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Abstract: A multilayer structure based on Dirac semimetals is investigated, where long-range surface
plasmon resonance (LRSPR) of a dielectric layer/Dirac semimetal/dielectric layer are coupled with
surface plasmon polaritons (SPPs) on graphene to substantially improve the Goos–Hänchen (GH)
shift of Dirac semimetals in the mid-infrared band. This has important implications for the study
of mid-infrared sensors. We studied the reflection coefficient and phase of this multilayer structure
using a generalized transport matrix. We established that subtle changes in the refractive index
of the sensing medium and the Fermi energy of the Dirac semimetal significantly affected the GH
shift. Our numerical simulations show that the sensitivity of the coupling structure is more than
2.7× 107 λ/RIU, which can be used as a potential new sensor application. The novelty of this work
is the design of a tunable, highly sensitive, and simple structured mid-infrared sensor that takes
advantage of the excellent properties of Dirac semimetals.

Keywords: Dirac semimetal; Goos–Hänchen shift; LRSPR; SPP; mid-infrared; biochemical sensor

1. Introduction

In condensed matter physics, topological materials have received much research inter-
est because of their ability to contain relativistic fermions with low-energy excitations [1–4].
Dirac semimetals (DSMs) are a type of topological material, famous for their topologically
protected linear dispersive energy bands. Unlike the first studied two-dimensional (2D)
Dirac systems, where the graphene energy band crossings are susceptible to perturbation,
the system perturbation can only slightly move the three-dimensional (3D) Dirac cone of the
DSM without eliminating it, which is quite robust [5]. This unique energy band structure
endows the DSM with distinctive properties that make it suitable for optoelectronic appli-
cations [6–9]. Since their theoretical prediction, numerous angle-resolved photoemission
spectroscopy and scanning tunneling microscope experiments have confirmed the existence
of conical features in the energy band structure [10–12], giving rise to a large number of
subsequent theoretical and experimental follow-ups that have enriched the understanding
of DSMs.

Dirac semimetals are not only scientifically attractive, but they also have many poten-
tial applications. Owing to their energy-gapless tapered energy band, they have important
potential applications in high-speed, broadband optoelectronic devices owing to their
ultra-high mobility and broadband optical absorption [10,13–15]. The mid-infrared band
(2–20 µm) is widely favored for scientific research due to its extremely high utility [16–19].
However, due to material limitations, it has been relatively little studied compared to the
visible band. Additionally, the semi-metallic nature of DSM makes it highly promising. In
the mid-infrared to terahertz band, DSM and graphene have a dielectric constant below
zero, which can excite surface plasmon resonance (SPR) with less loss than conventional
metals (e.g., Ag and Au) and is expected to be an excellent candidate for SPR [20,21]. Like
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graphene, its tunability is more prominent [22–24], and its thickness can be freely tailored
to ensure stronger light-matter interactions.

Goos–Hänchen (GH) shifts have attracted attention for numerous studies and applica-
tions in optics, chemistry, and biomedicine [25–29]. However, small shifts in ordinary struc-
tures have limited their research. Currently, large GH shifts have been obtained [30–32] by
SPR, long-range surface plasmon resonance (LRSPR), etc. In the visible band, the coupling
of two electromagnetic modes can further increase the GH shift and obtain a higher sensor
sensitivity [33]. Therefore, the special structure may effectively improve the GH shifts.

In this paper, we propose a Dirac semimetal-based coupling structure. The large GH
shift of this coupled structure in the mid-infrared band was studied based on the generalized
transfer matrix. This large GH shift can be regulated by the thickness of the coupling layer,
thickness of the Dirac semimetal, and Fermi energy. We also analyzed the effect of the refractive
index of the sensing medium on the GH effect, showing excellent sensing performance.

