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ABSTRACT

CRISPR/Cas9 functional genomic screens have
emerged as essential tools in drug target discovery.
However, the sensitivity of available genome-wide
CRISPR libraries is impaired by guides which ineffi-
ciently abrogate gene function. While Cas9 cleavage
efficiency optimization and essential domain target-
ing have been developed as independent guide de-
sign rationales, no library has yet combined these
into a single cohesive strategy to knock out gene
function. Here, in a massive reanalysis of CRISPR
tiling data using the most comprehensive feature
database assembled, we determine which features of
guides and their targets best predict activity and how
to best combine them into a single guide design al-
gorithm. We present the ProteIN ConsERvation (PIN-
CER) genome-wide CRISPR library, which for the
first time combines enzymatic efficiency optimiza-
tion with conserved length protein region targeting,
and also incorporates domains, coding sequence po-
sition, U6 termination (TTT), restriction sites, poly-
morphisms and specificity. Finally, we demonstrate
superior performance of the PINCER library com-
pared to alternative genome-wide CRISPR libraries
in head-to-head validation. PINCER is available for
individual gene knockout and genome-wide screen-
ing for both the human and mouse genomes.

INTRODUCTION

The development of CRISPR/Cas9 represents a signifi-
cant advancement in genome editing (1–3). Among many

applications, Streptococcus pyogenes Cas9 empowers func-
tional genomics screens with improved efficacy and speci-
ficity over previous RNA interference-based technologies
(4–7). In these screens, single-guide RNAs (‘sgRNAs’ or
‘guides’) direct Cas9 to induce mutations in one gene per cell
across many genes in a population of many cells. Next, a se-
lection pressure is applied to the population for a cellular
phenotype such as impaired proliferation. Finally, guides
are sequenced and counted, and the cellular dependence on
each gene is assessed by population-level changes in guide
abundance. CRISPR/Cas9 screens are particularly excit-
ing platforms for oncology target discovery because they
can uncover unique dependencies of oncogene addiction,
lineage-specific regulators, synthetic lethal vulnerabilities of
drug treatment, vulnerabilities of tumor immune evasion
in genetically engineered mouse models, and physiologi-
cally relevant targets of the tumor micro-environment in
vivo (5,8–11). Because screening sensitivity depends on ro-
bust and precise abrogation of gene function, optimizing
CRISPR/Cas9 screening is an important methodological
effort.

Typically, each gene has hundreds of possible Cas9 tar-
gets, controlled by GG dinucleotides which recruit Cas9’s
protospacer-adjacent motif (PAM)-recognition domain.
While replicate guides targeting multiple positions in the
same gene are possible, the practical space requirements of
cell culture in genome-wide screening constrain replicate
count and most libraries include only four to six sgRNAs
per gene. Therefore, it is imperative that guides be as active
and specific as possible, and many algorithms exist to pre-
dict guide activity from their features, select the most ac-
tive guides and combine them into screening libraries. In
essence, the goal of CRISPR guide design is to destroy the
normal function of every gene as effectively as possible us-
ing available scores.
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Many algorithms use guide sequence to predict experi-
mental Cas9 editing machinery behavior, and we refer to
these collectively as sequence features. The first guide se-
lection criterion developed was predicted specificity, and
methods evolved from counting off-target alignments to
trained off-target scoring models which consider the po-
sition and identity of each possible mismatched sgRNA
nucleotide (e.g. Hsu et al. (12), CFD and Elevation; see
Supplementary Tables S1–4 for full reviews of literature, li-
braries, design tools and scoring algorithms) (12–14). In this
manuscript, we use the term ‘specificity’ to mean ‘the pre-
dicted absence of sgRNA-attributed Cas9-induced cleav-
age at sites other than the intended target.’ It was then ob-
served that sgRNA sequences confer variable Cas9 enzy-
matic cleavage efficiency, hypothetically due to variability
in sgRNA-DNA binding energy and/or steric interactions
with the Cas9 enzyme. Scoring algorithms were developed
to predict cleavage efficiency from sgRNA sequence con-
text (so-called ‘on-target’ predictions such as Doench et al.’s
‘Rule Set 1’) (15). Similarly, specific sgRNA sub-sequences
have been shown to predict high or low sgRNA activity and
were proposed as selection criteria (16,17). Cleavage efficacy
scores were next improved by thermodynamic modeling of
the step-wise association of Cas9:sgRNA with DNA, cur-
rently thought to be Cas9:PAM recognition, DNA:DNA
unpairing, base pairing of PAM-proximal sgRNA ‘seed’
nucleotides to DNA and finally pairing of PAM-distal
sgRNA to DNA (e.g. Doench et al.’s ‘Rule Set 2’ and
CRISPRater) (13,18–20). Most recently, cleavage efficacy
scores have been further improved by use of either more so-
phisticated machine learning approaches using more train-
ing data (e.g. DeepCas9, TUSCAN, DeepSpCas9), or bet-
ter a priori models of Cas9 cleavage thermodynamics with
the added benefit of generalizing to off-target cleavage (e.g.
uCRISPR, CRISPRspec) (21–25). In this manuscript, we
use the term ‘cleavage efficacy’ to mean ‘the predicted ex-
tent of sgRNA-attributed Cas9-induced enzymatic cleav-
age at the intended target,’ and later as an alternate de-
scriptor for ‘Broad Rule Set 2 score.’ Some sgRNA se-
quences have been shown to cause unintended folding of
the larger sgRNA scaffold and proposed as exclusion cri-
teria (e.g. CHOPCHOPv3) (26,27). An orthogonal consid-
eration is that most sgRNA expression vectors use the U6
promoter to drive RNA Pol III transcription of the sgRNA,
but Pol III transcription is terminated via catalytic inactiva-
tion and backtracking by contiguous runs of 1–6 thymine
nucleotides (RNA: uracils), with described critical cutoffs
in human cells of length four (by experimental validation,
and used by most design algorithms which consider polyT),
or length three (in screening) (19,28–29). Finally, it was dis-
covered that the sequence context of Cas9 cut sites affect
microhomology-mediated end joining repair, so algorithms
were developed to predict mutational consequences of each
Cas9 target and prioritize targets expected to maximize the
percentage of frameshifting edits in the target gene (30–33).
However, Doench et al. reported that early microhomol-
ogy prediction rules did not improve upon efficiency pre-
diction, He et al. reported that only 11.2% of sgRNAs in
a large training dataset had predicted in-frame probabili-
ties >0.5, and newer algorithms describe misrepair as be-
ing highly dependent on cell line and apparently also cell

lineage as the 1 nt indels modeled by predictive algorithms
contrast sharply with descriptions of insertions longer than
25 nt in primary T cells (>90% of edits), and multi-kilobase
deletions and complex rearrangements in embryonic stem
cells (13,30–36). At least 15 genome-wide human CRISPR
libraries have been developed which incorporate varying
guide-intrinsic features and implementations (e.g. Avana,
Brunello, TKOv3. See Supplementary Table S2) (13,15,37).

