia (Mylan, Canonsburg, PA, USA) was
used during observation of the mice. The fluorescence in-
tensity was measured by designating a circular region
(2.965 cm2) covering the bone defect site with the region of
interest tool. The state before MSCs transplantation was
known as “pre”. Measurements were carried out every 2
days from day 1.

Accumulation of RAW264 cells in mouse skull
defects

CAP was implanted into mouse bone defect sites and the
skin was sutured as described above. After 5 days, the
wound site was closed. In the experimental group (MSCs
(þ)), 100 ml unlabeled MSCs (1 � 105 cells) were trans-
planted into the subcutaneous skull defect area. After that,
RAW264 cells fluorescently labeled with DiD (Thermo Fisher
Science) were resuspended at 4.0� 106 cells/ml, then
500 ml (2.0� 106 cells) was injected with 20 U/ml heparin
into the mouse tail vein. In the non-transplant group (MSCs
(e)), 100 ml a-MEM was injected into the skull defect area,
then fluorescently labeled RAW264 cells (500 ml,
2.0� 106 cells) with 20 U/ml heparin were transplanted
into the tail vein. In the control group, no skull defect was
created, 100 ml a-MEM was transplanted into skull area and
RAW264 cells (500 ml, 2.0� 106 cells) with 20 U/ml heparin
were transplanted into the tail vein. Each of the three
groups contained six mice, an comparisons were made
among the three groups. The state before RAW264 cell
transplantation was known as “pre”. Measurements were
made every 2 days from day 1.
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Statistical analysis

Results are expressed as the mean� SD. Multiple compari-
sons were analyzed using the Bonferroni/Dunn method.
Significance was defined as p< 0.05 and 0.01.

Results

Time course of MSC localization

After the transplant, fluorescently-labeled MSCs were
shown to accumulate around the bone defect region
(Fig. 1A). The fluorescence intensity decreased over
time, and by 15 days after transplantation had decreased
to about 30% of the level detected 1 day after trans-
plantation (Fig. 1B).

RAW264 cell accumulation

After transplanting MSCs and CAP to the mouse skull defect,
RAW264 cells were injected into the tail vein and found to
Figure 1 A bone defect was created in the mouse cranium, and
cranium on day 5. Fluorescence observation was carried out after
MSCs. “pre”: the state before MSC transplantation. Fluorescence wa
in the cranium of mice receiving transplanted MSCs. Values repres
accumulate at the transplant area. In the control group,
RAW264 accumulation was observed at the kidney and the
spine, but the fluorescence intensity was low and no sig-
nificant accumulation was seen at the skull defect region
(Fig. 2A). In the MSC non-transplant group, RAW264 accu-
mulation at the bone defect region and the middle of the
spine occurred 1 day after transplantation. In the MSC
transplant group, extensive RAW264 accumulation was
observed from the bone defect region to the upper part of
the spine, as well as around the skull defect region.

The fluorescence intensity of the MSCs transplant group
at the bone defect part was significantly higher on days 3,
5, and 7 (p< 0.01) and on days 1 and 9 (p< 0.05) compared
with the control group (Fig. 2B), and significantly higher on
days 3, 5, and 7 compared with the MSCs non-transplant
group (p< 0.05).
Discussion

The dynamics of immune cells such as macrophages and
neutrophils have been extensively studied using molecular
MSCs fluorescently labeled with Did were implanted into the
cranial skin healing. (A) Imaging of the dynamics of transplant
s measured every 2 days from day 1. (B) Fluorescence intensity
ent means� SD (nZ 3).