2. Theoretical Model and Method

We propose a coupling structure to improve and control GH shifts, as depicted in
Figure 1. Graphene is under the prism, and the refractive index of the prism is n1 = 2,
which is used to increase the wave vector. The second and fourth layers are the sensing
medium (n2 = 1.35) [34–37], and the DSM is fitted between the sensing medium. In
brief, our structure can be considered as a common SPR sensor with a thin layer of Dirac
semimetal immersed in the analyte solution. Graphene can be transferred to the prism with
the assistance of PDMS [38].
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First, we verified the SPP at the graphene/sensing medium interface. The surface conduc-
tivity of graphene can be described by the well-known Kubo formula, for kBT � E f [39–41]:

σGR

(
ω, E f

)
=

ie2

4πh̄
ln

2
∣∣∣E f

∣∣∣− (ω + i2Γ)h̄

2
∣∣∣E f

∣∣∣+ (ω + i2Γ)h̄

+
ie2kBT

πh̄2(ω + i2Γ)

[
E f

kBT
+ 2 ln

(
e−

E f
kBT + 1

)]
(1)

where e is elemental charge, h̄ and ω represent the reduced Planck constant and angular
frequency of incident light, respectively; E f is the fermi energy, T is the temperature, and
Γ is a phenomenological scattering rate (E f = 0.35 eV, T = 300 K, Γ = 0.1 meV). In the
mid-infrared band, the dielectric constant of graphene is below zero, therefore it can excite
SPPs instead of metals. The SPP dispersion relationship excited by the graphene/sensing
medium can be expressed by the following formula [42]:

kspp = k0

√
εgrapheneεsensing

εgraphene + εsensing
(2)

The effective dielectric constant can be defined as ne f f = kspp/k0.
Previous studies have shown that the conductivity of the DSM can be described by the

Kubo formula [21,43]. For kBT � E f and long-wavelength limit, the optical conductivity
can be written analytically as

Reσ(Ω ) =
e2

h̄2

gE f

24πv f
ΩΘ(Ω− 2) (3a)

Imσ(Ω) =
e2

h̄2

gE f

24π2v f

 4
Ω
−Ω ln

 4ε2
c∣∣∣Ω2 − 4
∣∣∣
 (3b)

where g is the degeneracy factor, v f is the Fermi velocity, Θ(x) is the step function, and εc
represents the high-energy cutoff of the linear model. Here, Ω is the normalized frequency
h̄ω/E f .

To accurately describe the dielectric function of the DSM, a two-band model consider-
ing inter-band electron transition is used instead of a simple Drude-like model [43]:

εDSM = εb +
iσ

ωε0
(4)

Therefore, when considering the Drude damping (Ω + ih̄/τE f instead of Ω), the
dielectric function of the DSM is shown in Figure 2.

In the middle infrared band, the real part of the dielectric function of the DSM is below
zero and has a suitable imaginary part, which indicates a good SPP material [42]. In the
case of being fitted by the sensing medium, an insulator–metal–insulator (IMI) structure
can be formed to excite the LRSPR. Through the boundary conditions of the symmetrical
IMI structure [42], the dispersion relationship can be derived as

tanh k1a = − k1ε2

k2ε1
(5)

where, k2
i = kspp

2 − k2
0εi,i = 1, 2.

For this coupling structure, we used a generalized transfer matrix [44] to calculate
the reflectivity and phase at TM incidence. This method can deal with different types of
materials arbitrarily, which does not exist in discontinuous solutions.

For multilayer systems, using the electromagnetic field boundary conditions, we can
connect the electromagnetic wave amplitudes of two adjacent layers [44]:

Ai−1
→
E i−1 = Ai

→
E i (6)
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where Ai is the dynamic matrix with respect to the electric field vector γi, and i is the
ith layer.
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To better define the transmission matrix, the propagation matrix is introduced by
P [44,45]:

Pi =


e−i ω

c qi1di 0 0 0
0 e−i ω

c qi2di 0 0
0 0 e−i ω

c qi3di 0
0 0 0 e−i i

c qi4di

 (7)

where c is the speed of light, ω is the angular frequency of the incident light, and qij (di) are
the four eigensolutions (j = 1, 2, 3, 4) of the z-component of the wave vector (thickness)
in the ith layer of the material.

Thus, the transmission matrix of the whole structure can be written as

Q = A−1
1 A2P2A−1

2 . . . Ai−1Pi−1A−1
i−1Ai (8)

Based on the transmission matrix Q, the reflection coefficient of the TM polarization
incidence can be calculated as follows [44,45]:

rpp =
Q11Q43 −Q41Q13

Q11Q33 −Q13Q31
(9a)

rps =
Q41Q33 −Q43Q31

Q11Q33 −Q13Q31
(9b)

Here, the subscripts pp and ps represent the p and s reflections of p incidence, respec-
tively.