Beyond intrinsic features of guide sequences, several fea-
tures of guide targets have also been proposed as selec-
tion criteria. First, it was discovered that Cas9 editing can
affect exon inclusion during RNA splicing by abrogating
splicing factor recognition motifs (so-called exonic splic-
ing enhancers or ‘ESEs’), and it was proposed that tar-
geting these motifs could knock out exons with lengths
that are not a multiple of 3 nt (‘asymmetric exons’), thus
frameshifting the mature mRNA to drive gene knockout
via nonsense-mediated decay (NMD) (38,39). Similarly, it
is possible to assess the percentage of edits at any posi-
tion in the transcript which will induce NMD by the ‘50-
nt rule,’ which dictates that premature stop codons posi-
tioned greater than 50–55 nt from the most 3’ exon junc-
tion complex induce NMD (e.g. CRISPRO), and others
have approximated this approach by avoiding the 3’ end
of the coding sequence (CDS, e.g. the Whitehead library)
(5,40–41). Alternatively, among other approaches to iso-
forms some groups have suggested targeting expressed ex-
ons (e.g. GUIDES) (42). Polymorphisms and somatic vari-
ants can both impair sgRNA:DNA binding at the target
and enhance unexpected off-target sgRNA:DNA binding
(e.g. CRISPR Off-Target Tool) (43). Adding another di-
mension is the discovery that regions of open chromatin
are more amenable to Cas9 editing than regions of closed
chromatin, which was shown to be caused by nucleosomes
blocking Cas9 from accessing PAMs (19,44). Some de-
sign tools account for this by considering DNAse hyper-
sensitivity at the target (e.g. CRISPR-DO) or off-targets
(e.g. CROP-IT), although others have shown chromatin
accessibility poorly predicts guide activity (DeepSpCas9)
(23,45–46). Next, Shi et al. showed that targeting Cas9
to essential domains dramatically improves functional in-
activation of target genes, presumably by affecting gene
function even with in-frame edits, and some guide design
tools incorporated domains as a guide selection criterion
(e.g. PAVOOC) (47,48). However, domain annotations are
often sparse for poorly characterized gene families and
short structural proteins can be entirely annotated as sin-
gle domains. To solve the sparsity of domain annotations
and increase resolution, other groups have described target-
ing highly conserved nucleotides (CRISPR-DO, CRISPR-
FOCUS), amino acids by substitutions (CROATAN, Pro-
tiler), or amino acids by deletions (CRISPRO) to improve
sgRNA activity (36,41,45,49–50). The rationale that gene
regions unaltered through evolutionary history are under
purifying selection and are therefore likely to be essential
for gene function is a classic and effective framework in
comparative genomics (51). While some regions of protein
sequence are relatively tolerant of minor alterations, the
identification of coding space that has maintained strong
evolutionary conservation identifies highly constrained pro-
tein structural elements that are likely functionally intol-
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erant of in-frame indels caused by CRISPR/Cas9. In this
manuscript, we use the terms ‘guide activity’ and ‘guide ef-
fectiveness’ to mean ‘the extent of sgRNA-attributed abro-
gation of target gene function’.

Critically, few guide design tools and only one genome-
wide library consider optimization of both guides them-
selves (i.e. enzymatic activity) and guide targets (i.e. conser-
vation) to maximize phenotypic knockout of target genes
(36,41–42,45,48–50). Only four guide design tools provide
both enzymatic efficiency predictions and either nucleotide
conservation scores (CRISPR-DO, CRISPR-FOCUS) or
domain annotations (GUIDES, PAVOOC) (42,45,48–49).
However, in all four the weights of these features in guide
selection are neither justified by training data nor sug-
gested, and users must weigh features for themselves. The
three tools that have come closest to integrating guide and
target features are ProTiler, CRISPRO and CROATAN
(36,41,50). ProTiler presents a sophisticated method to pre-
dict the most CRISPR-sensitive regions of genes (including
novel domains), by incorporating substitution-based pro-
tein conservation (SIFT), percentage of transcripts covered,
amino acid identity and annotations of domains (Pfam),
protein secondary structure and post-translational modifi-
cations into a gene targeting score, but critically omits en-
zymatic efficiency prediction and does not present a guide
library (36). CRISPRO presents a guide scoring method
which incorporates deletion-based protein conservation
(PROVEAN), protein secondary structure aggregated from
four tools (PSSpred, PSIpred, SPINE X and RaptorX), do-
mains (Interpro), exon symmetry, strand, amino acid iden-
tity and disorder, NMD, guide specificity (Hsu et al. (13)),
GC content and dinucleotide positional identities (similar
to first-generation enzymatic on-target scores) (41). While
CRISPRO is critically supported by adequate training data,
it omits second-generation enzymatic efficiency prediction
(e.g. Doench et al. (13)) and presents no guide library since
it is intended as a screen reanalysis tool. Finally, among
the 15 genome-wide CRISPR libraries we reviewed, no li-
braries considered domains, and the only library to consider
conservation was CRoatan (Supplementary Table S2) (50).
CRoatan considers substitution-based protein conservation
(PROVEAN), misrepair prediction (Bae et al. (30)), polyT
(≥4), and a cleavage efficacy score re-fit using data from
Doench et al. and Chari et al., but critically omits consider-
ation of guide specificity scoring (aiming instead to glean
specificity from dual-guide targeting), second-generation
enzymatic efficiency prediction (e.g. Doench et al.), and do-
mains (15,50,52).

We hypothesized that joint optimization of Cas9 enzy-
matic activity and gene feature targeting would yield bet-
ter guides than either approach alone. Further, we hypoth-
esized that deletion-based protein conservation would best
simulate in-frame Cas9 edits and outperform other gene tar-
geting methods such as domains, nucleotide conservation,
and substitution-based protein conservation. A significant
fraction of Cas9-induced edits likely leave the reading frame
intact (missense mutations, in-frame indels), and a method
which ensures those edits affect critical gene regions will
likely achieve better gene knockout. Finally, we aimed to use
a data-driven approach to clarify which of the overwhelm-

ing array of published sgRNA features best predict activity
and how best to combine them.

Here, we built the most comprehensive CRISPR/Cas9
sgRNA feature database to-date for both mouse and hu-
man genomes, including a novel genome-wide conservation
score based on single amino acid deletions and novel map-
ping of protein domains to genomic coordinates. We aggre-
gated the largest yet assembled training dataset of CRISPR-
tiled essential genes to test the predictive value of guide and
target features (and their combinations) and discovered not
only that enzymatic efficiency and protein conservation are
the best predictors of guide activity, but that their effects are
additive. We also observe that guides containing polyT ho-
mopolymers as short as three consecutive thymidines (TTT)
exhibit reduced activity, which contrasts with the prevailing
cutoff in the field (TTTT) and suggests further modifica-
tion to existing sgRNA scaffolds (e.g. F+E, LRG2.1) for im-
proved RNA Pol III transcription (53,54). Next, we trained
an algorithm to combine effective features (specificity, en-
zymatic efficiency, conservation, domains, homopolymers,
CDS position, restriction sites, polymorphisms) and present
a novel genome-wide CRISPR library which for the first
time incorporates deletion-based ProteIN ConsERvation
(the PINCER library). We constructed PINCER using an
optimized sgRNA scaffold (LRG2.1), and while many li-
braries present only a human version we also present an
equivalent mouse genome-wide library to enable in vivo pre-
clinical drug target validation and immune-oncology tar-
get discovery (54,55). Finally, we prove in direct head-to-
head validation that PINCER guides outperform Avana
and TKOv3 in terms of guide activity, and that PINCER
guides outperform Avana, Brunello and TKOv3 in terms
of intra-gene guide concordance. The PINCER human
and mouse genome-wide libraries are included with this
manuscript (Supplementary Tables S22 and 23), and our
complete genome-wide databases are available on GitHub
(https://github.com/veeneman/PINCER).

MATERIALS AND METHODS

Construction of a CRISPR/Cas9 sgRNA feature database

We extracted all NGG-associated guide sequences and co-
ordinates from the human and mouse reference genomes
(hg38, mm10), including unplaced contigs but excluding al-
ternate haplotypes (56). Although early reports suggested
that S. pyogenes Cas9 also recruits to NAG PAMs, more
recent work has shown Cas9’s affinity is much stronger to
NGG than all other PAM sequences, so we only considered
NGG sgRNAs (13,57).

Annotation of intrinsic guide features

We scored guide cleavage efficacy using the Microsoft
Azimuth 2.0 implementation of the Broad Rule Set 2
score (Python v2.7.13, Numpy v1.12.1, training data
V3 model nopos.pickle) (13). Next, we aligned each guide
back to the genome with BatMis v3.00 (a Burrows–Wheeler
transform aligner similar to BWA or Bowtie but with
more detailed alignment reporting), requiring the ‘GG’
PAM dinucleotide and allowing up to 5000 alignments

https://github.com/veeneman/PINCER
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with up to four mismatches and aggregated these into
a single specificity score using our own implementation
of (Hsu et al.) (12,58). We repeated this process using
alignments to known protein-coding sequence to gener-
ate a proteome-wide specificity score, using Gencode-basic
genes with transcript support level 1 (human v27, mouse
vM15) (59). We tracked whether guides exceeded 5000
alignments, and the number of alignments with 0–4 mis-
matches. Considering complete sgRNA scaffolds (Supple-
mentary Table S19), we also tracked maximum homopoly-
mer lengths in each guide (polyA, polyC, polyG, polyT)
and whether guides contained inadvertent Esp3I restric-
tion sites (CGTCTC). Finally, we predicted each guide’s
melting temperature using the Bioconductor HELP li-
brary’s implementation of (Allawi and SantaLucia), which
in our hands was much faster than the popular Primer3
tool and while offset by about 10◦C produced nearly
identical rank-ordered results (Supplementary Figure S4)
(60–62).