Figure 2 A bone defect was created in the cranium. After 5 days, unlabeled MSCs were transplanted into the defect area, and
RAW264 cells fluorescently labeled with Did were transplanted into the tail vein. (A) Imaging of the dynamics of transplanted
RAW264 cells. MSCs (þ): MSCs were transplanted into the skull defect area, and RAW264 cells were transplanted into the tail vein;
MSCs (e): a-MEM was delivered to the skull defect area, and RAW264 cells were transplanted into the tail vein; control: no skull
defect was created, a-MEM was delivered to the skull defect area, and RAW264 cells were transplanted into the tail vein. (B)
Fluorescence intensity of RAW264 cells at the cranial region. Only one side of the 1 SD error bar is shown. Values represent
means � SD (n Z 6).
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imaging technique,7,11,12 of which cell tracking using in vivo
imaging is particularly useful. In this study, transplanted
MSCs were shown to remain around the transplant region
for more than 19 days. This is consistent with the findings
by Kidd et al.,13 and suggested that MSCs accumulate
around sites of damage and repair.

We also observed that 15 days after transplantation, the
fluorescence intensity had decreased to w30% compared
with 1 day after transplantation. This could reflect dilution
of the pigment through cell differentiation and prolifera-
tion, cell diffusion, or cell death. Indeed, Gamblin et al.14

reported a decrease in fluorescence by 15% between 2
and 4 weeks after MSCs transplantation, and Kinnaird et al.2

documented its disappearance after 2e3 weeks. Becquart
et al.15 previously attributed a reduction in MSC number to
ischemia, and Deschepper et al.16 reported it to be caused
by a reduction in glucose levels.

In our preliminary in vitro experiments, we confirmed
that sufficient fluorescence intensity of MSCs could be
maintained for around 3 weeks. Therefore, our observed
in vivo decrease in fluorescence intensity most likely re-
flects a reduction in cell number. It is also possible that cell
division caused the decrease in fluorescence intensity; this
could be overcome in the future by the introduction of
luciferase, which is not affected by cell proliferation.
However, it is relatively difficult to transduce genes into
RAW264 cells,17 so this could prove technically challenging.

The fluorescence intensity of the transplant area was
significantly higher in the MSC transplant group than in the
MSC non-transplant group. This is probably because
RAW264 cells accumulated at the skull defect area through
the chemotactic action of MSCs. By comparison, there was
no significant difference in fluorescence intensity between
the MSC non-transplant group and the control group,
although accumulation at the skull defect area and the
middle of the spine was observed. Accumulation at the
bone defect area may have occurred through an increase in
blood flow and the influence of chemokines during inflam-
mation, while accumulation at the dorsal region could
reflect the inherent fluorescence of RAW264 cells circu-
lating around the spinal artery and veins.

In the MSC transplant group, accumulation of
RAW264 cells was observed above the dorsal region, which
may correspond to brown adipose tissue as reported by
Zhang et al.18 Because macrophage activities and chemo-
taxis are enhanced by adipocyte-derived factors,19 this
suggests that MSCs activate brown fat and accumulate
above the dorsum. Macrophages are known to accumulate
during early-stage inflammation,20 and we observed
increased RAW264 cell accumulation following the trans-
plantation of MSCs in the present study. This was consistent
with the findings of Gamblin et al.14 Macrophages have
been reported to differentiate into osteoclasts through the
influence of RANKL expressed by osteoblasts and osteo-
cytes.21 At first glance, from the results of this study,
macrophages seem to promote bone resorption. However,
osteoclasts promote osteogenesis through resorption ac-
tivity,22 and are necessary for normal bone remodeling.23

Furthermore, the chemotaxis of MSCs and other remodel-
ing cells was shown to be enhanced by MSCs,5,24 suggesting
that they improve the bone remodeling function. Further
discussion of this function is required.
In conclusion, we observed the in vivo accumulation of
RAW264 cells following MSCs transplants to mouse skull
bone defects, and inferred that they were involved in bone
remodeling. Dramatic advances in imaging technology have
enabled intracellular organelle sorting and fluorescent
protein vectors to be examined in vitro, and internal bone
structures to be observed using two-photon excitation mi-
croscopes.25,26 These techniques should allow more
detailed cell dynamics to be elucidated in the future, which
is of importance in achieving a high therapeutic effect in
the affected area.
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