Annotation of guide target features

In order to annotate features of guide targets we mapped
feature tracks to the genome and intersected them with
guide cut sites. We started by annotating principal iso-
forms (APPRIS, v108 human, v106 mouse) of Refseq
protein-coding genes (v109) (63,64). We tracked and consid-
ered targeting consensus protein sequence across isoforms,
but favored principal isoforms after observing that low-
confidence short isoforms hinder domain targeting (data
not shown). Next, we tracked each guide’s position in the
target’s coding sequence (%CDS, alternatively referred to
as 3’%), the percentage of frameshifts capable of induc-
ing NMD by our own implementation of ‘the 50-nt rule,’
the ‘symmetry’ of each exon (whether removal of the exon
will result in frame-shifting of downstream exons), and
via amino-acid coordinates, conserved domain database
(CDD) regions (typically domains––human: accessed 16
February 2018, mouse: accessed 23 February 2018), CDD
sites (typically catalytic residues, interaction sites, etc.) and
Uniprot secondary structure (alpha helices, beta sheets,
turns and coiled-coil regions, v2017 09) (40,65–66). We an-
notated exonic splicing enhancers (‘ESEs’) by searching for
84 known enhancer sequences within principal isoform ex-
ons (the ‘INT3’ set) (67). Finally, we appended genome-
anchored information including Pfam domains (generated
using University of California, Santa Cruz (UCSC) genes,
v2017–04-07), and common polymorphisms expected to
disrupt any position in the 23 nt guide+PAM (≥10% vari-
ant allele frequency (VAF) in dbSNP v147, human only)
(68–70). In this manuscript we use ‘domain’ to mean ‘a
region of amino acids in a protein, identified by ortholog
comparisons and potentially annotated with known or
predicted function’ (e.g. CDD, PFam), ‘protein secondary
structure’ to mean ‘a region of amino acids in a protein
known or predicted to form a local biochemical structure’
(e.g. Uniprot alpha helices) and ‘protein conservation’ to
mean ‘an amino-acid-resolution score which tracks invari-
ability across known orthologs’ (e.g. our novel conservation
score).

Generation of a novel genome-wide conservation score

We downloaded data from a published experiment in which
the homology-dependent repair (HDR) competency of a se-
ries of BRCA1 RING domain mutations was experimen-
tally tested (71). These data included mutation effect pre-
dictions from public tools (SIFT, Polyphen, CADD and
GERP), and a specific prediction combining experimen-
tally measured binding affinity of BRCA1 to its heterodimer
BARD1 and E3 ligase activity of the BRCA1–BARD1
complex (‘HDR predictions’). We then predicted muta-
tion effects using PROVEAN, a conservation-based vari-
ant effect predictor which compares alignment of the wild
type protein to an ortholog set versus alignment of the
mutant protein to the same ortholog set (72). We in-
cluded predictions using PROVEAN’s web app, and using
the command-line tool with either the 2011 BLAST non-
redundant database (used in the PROVEAN publication),
or the current 2017 version (Supplementary Table S7) (73).

Next, we compared configurations of PROVEAN to nu-
cleotide conservation metrics and their correlation with
phenotypic readout of sgRNA activity. First, we aggre-
gated public sgRNA tiling data for the essential gene PLK1
(from Munoz et al., average of three cell lines), the MAPK-
pathway-inhibitor resistance gene MED12 (from Doench
et al., average of two inhibitors) and the contextually es-
sential mouse gene Smarca4 (from Shi et al.) (see section
‘Model Training Dataset’ for more details) (13,47,74). Next,
we ran PROVEAN while modulating three parameters in
2 × 2 × 3 = 12 configurations. These parameters were:
single-amino-acid deletions versus substitutions (averaging
all 20), the position-weight matrix BLOSUM62 (default)
versus a custom identity matrix (scored: +5 for identical
AAs and −2 for different) and three ortholog sets: the
2011 BLAST non-redundant (‘NR’) database (used in the
original PROVEAN publication), the 2011 BLAST non-
redundant database with low-evolutionary-distance pro-
teins ‘pruned’ (‘NRp,’ specifically removing synthetic, Hu-
man, Orangutan, Macaque and Chimpanzee proteins), or
manually curated ortholog sets from Homologene (Sup-
plementary Table S8) (73,75). Next, we used the UCSC
table browser to download the nucleotide conservation
tracks phyloP, phastCons and phastConsElements for hu-
man (hg38, 100way alignments) and mouse (mm10, 60way
alignments), downloaded multiple sequence alignments for
the manually curated ortholog sets from Homologene and
computed percent identity at each reference residue, and
computed moving averages for phyloP (3, 6, 9 nt windows),
phastCons (3, 6, 9 nt), and homologene (0–4aa) (Supple-
mentary Table S9) (76).

Next, we compared simulated deletions of varying
lengths using PROVEAN. Protein sequences for PLK1,
MED12 and Smarca4 were acquired from NCBI, the effect
of the deletion of every amino acid (1AA del), every pair of
amino acids (2AA del) and every trio of amino acids (3AA
del) was assessed using the PROVEAN web app, and multi-
plied by −1 such that larger positive numbers correspond to
higher conservation (Supplementary Figure S23 and Table
S26).

Finally, to generate a genome-wide protein conservation
score, we used PROVEAN and Blast NR v2011 to predict
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the detrimental impact of the deletion of every single amino
acid in APPRIS principal isoforms of Refseq genes (human
and mouse) and multiplied by −1 such that larger positive
numbers correspond to higher conservation. We named this
score AADelCons, for amino acid deletion conservation.

Model training dataset

We assembled a comprehesive sgRNA activity training
dataset, spanning seven individual datasets of sgRNA ac-
tivity measured by log2-fold-changes (LFCs) from five pub-
lications, in which genes with clear experimental readouts
were tiled by sgRNAs in an unbiased fashion. For datasets
where increased sgRNA activity was measured as enrich-
ment (either by drug resistance, or by flow-sorting marker-
negative populations), we inverted these into negative LFCs
((-)LFCs) as indicated for internal consistency of the train-
ing dataset. Likewise, for datasets including sgRNAs tar-
geting genes which were not expected or observed to show
activity (e.g. negative controls), we filtered to genes either
known to be essential (Achilles 17Q4) or achieving a mean-
sgRNA LFC <−1 in all cell lines tested and list exclusions
below (8). The sgRNA datasets were: (i) (-)LFCs in flow-
sorted antigen-negative cells for cell-surface human genes
(15); (ii) (-)LFCs in flow-sorted antigen-negative cells for
cell-surface mouse genes (excluding Cd2, Cd3e and Cd53,
which the original authors excluded, H2-K which was not
targeted specifically and sgRNAs at near-zero abundance
in controls) (15); (iii) (-)LFCs in inhibitor-resistant cells in
three pooled synthetic lethality proliferation screens (ex-
cluding TOP2A, CDK6, MLH1, MSH2, MSH6 and PMS2,
which the original authors excluded, CLDN10 which the
original authors do not describe and shows no activity with
any drug and sgRNAs the original authors QC-flagged)
(13); (iv) (-)LFCs in inhibitor-resistant cells in a pooled syn-
thetic lethality proliferation screen (excluding non-exonic
sgRNAs) (77); (v) LFCs in a pooled proliferation screen
(filtered for essential genes, and excluding non-exonic sgR-
NAs) (77); (vi) LFCs in a pooled proliferation screen (fil-
tered for essential genes) (74); (vii) LFCs in a pooled prolif-
eration screen (47); see Supplementary Table S10 for a full
gene list. We further filtered these input sgRNA<>LFC
measurements (n = 43 307) to sgRNAs targeting coding
sequence in our database (n = 41 611), converted LFCs
to z-scores on a per experiment and per gene basis (see
Supplementary Tables S11 and 12 for feature descriptions
and data) and filtered to sgRNAs which target specifically
(specificity score > 0.50 and zero off-targets in the genome
with ≤1 mismatch; n = 27 508).

Gene set definitions for validation experiment

In order to compare the activity of multiple CRISPR li-
braries across three cell lines (described later), we defined
lists of genes expected to be essential to all lines (‘essen-
tial genes’), essential to one or two lines (‘cell line-selective
genes’), or essential to no lines (‘negative control genes’).

For essential genes, we intersected lists identified by RNA
interference (the ‘CCE’ set from Hart et al., n = 217) and
CRISPR (the ‘CEG’ set from Hart et al., n = 684), rea-
soning that multiple evidence types would yield a robust

and conservative essential gene set (n = 133) (37,78). We
observed good agreement between the two lists, which bol-
stered our confidence in using the intersection between the
two lists and the cutoff of −log10(p) > 3 for our valida-
tion experiment (Supplementary Figure S13). We labeled 33
of these for which we had prior screening experience sug-
gesting their strong essentiality, 30 of which were signifi-
cant in Hart et al. (37)’s Bayes factor essentiality scores (P
< 0.001 in a t-test versus 0). Next, noting a discrepancy
between apparent essential structural proteins versus en-
zymes, we annotated the domain architecture of each gene.
We defined ‘broad domain’ genes as having a single do-
main covering >90% of the protein sequence (represent-
ing 12% of genes in the genome), and ‘narrow domain’
genes as having either multiple domains covering <85% of
the protein sequence, or a single domain covering <50%
of the protein sequence (representing 52% of genes in the
genome). Finally, we ranked genes by our known signifi-
cant essential list and the mean Hart ’17 Bayes factor, and
selected the top 18 in each domain group for this experi-
ment (see Supplementary Table S14 for scores related to this
process).

For cell line-selective genes, we downloaded and joined
CRISPR and copy number variation (CNV) data from
Achilles (18Q3, n = 17 520 genes) for DLD1, HS766T and
HCC1428. We identified pairwise differential vulnerabili-
ties by a CERES score difference greater than 0.5 and with
copy-neutrality in both lines (2.5 > copy number > 1.5) (n
= 177 total genes). Of these, we automatically included all
kinases (n = 5) and transcription factors (n = 9) in the exper-
iment. Using the remaining 163 genes, we identified the top
two differential vulnerabilities in both directions for each
line versus the other two as: CERES difference >0.50 for
each cell line versus cell line comparison, CERES <−0.50
in sensitive lines, CERES > −0.30 in non-sensitive lines (ex-
cept in one case which didn’t yield two genes) and taking
the top two based on mean CERES difference (n = 12) (see
Supplementary Table S15 for scores related to this process).

For negative control genes, we used the Achilles data
(18Q3) to identify copy-neutral genes in all three cell lines
with low mean CERES scores (|CERES| < 0.2) and low
standard deviations across cell lines (sd < 0.15). Of these, we
arbitrarily selected fifteen solute carriers (SLCs) and 13 ol-
factory receptors (ORs) (see Supplementary Table S16 for
scores related to this process).

Plasmid construction and sgRNA cloning

To construct sgRNA expression vectors, 83-nt DNA se-
quences were assembled by flanking 20nt guide proto-
spacers (Supplementary Table S19) with Esp3I restriction
sites and polymerase chain reaction (PCR) primer tem-
plates (Supplementary Table S20). Lyophilized and cleaved
83mers were ordered from Agilent (5000 oligo ‘SureGuide
Unamplified Custom CRISPR Library’, Part Number:
G7555B), re-suspended in water and amplified by PCR.
Next, guides were excised by Esp3I at 21◦C for 3 h and lig-
ated into a modified version of Tarumoto et al.’s LRG2.1
vector, in which green fluorescence protein was replaced by
puromycin resistance (pac) using BamHI+BsrGI (54,55).
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Finally, vectors were electroporated into four replicates of
STBL4 cells and pooled.

A constitutive Cas9 expression vector was constructed
as follows. First, an empty lentiviral vector with ampicillin
resistance (pLV7-Empty) was constructed by restricting
pLenti7.3/V5-DEST (Thermo Fisher Scientific, #V53406)
with ClaI and Acc65I, then re-ligating by duplexed oligonu-
cleotides (IDT, Supplementary Table S19). The EF-1 Al-
pha short (EFS) promoter was added (pLV7-EFS), by
PCR amplifying EFS, restricting pLV7-Empty with XbaI
and BamHI, and ligation. Next, the reverse-complement
DNA sequence encoding human-optimized 3× FLAG-
tagged Cas9 was extracted from its source publication (79).
Cas9 DNA was synthesized in three fragments with flank-
ing BamHI and NheI restriction sites (ATUM, DNA2.0),
2A self-cleaving peptide sequence (P2A) oligonucleotides
were synthesized (IDT, Supplementary Table S19) and the
hygromycin resistance gene (hph, Hygro) was synthesized
with flanking Esp3I and MluI restriction sites (ATUM,
DNA2.0). Finally, Cas9, P2A and Hygro were ligated to-
gether, pLV7-EFS was restricted by BamHI and MluI,
and Cas9-P2A-Hygro was inserted by ligation to generate
the final vector (pLV7-EFS-Cas9-P2A-Hygro). sgRNA and
Cas9 cloning vectors were illustrated using AddGene’s Gi-
raffe software, https://github.com/addgene/giraffe (Supple-
mentary Figure S16) (80).

Cell culture

Cell lines were purchased from the American Type Cul-
ture Collection (ATCC). HEK293T, DLD-1 and HCC1428
were maintained in Dulbecco’s modified Eagle’s medium
(DMEM) + 10% fetal bovine serum (FBS) and Hs776T
was maintained in Roswell Park Memorial Institute media
(RPMI) + 10% FBS, with HEK293T also receiving high
glucose, pyruvate and 1% penicillin/streptomycin (Thermo
Fisher Scientific), and HCC1428 also receiving 1% HEPES.
All cells were maintained in humidified incubators at 37◦C
and 5% CO2. Cell lines stably expressing Cas9 were gener-
ated by lentiviral transduction at a low multiplicity of in-
fection (MOI) to introduce a single Cas9 copy per cell and
selected using hygromycin at 250 �g/ml (DLD1) or 400
�g/ml (Hs766T and HCC1428). Cells expressing sgRNA
were selected using puromycin at 2 �g/ml.

Lentiviral transduction

Lentivirus was produced by transfecting cells with helper
plasmids. Briefly, 10 mg of plasmid DNA, 5 mg of VSVG,
7.5 mg of psPAX2 and 40 mL of 1 mg/ml PEI were mixed,
incubated and added to the 10 cm plate HEK293T cells.
Media was replaced 6–8 h post-transfection. Virus was col-
lected 48 and 72 h post-transfection and pooled.

Cell lines were infected with virus-containing plain
medium for 24 h. Medium was then replaced with
puromycin containing medium to select for transduced
cells, and incubated for 48 h. The MOI was determined
at 72-h after infection by comparing the percent survival
of infected cells to separate pools of cultured non-infected
control cells. Optimal infection conditions were determined
for each batch of virus prep in each cell line. Volumes of

virus that yielded ∼10–30% infection efficiency were used
for screening.

Pooled screening and sequencing for sgRNA abundance

For all screens, cells with stable Cas9 expression were in-
fected in three biological replicates per cell line with lentivi-
ral sgRNA pools at a representation of 230–1000 cells per
sgRNA at a MOI of 0.06 for Hs766T, 0.15 for HCC1428
and 0.30 for DLD1. MOI values varied by the infectivity of
each cell line, but all obtained MOIs were below the target
of 0.30. Cells were selected in the presence of puromycin,
and a sample was collected 3 days post-selection as a ref-
erence representation of the pooled sgRNA library (except
HCC1428). Cells were propagated for a total of 14 or 21
(HCC1428 only) days with an average representation of
>1000 cells/sgRNA maintained at each passage. Cells were
harvested for genomic DNA extraction (DNeasy Blood and
Tissue kit, Qiagen Cat#69506). sgRNA inserts were first
PCR amplified using primary PCR primers (Supplemen-
tary Table S20) on the vectors and purified by QIAquick
PCR Purification Kit (Qiagen, Cat#28106). The PCR prod-
ucts from the genomic DNA were then further amplified
using secondary PCR primers (Supplementary Table S20)
harboring Illumina TruSeq adapters i5 and i7 barcodes. The
300 bp PCR product were purified by gel extraction (Qia-
gen, Cat#28706). The resulting fragments were sequenced
on a MiSeq™ (Illumina) with standard primers for dual in-
dexing. The sequencing recipe we used included 33 ‘dark
cycles’ of base incorporation without imaging, followed by
21 light cycles with two indices.

Screen analysis

Following sequencing, sgRNAs were counted with a cus-
tom pipeline based on Bowtie and Oculus (81,82). Reads
per million mapped reads (RPMs) were computed for each
sample, then normalized to the total abundance of guides
targeting negative control genes (across libraries, such that
the normalization factor for each cell line was the same)
to account for variation between cell lines. sgRNA-level
log2-fold-changes (LFCs), gene-level LFCs and gene-level
coefficient of variation across sgRNAs (CV = standard
deviation/mean) were computed with custom R code and
gene-level beta values were computed with MAGeCK-
VISPR’s maximum likelihood estimation model using neg-
ative control normalization (83). We plotted the distribu-
tions of counts in each gene category over time (Supplemen-
tary Figure S17). Next, we noted and plotted gene-level hit
discrepancies between what we expected from Achilles ver-
sus what we observed. We defined an observed hit as reach-
ing a mean dropout of more than 2-fold (LFC <−1) in at
least one library. We included only genes both expected and
observed to drop out in subsequent inter-library compar-
isons (‘hits’ in Figure 4 and Supplementary Figures S19
and S20). Finally, we assessed library performance using
four different metrics: sgRNA LFCs, Gene LFCs, Gene-
level beta values (from MAGeCK) and intra-gene CVs for
all hits on a per-cell-line, per-library basis and plotted using
custom R code (Supplementary Figure S19). T-tests were
performed for each metric between each library and PIN-

https://github.com/addgene/giraffe
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CER. We repeated this analysis with PINCER in a pseudo-
4sgRNA/gene format, by analyzing only the top four sgR-
NAs selected by PINCER (picks i–iv) (Supplementary Fig-
ure S20). We also repeated this analysis for sgRNAs target-
ing negative control genes (olfactory receptors and solute
carriers), omitting the negative control normalization step
for both LFCs and MAGeCK, for PINCER in a six-guide
format (Supplementary Figure S21) or four-guide format
(Supplementary Figure S22).

RESULTS

Guide design strategy

While several genome-wide CRISPR libraries have been
developed considering many guide features, no library yet
has combined thermodynamic Cas9 enzymatic activity pre-
diction (e.g. Doench et al. (13)) with gene feature target-
ing, particularly protein conservation (Supplementary Ta-
ble S2). We set out to test which of the entire complement of
features considered in guide design improve guide activity
for pooled CRISPR screens. Figure 1 illustrates our strategy
to combine guide-intrinsic and guide-target features for bet-
ter guide prediction and ultimately improve pooled screens
for target discovery. Briefly, guides and Cas9 DNA vectors
are introduced into cells by lentiviral transduction. From
many candidate positions on a gene, Cas9 is directed to
those whose sequence context conveys high enzymatic ac-
tivity and specificity. Cas9 nicks both DNA strands at the
same position, effectively generating a blunt-ended double-
stranded DNA break (DSB). The cell either repairs the
DSB correctly (causing the process to repeat), or incorrectly
to cause a mutation that propagates through transcrip-
tion, splicing, and translation. Frame-shifting mutations
are expected to disrupt protein function via NMD or pro-
tein misfolding unless mutations occur too close to the C-
terminal of the mRNA transcript. However, in-frame mu-
tations must be positioned within essential domains whose
amino acid sequence is conserved in order to cause loss of
protein function. We aim to select guides which maximize
gene loss of function by considering each step of Cas9 edit-
ing.

Comparison of cleavage efficacy and specificity scores in pub-
lic sgRNA design algorithms

To assess the diversity of sgRNA cleavage efficacy and
specificity scores, we downloaded all available MYC guide
scores from all available tools which reported all sgRNAs
for a gene: CHOPCHOPv2, CRISPOR (cleavage efficacy:
Doench and Moreno-Mateos), CRISPR-DO, CRISPRko
(GPP), GuideScan, GUIDES, sgRNA Scorer and com-
pared them to the versions of cleavage efficacy (Doench et
al.) and specificity (Hsu et al.) scores that we generated (12–
13,42,45,84–87). We found only three unique cleavage effi-
cacy scores amongst eight tools (Supplementary Figure S1
and Table S5) and three unique specificity scores with varied
scaling among six tools (Supplementary Figure S2 and Ta-
ble S6), with the most common ones being Doench et al.
(13) (cleavage efficacy) and Hsu et al. (specificity) (12,13).
Judging from these scores’ popularity and effectiveness in
their original publications, we selected them for testing in
our training analysis.

A novel protein conservation score, AADelCons

While there exist several genome-wide nucleic acid conser-
vation scores for the human and mouse genomes (e.g. Phast-
Cons), to our awareness no such genome-wide score
exists for protein conservation. Therefore, we evaluated
conservation-based variant effect predictor tools commonly
used to estimate the impact of somatic mutations (88).
PROVEAN demonstrated a dramatic improvement over
other algorithms in predicting the functional impact of
BRCA1 RING domain mutations, approaching the pre-
dictive power of experimentally measured BRCA1:BARD1
binding affinity and E3 ligase activity (Supplementary Fig-
ure S5). PROVEAN also demonstrated a dramatic im-
provement over nucleotide conservation metrics in predict-
ing sgRNA effectiveness (Supplementary Figure S6). By
varying PROVEAN’s ortholog set and position-weight ma-
trix, we found that the default parameters (BLAST NR
and BLOSUM62) provided the best correlation with guide
activity, especially when modeling single-amino acid dele-
tions, which supports our strategy to target regions where
even in-frame indels knock out gene function. As a further
exploration of this idea, we found that deletions of varying
lengths have similar predicted conservation scores (Supple-
mentary Figure S23). Next, we generated a genome-wide
conservation score by modeling every amino acid’s deletion
with PROVEAN as described in the methods. We verified
that our conservation score is not highly correlated with
cleavage efficacy, suggesting that the two metrics capture
different aspects of what makes sgRNAs effective (Supple-
mentary Figure S7).

Amino acid conservation predicts sgRNA activity in three ex-
amples

We tested our new conservation score using data from
three published experiments in which contextually essen-
tial genes were tiled by sgRNAs. In the first published ex-
periment, the activities of sgRNAs targeting CD33, AN-
PEP and FUT4 were read out by abrogated antibody bind-
ing to their respective antigens CD33, CD13 and CD15
with flow cytometry (15). We found that sgRNAs target-
ing FUT4 demonstrated a stark relationship between tar-
get conservation and abrogated CD15 binding, but no such
relationship existed for CD33 or ANPEP (Supplementary
Figure S8). We learned that while the anti-CD33 and anti-
CD13 antibodies target the direct protein products of the
CD33 and ANPEP genes, CD15 is actually a fucosyl moi-
ety that FUT4 transfers onto other proteins presented on
the cell surface. We hypothesize that conservation did not
predict guide activity for CD33 and ANPEP/CD13 because
antibody recognition of a specific epitope is not necessar-
ily related to target protein function. For instance, in-frame
edits induced by a guide targeting a critical and conserved
cytoplasmic domain could easily fail to disrupt antibody
binding of an extracellular domain. In contrast, cell surface
CD15 presentation is the phenotype of FUT4’s enzymatic
activity, so sgRNA activity reflected the knockout of gene
function and conservation had predictive value. This re-
sult clearly supports the motivation for targeting conserved
residues to knock out gene function, particularly enzymatic
function. Analysis of two additional published experiments
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Figure 1. Maximizing Phenotypic Knockout with CRISPR/Cas9. Illustration of optimized CRISPR/Cas9 guide design for a typical target gene (MYC).
An effective guide (green check) combines high Cas9 specificity and enzymatic activity with protein-level loss of function, considering both frameshift
mutations outside the protein C-terminus and in-frame mutations in essential protein domains and conserved amino acids. NMD: nonsense-mediated
decay, HLH: helix-loop-helix, LZ: leucine zipper.

also found a clear relationship between amino acid conser-
vation and sgRNA activity (Supplementary Figures S9 and
10) (47,74). We note that while domain was a strong binary
predictor, not all domains behaved the same––for instance,
the POLR2A domain Herpes BLLF1 (a herpes virus inte-
gration site) and Smarca4 domains Med15 and BRK are
poorly conserved, and guides targeting them have little im-
pact on cell survival (Supplementary Figures S9A and 10A).
This underscores the heterogeneity of the label ‘domain,’
and suggests that amino acid conservation may serve as a
better unbiased predictor in guide design.

PINCER feature selection

We assembled a training dataset consisting of sgRNAs
tiled on contextually-essential genes by combining seven
datasets from five publications as described in the meth-
ods (n = 27 508 sgRNA-LFCs measurements) and tested
each guide feature’s ability to predict guide activity (Fig-
ure 2A, and in Supplementary Figure S11 with greater res-
olution for selected features). Results from Figure 2A are
described from left to right. The specificity score cutoff we
used (0.50, as suggested by both Haeussler et al. and Schoo-
nenberg et al.) was sufficient to eliminate non-specific guides
with high false activity due to off-target DNA damage, be-
cause guides with borderline specificity (0.50–0.64) did not
demonstrate higher activity than others (41,89). Cleavage
efficacy was a highly effective linear predictor of guide ac-

tivity. The PAM site TGG was slightly less active than the
other three (AGG, CGG, GGG), consistent with a previ-
ous report partially sharing the same training data (15).
The relative orientation of gene and guide strands doesn’t
impact guide activity, consistent with the idea that Cas9-
induced double-stranded DNA breaks are blunt-ended and
therefore strand-agnostic, and consistent with previous re-
ports partially sharing the same training data (15,41). In
these data, guides containing restriction sites were no less
active than guides without restriction sites. Guides whose
targets (23 nt) were affected by common single nucleotide
polymorphisms (SNPs) and indels were less active in ag-
gregate. sgRNA melting temperature (Tm) had little impact
on guide activity except that guides with very high Tm were
slightly less active. Guides containing AAAAA, CCCCC,
GGGGG, or TTT were less active than other guides. Guides
targeting splice sites at the +0 (exon edge) and +1 (middle
of splice site) positions were highly effective, but those tar-
geting at +2 (splice site edge) were ineffective. Exon asym-
metry and splicing enhancers had no impact on sgRNA
activity. Guides targeting the 95th percentile of the pro-
tein CDS were less active than others, while guides target-
ing the 90th percentile were comparable to others in con-
trast with previous reports (see also Supplementary Figure
S11B). Guides targeting positions in which 2/2 frameshifts
induce NMD were more active than guides only capable
of inducing NMD with 1/2 frameshifts or 0/2 frameshifts.
Guides targeting conserved residues (score >7) were more
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Figure 2. Guide design feature selection. Evaluation of which experimental, sequence, and targeting features best predict guide potency in a massive
training dataset of contextually essential genes unbiasedly tiled by specific sgRNAs (n = 27 508 z-scored sgRNA-log2-fold-changes). (A) Boxplots of
z-scores grouped by individual guide features, split logically for discrete features and into quintiles for continuous features, and colored by significance in t-
tests to the left-most box of each feature. Specificity: Hsu et al. (12) score, Cleavage efficacy: Doench et al. (13) (‘Broad Rule Set 2’) score, PAM: protospacer
adjacent motif, Strand: guide orientation relative to gene, Esp3I: restriction site, SNP: single nucleotide polymorphism in target at 10% VAF, Tm: melting
temperature, PolyA/PolyC/PolyG/PolyT: homopolymer length, Splice Site: cut site relative to exon edge in splice donors (sd) or splice acceptors (sa),
exon structure: for targeted internal exons whether exon length is a multiple of 3 nt (asymmetric) and whether guide targets an exonic splicing enhancer
(ESE) motif, %CDS: cut site relative to CDS, NMD: nonsense-mediated decay potential measured in number of frameshifts, Conservation: a deletion-based
amino acid conservation score novel to this publication, Uniprot 2◦: target’s secondary structure if any (CCR: coiled-coil region), CDD Domain: conserved
domain database domain targeted, CDD site: conserved domain database site targeted. Green arrows indicate binary cutoffs used in subsequent steps, and
features used in the final algorithm are identified by red text. (B) Relative importance of each feature’s contribution to a linear model predicting z-score. Bar
colors indicate features included in the final design algorithm. (C) Difference in median z-score between guides possessing and lacking individual features
versus the percentage of guides in the human genome possessing that feature. Uniprot.AB: guide targets either alpha helix or beta sheet. In addition to
positive predictors from panel B (in red), this view highlights strong negative predictors not uncovered by the linear model (in blue).

active than those which did not target conserved residues.
Guides targeting Uniprot beta sheets and alpha helices were
more active than those which did not target predicted sec-
ondary structure. Guides targeting domains were more ac-
tive than those which did not target domains. Guides tar-
geting annotated regulatory sites in CDD were more active
than those which did not target these sites. In particular,
the best predictors of guide activity were cleavage efficacy
and amino acid conservation. Although this data does not
support the exclusion of guides containing restriction sites,
we know from another study that these guides exhibit de-
pressed counts prior to experiments being performed (Sup-
plementary Figure S3). This effect is hypothetically caused
by unintended restriction enzyme cleavage during cloning
and results in increased noise and decreased sensitivity in
screening.

On the basis of these observations, we selected binary cut-
offs (Figure 2A, green arrows) and fit a linear model to pre-
dict z-score from continuous, categorical, and binary guide
features. These are listed in order starting with Cleavage Ef-
ficacy, PAM and Esp3I (respectively) using the formula:

z ∼ Cleavage Efficacy + Specificity + Conservation + Tm
+ PAM + NMD + Esp3I + %CDS > 95% + ESE + Exon
asymmetry + Internal Exon + Uniprot Beta + Uniprot
CCR + Uniprot Helix + Uniprot Turn + PolyA ≥ 5 + PolyC
≥ 5 + PolyG ≥ 5 + PolyT ≥ 3 + Domain + SNP + CDD
Site + Strand.

Respectively, the terms in the linear model represent:
(z) z-score transformed observed guide-level log2-fold-
changes; (Cleavage Efficacy) predicted guide cleavage effi-
cacy on a zero to one scale as calculated by the Broad Rule
Set 2 method; (Specificity) predicted guide specificity on a
zero to one scale as calculated by the Hsu et al. (12) method;
(Conservation) predicted protein conservation of the tar-
get residue on approximately as -7 to +21 scale, imple-
mented using PROVEAN as defined in this manuscript;
(Tm) predicted melting temperature of each guide as cal-
culated by the HELP library; (PAM) the Protospacer Ad-
jacent Motif of each guide; (NMD) whether each guide
can induce NMD with zero, one, or two frameshifting
frames; (Esp3I) whether guides and their flanking syn-
thesized sequence contains an unintended restriction site;
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(%CDS > 95%) whether guides target the C-terminal end
of the protein Coding Sequence; (ESE) whether guides tar-
get predicted Exonic Splicing Enhancers; (Exon asymme-
try) whether guide target exons whose length is a multiple
of 3 nt; (Internal Exon) whether guides target an exon that is
not the first or last exon of the gene; (Uniprot Beta) whether
guides target predicted beta sheets as defined by Uniprot;
(Uniprot CCR) whether guides target predicted coiled-coil
regions as defined by Uniprot; (Uniprot Helix) whether
guides target predicted alpha helices as defined by Uniprot;
(Uniprot Turn) whether guides target predicted turn regions
as defined by Uniprot; (PolyA ≥ 5) whether guides and their
flanking synthesized sequence contain AAAAA; (PolyC ≥
5) whether guides and their flanking synthesized sequence
contain CCCCC; (PolyG ≥ 5) whether guides and their
flanking synthesized sequence contain GGGGG; (PolyT ≥
3) whether guides and their flanking synthesized sequence
contain TTT; (Domain) whether guides target predicted do-
mains as defined by CDD; (SNP) whether guides and their
PAMs overlap known point mutation or indel polymor-
phisms at a 10% VAF as defined by dbSNP; (CDD Site)
whether guides target predicted critical annotated sites as
defined by CDD; (Strand) whether guides are oriented in
the same or opposite orientation of their target gene. For de-
scriptions of how these scores were generated, see sections
‘Annotation of intrinsic guide features’ and ‘Annotation of
guide target features’.

We then estimated variable importance using the re-
laimpo R package (90). We found that cleavage efficacy
and conservation were not only the two most important
predictors, but that they also complemented each other
(Figure 2B). %CDS, Domain and PolyT ≥ 3 also con-
tributed incrementally to the model. Repeating this anal-
ysis on a reduced set of linear model predictors uncov-
ered no additional significant contributors (Supplementary
Figure S25). Finally, to identify highly effective negative
predictor features for a minority of sgRNAs, we plotted
the difference in median z-score between guides with and
without each feature versus the percentage of guides that
each feature affects. This demonstrated the value of ho-
mopolymers and %CDS > 95% as negative selection criteria
(Figure 2C).

We also considered that individual features may predict
guide activity without complementing each other by com-
peting for the same biological signal, so we assessed the
interactions between biologically related features (Supple-
mentary Figure S12). Conservation, domain and CDD Site
actually do complement each other, though conservation is
the best predictor and few guides target CDD Sites. How-
ever, conservation captures most of the signal that Uniprot
features would otherwise contribute to the model. Surpris-
ingly, %CDS > 95% is a dramatically better negative pre-
dictor of guide performance than the NMD-competency
of guides. We hypothesize that non-NMD-inducing frame-
shifting edits to the first 95% of the protein still alter the
C-terminus enough to impair protein folding or function
(Supplementary Figure S12D, leftmost box: %CDS > 95%:
–, NMD: 0/2). No combination of splicing enhancer or
exon symmetry features predicted dropout in this data.
Supplementary Figure S24 illustrates the feature selection
strategy.

Algorithm and training performance

Using guide and target features selected in our training
experiment, we devised an algorithm to pick any number
of sgRNAs per gene (Figure 3A) and used it to gener-
ate six sgRNAs per gene to enable screens of either six
sgRNAs/gene or four sgRNAs/gene, both of which have
been proposed as optimal (37,91). All guides in the genome
are assigned to tiers by whether they target domains, have
high cleavage efficacy (>0.40), target conserved residues
(score > 7), avoid the 3′ end of the CDS (%CDS < 95%),
avoid Esp3I sites and homopolymers (CGTCTC, AAAAA,
CCCCC, GGGGG, TTT), avoid common SNPs and in-
dels (dbSNP, >10% VAF), and target specifically (Hsu et
al. (12) > 0.50 and zero off targets with ≤1 mismatch).
Tier 1 guides possess all these features and have the high-
est expected activity, and feature constraints are iteratively
relaxed for all other tiers to enable targeting all genes. Speci-
ficity is the highest priority feature constraint (reflecting a
strategic aim to minimize off-target activity), but if there
aren’t enough specific guides for a gene, then that criterion
is relaxed, and the process repeats as before (tiers 7.1–7.6)
with 0.5 > specificity score >0.25, and finally removing the
constraint entirely (tier 8––non-specific guides). We did not
include features too rare to be feasible as inclusion crite-
ria (CDD Site), too common or weak in effect to be feasi-
ble as exclusion criteria (PAM = TGG, high Tm), too likely
to cause unpredictable change of function variants (splice
site), or those subsumed by other features (NMD, Uniprot
secondary structure). Guides are then sorted by tier and
cleavage efficacy (the best linear predictor of performance)
and picked to maximize tier and rank with the added con-
straint of targeting ≥3 nt apart to limit overlapping guides.
For instance, if a gene has three tier one guides, they are au-
tomatically included regardless of spacing, then three addi-
tional lower tier guides are selected to maximize their av-
erage rank around the 3 nt mutual spacing constraint. See
Supplementary Table S21 for counts of sgRNAs in each tier.
Supplementary Tables S22 and 23 contain PINCER in a six
sgRNA/gene format, and Supplementary Tables S24 and
25 contain PINCER in a twelve sgRNA/gene format.

To retrospectively assess the training performance of our
new library (PINCER), we compared the LFCs of guides
shared between four libraries and the Munoz et al. tiling
dataset, selected because it was the largest single dataset and
was not used to fit any feature scores (e.g. cleavage efficacy is
from Doench et al. (13)) (74). We averaged sgRNA observa-
tions across three cell lines, labeled sgRNAs shared by each
library, and plotted their performance. Guides included in
PINCER showed statistically stronger average knockout of
essential genes by log2-fold-change compared to the null
distribution and Avana (P < 0.001), and the lowest percent-
age of guides which fail to achieve 2-fold dropout (Figure
3B).

PINCER validation in comparison to other libraries

We devised an experiment to directly compare PINCER’s
performance to other genome-wide CRISPR libraries
through a pooled CRISPR screen of select genes. First, we
identified three cell lines from different cancer types with
prior dropout data (Achilles 18Q3) and good Cas9 activity.
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Figure 3. Guide Design Algorithm and Training. (A) Guide design algorithm. First, all guides in the genome are assigned to tiers by the features listed
above the columns of the matrix. Features are ranked from left to right by expected predictive power and the percentage of guides they affect, such that
highly effective predictors affecting a minority of guides are prioritized and specificity is the top priority. We were able to pick 87% of guides possessing all
the listed features for both human and mouse. Next, guides are sorted first by their assigned tier, and then within tiers by cleavage efficacy (the best linear
predictor of dropout). Finally, six guides per gene are picked to avoid overlaps and optimize rank. (B) Evaluation of retrospective performance of different
libraries in the Munoz et al. (74), essential gene tiling training dataset (mean of three cell lines). sgRNAs which fail to achieve a 2-fold depletion (LFC <

−1), are indicated by a dotted line, and asterisks indicate which libraries PINCER is significantly different from in terms of LFC distribution by t-test.

These were the colorectal adenocarcinoma cell line DLD-
1, pancreatic carcinoma cell line Hs766T and breast ade-
nocarcinoma cell line HCC1428. Next, we identified genes
to survey, which were expected to be either essential in all
cell lines, essential in one or two of the three cell lines,
or non-essential in all cell lines (see ‘Materials and Meth-
ods’ section and Supplementary Table S13 for the gene list).
A total of 20 nt sgRNA sequences targeting pan-essential,
cell line-essential and non-essential genes were pooled from
Avana, Brunello, TKOv3 and PINCER, duplicates were re-
moved, and a single pooled library was constructed. Us-
ing our database, we find that PINCER has slightly higher
cleavage scores, similar specificity scores, a greater tolerance
for 3’ guides and dramatically higher protein conservation
scores than other libraries. However, the difference in con-
servation scores between PINCER and other libraries is re-
duced in the sub-library used in the validation experiment,
hypothetically because essential genes tend to be highly con-
served (Supplementary Figure S14). Overlaps between the
libraries are minimal, so concordance between validation
results cannot be attributed to shared guides between the
libraries (Supplementary Figure S15).

We validated PINCER against other libraries by screen-
ing DLD-1, Hs766T and HCC1428 using the pooled
sgRNA library in which all libraries’ guides shared the same
vector and scaffold (see ‘Materials and Methods’ section;
count and gene-level result data are available in Supple-
mentary Tables S17 and 18). By T3, all genome-targeting
sgRNAs depleted while non-targeting sgRNAs enriched,
demonstrating the known DNA-damage effect of Cas9 edit-
ing (74,92). From T3 to T14 essential gene targeting sgR-
NAs depleted dramatically, while both targeting and non-
targeting negative controls enriched (Supplementary Fig-
ure S17). Next, we identified a number of genes which were
expected but not observed to drop out in any library and
excluded them from comparative analysis between the li-
braries (Supplementary Figure S18). Finally, we directly
compared dropout metrics between the four libraries for

genes essential in each cell line (pan-essential genes + cell-
line essential genes) (Figure 4; Supplementary Figures S19
and S20). PINCER displayed significantly stronger gene-
level LFCs compared to TKOv3 and Avana in all cell
lines tested, and statistically significantly reduced intra-gene
variation (robustness) compared to all three other libraries
in all but one out of nine comparisons.

DISCUSSION

In this work, we surveyed a wide array of proposed guide de-
sign features for CRISPR/Cas9 screening and empirically
determine which features best predicted guide activity and
how best to combine them. In particular, we anticipated that
the combination of predicted Cas9 cleavage efficacy and tar-
get features important to protein function would be espe-
cially effective.

Targeting sgRNAs to essential domains emerged as a suc-
cessful strategy to screen for cancer drug targets in 2015,
and it seems clear in retrospect that edits to non-essential
regions of essential genes could easily fail to produce phe-
notypic changes in gene function (47). Cas9 induces both
frameshift edits and in-frame edits. While frameshifts are
highly likely to knock out gene function by either cellu-
lar surveillance mechanisms or protein-level dysfunction,
the impact of in-frame indels and point mutations depends
highly on their positions in the protein. Moreover, as oth-
ers have noted, an expected indel frameshift rate of two-
thirds implies a biallelic frameshift rate of only four/ninths
(41). Obtaining frameshifts in all alleles is even less likely for
copy-gained genes, which are common in cancer and driven
lower still by point mutation edits. Taken together, Cas9-
induced in-frame edits are probably very common.

We reasoned that targeting conserved protein regions
could not only solve ineffective in-frame edits, but also
improve on domain targeting in four ways. First, while
domains are sparsely annotated for poorly characterized
gene families, conservation provides unbiased annotations
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Figure 4. PINCER outperforms other libraries in effect size and robustness. CRISPR screens were conducted in the human cancer cell lines DLD1,
HCC1428 and HS766T using pooled sgRNAs from four libraries (PINCER, TKOv3, Avana and Brunello) targeting pan-essential, selectively essential and
negative control genes. Violin plots show gene-level log2-fold-changes, of reads per million mapped reads normalized to negative control reads (combining
all libraries), between plasmid and endpoint for essential and cell-line-selective genes, and intra-gene coefficient of variation (across sgRNAs targeting the
same genes), with paired and unpaired t-tests against the PINCER library.

for all genes in the genome. This serves to approximate
the genome-wide structure-function knowledge others have
noted domain targeting lacks (93). Second, conservation at
single-residue resolution is more precise than domain an-
notations, enabling targeting of critical regions even within
domains whose conservation varies widely (e.g. FUT4’s N-
terminal fucosyltransferase domain, Supplementary Fig-
ure S8C). Third, domain annotations have heterogeneous
meanings, and often don’t represent functional gene sub-
units (e.g. the herpesvirus integration site in POLR2A, Sup-
plementary Figure S9A). Finally, by modeling in-frame
deletions, protein regions whose lengths are variable across
evolution can be distinguished from protein regions whose
lengths are highly conserved. Observing conservation in the
length of a protein region across evolution implies that its
length is under purifying selection, and that the region’s
structure may require that specific fixed length in order
to function. Conserved-length regions make for excellent
CRISPR targets because even in-frame indels are likely to
disrupt their function.

PROVEAN’s elegant approach to predict the functional
impact of deletions is to compare the respective alignments
of a gene’s wild-type and mutant proteins to the gene’s or-
thologs. In-frame deletions do not impact alignment to gene
regions whose lengths are variable across evolutionary his-
tory (scoring low), but highly disrupt alignment to regions
whose lengths are invariable (scoring high), resulting in bi-
modality of our genome-wide conservation score (Supple-
mentary Figure S11A). Because the purpose of targeting

Cas9 to functional regions is to ensure that in-frame edits
disrupt gene function, capturing this invariable-length com-
ponent of conservation is a significant improvement. We are
the second to propose this approach after Schoonenberg
et al., and the first to include it in a genome-wide library
design (41). Others have proposed conservation targeting
based on amino acid substitutions or nucleotide conser-
vation, but we demonstrate here that PROVEAN’s model
likely improves variant effect prediction (Supplementary
Figure S5) and guide activity prediction (Supplementary
Figure S6) over those alternatives. To the best of our knowl-
edge, our work also produced the first genome-wide protein
conservation track (AADelCons), which likely has utility
beyond CRISPR guide design and is available on Github.

As a first validation of our design strategy, we observed
that cleavage efficacy and conservation were individually
highly predictive of guide activity in aggregate, although
both have wide variation (Figure 2A). They are not highly
correlated (Supplementary Figure S7) and complement
each other effectively to predict overall guide activity (Fig-
ure 2B). Conservation subsumed the individual predictive
value of protein secondary structure, and to a lesser ex-
tent CDD site and CDD Domain which still added value
(Supplementary Figure S12A–C). The observations that
deletion-based protein conservation predicts guide activ-
ity and is complemented by domain annotations were also
made by Schoonenberg et al. in training data partially over-
lapping this experiment. Further, differences were small be-
tween simulated deletions of varying length (Supplemen-
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tary Figure S23), likely owing to autocorrelation by con-
sidering overlapping amino acids but also because all short
deletions capture the same ‘conserved length’ signal.

Unexpectedly, we observed that guides containing
thymine trinucleotides (TTT) exhibit lower activity (Figure
2A), even in combination with cleavage efficacy (Figure
2B). This is significant because most algorithms only omit
guides containing length four (TTTT), believing that to be
the minimum required for Pol III termination as supported
by experimental data (29). Impaired sgRNA activity by
TTT has also been observed at least once before, so it
is possible that our observation is consistent with TTT-
mediated Pol III transcription termination (19). Critically,
the commonly used ‘F+E’ sgRNA scaffold (Chen et al.)
and recently improved LRG2.1 scaffold (Tarumoto et al.)
contain two TTTs and three TTTs respectively, implying
it may be possible to improve sgRNA expression for any
application by further scaffold modifications (53,54).

PINCER guides demonstrated significantly stronger
intra-gene concordance than those of Avana, TKOv3 and
Brunello in most comparisons. We anticipate that this im-
provement will benefit gene-level significance testing in
screens, in which a minority of discordant guides can really
impair sensitivity. However, while PINCER showed signifi-
cantly stronger gene-level activity than Avana and TKOv3,
the improvement in gene-level activity over Brunello was
not significant. There are two possible technical limita-
tions of our experiment which could explain this. First, be-
cause we were testing multiple libraries in multiple cell lines,
the number of genes surveyed was necessarily low (44–46
essential genes per cell line), and it’s possible that com-
paring more genes between PINCER and Brunello could
better delineate their differences. Second, while PINCER
demonstrates a dramatic difference from other libraries in
guides targeting conserved sequence genome-wide (96 ver-
sus 53, 54, 60%; see Supplementary Figure S14A, upper-
right panel), that separation is reduced in the genes sur-
veyed in our experiment (100 versus 72, 74, 79%; see Supple-
mentary Figure S14A, lower-right panel). Because essential
genes tend to be entirely conserved, it is possible that by
testing essential genes this experiment underestimated the
benefits of conservation targeting. We also expect that even
modest improvements in guide activity will benefit screen-
ing sensitivity, as the difference between an 80 and 90% ef-
fective guide rate corresponds probabilistically to 81.9 ver-
sus 94.8% of genes with at least three/four effective guides,
65.5 versus 88.6% of genes with at least five/six effective
guides and 90.1 versus 98.4% of genes with at least four/six
effective guides, assuming effective guides are distributed
randomly with respect to genes.

While this work was ongoing, improvements were made
to established scoring methods and additional guide de-
sign features were proposed. Novel predictors of cleavage
efficacy and specificity from guide sequence were proposed
(Supplementary Table S4). The most promising of these in-
corporate either principled energy simulations or machine
learning using large training datasets. Incorporating up-
dated scores into our model could likely improve guide ac-
tivity. Promising novel guide design features include pre-
dicted sgRNA scaffold misfolding, misrecognition of Cas9
to excessive PAM sites near the guide target, misrepair pre-

diction by cut site sequence context (microhomology), tar-
get chromatin accessibility, isoform expression and somatic
variants in the target (Supplementary Table S3) (17,26,31–
32,42,94). However, we expect that most of these depend
on cellular context. Chromatin accessibility and isoform ex-
pression are famously variable between cell lines and lin-
eages. Every cancer cell line has a unique set of somatic mu-
tations. The fact that specific DNA repair pathway deficien-
cies cause consistent mutation patterns across patients (so-
called ‘mutational signatures’) implies that Cas9-induced
mutation patterns probably also depend on DNA repair
pathway status (95). Moreover, mutation patterns are likely
to vary highly across cell lines as DNA repair genes are
among the most frequently disrupted in cancer (e.g. TP53),
and may be especially difficult to predict in the absence of
DNA repair deficiencies as relatively normal cells exhibit er-
ratic CRISPR editing (35). Still, the evidence is compelling
that these features hold predictive value within their respec-
tive contexts. While it is difficult to imagine incorporating
these into genome-wide library design generally, the right
application of these features may be cellular-context-aware
screen analysis as suggested in CRISPRO (41). It may be
possible to reach even higher levels of sophistication, for in-
stance by using PROVEAN to predict the functional impact
of the distribution of predicted mutations at a cut site (link-
ing misrepair prediction to conservation analysis). Finally,
it has been observed that cells can compensate for gene
loss by upregulating paralogs (e.g. ‘transcriptional adap-
tation’ mechanistically linked to NMD), and some groups
have proposed simultaneous targeting of multiple paralogs
(e.g. CRISPys) (96,97). However, as this approach requires
either prior knowledge of paralog sets and/or expanding
library size, it remains a limiting factor for single-guide li-
braries like PINCER.

Here we present the PINCER genome-wide CRISPR li-
brary, which for the first time combines Cas9 cleavage effi-
cacy optimization with deletion-based protein conservation
targeting. PINCER was trained using the most comprehen-
sive feature database and the largest training dataset yet
assembled. PINCER guides achieve superior performance
compared to other libraries. The human and mouse PIN-
CER libraries presented here will improve drug target dis-
covery screens both in vitro and in vivo, empower cell and
animal engineering to study individual gene function, and
could even drive direct Cas9 therapies in the future.
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