After obtaining the reflection coefficient, according to the static phase method, the GH
shift can be expressed as

DGH(θ, ω) = − λ
2π

dφr
dθ

= − λ
2π

(
Re(r) dIm(r)

dθ − Im(r) dRe(r)
dθ

) (10)
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Here, θ is the angle of incidence, λ is the wavelength, and φr is the reflected phase.
As rps is proportional to the off-diagonal components’ dielectric function, all the

materials in our structure εxy = −εyx = 0 without considering the magnetic field effect.
Therefore, the effect of rps on GH shifts could be disregarded. In the following discussion,
if not otherwise specified, we set the incident light wavelength to be λ = 2.5 µm.

Sensitivity is an important parameter for precision probing, meaning the degree of
change in the amount of response is due to a change in the measured quantity. As the
structure is sensitive to many parameters, a variety of sensitivities can be defined. For
example, the change in the angle of the GH shifts maximum with respect to the Fermi
energy can be defined and used to measure the ability to detect the Fermi energy level:

S f =
dθ

dE f
(11)

Similarly, it can also be used as a refractive index sensor, and the ratio of the change in
GH shifts caused by the change in refractive index of the sensing medium to the change in
refractive index is used as the sensitivity:

Sn =
dGH

dn
(12)

3. Results and Discussion

Figure 3a shows the reflection coefficient and phase with the angle of incidence. When
θSPR = 52.255, a narrow peak in induced by the SPR. In the region of the peak, the reflection
phase changes significantly. At this wavelength, the imaginary part of the DSM dielectric
constant is very small; therefore, the reflection spectrum has a small half-width (0.780).
According to Equation (10), acute phase changes within a narrow range results in large GH
shifts. As shown in Figure 3b, a large GH shift of 521 λ is observed at the resonance peak.
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Figure 3. Variation in the (a) reflectance and phase, (b) GH shift for 350 nm DSM film with respect to
the incident angle when E f = 0.5 eV, respectively. The other parameters of the DSM are the same as
for Figure 2.

Previous studies have reported that LRSPR can significantly reduce the half-peak
width of the resonance, resulting in sharp phase changes and a significant increase in GH
shifts [30]. To further increase the GH shifts, the structural coupling between graphene SPP
and DSM LRSPR was used to obtain better performance. To verify that graphene SPPs can
couple with LRSPR with an IMI structure, the coupling conditions were studied. When the
incident light f = 119 THz, the effective refractive index varies with the E f of the DSM, as
shown in Figure 4.
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Figure 4. Effective refractive index of graphene-SPP and IMI-LRSPR as a function of E f of DSM.

Figure 4 shows that the effective refractive index of the IMI structure can be easily
adjusted by E f of DSM, showing excellent adjustable performance. When the E f of the
DSM is 0.5 eV, the two systems have the same effective refractive index (neff = 1.64). In this
case, the two modes can be coupled, which theoretically further increases the GH shift.

In this coupled structure, the GH shifts are affected by many factors. For example, the
thickness of the metal layer in the IMI structure that excites the LRSPR, the thickness of
the coupling layer, etc. As shown in Figure 5, when the coupling layer thickness and DSM
thickness are selected as the optimal thickness (e.g., dDSM = 375 nm, dc = 70 nm), the phase
change abruptly changes, resulting in a maximum GH shift.
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In this case, however, the phase loses its physical meaning and therefore cannot accu-
rately describe the GH shifts [46,47]. It was found that when the thickness of the coupling
layer is less than the optimal thickness, the phase decreases with the increase in the angle,
and when the angle of resonance increases sharply, it results in negative GH shifts. When the
thickness of the coupling layer is larger than the optimal thickness, the phase increases with
the increase in the incident angle, resulting in positive GH shifts. Therefore, the direction
of the GH shift can be precisely controlled by adjusting the thickness of the coupling layer
without significantly changing the resonance angle. We can imagine that when the coupling
layer is infinite, the two modes are isolated from each other and cannot be coupled, and the
GH shifts is very small. As the thickness of the coupling layer decreases, the modes start to
coupling and making the GH shifts larger. As the thickness of the coupling layer continues to
decrease, the optimal coupling condition is lost and the GH shift decreases again, which is
consistent with previous work [33]. On the other hand, the thickness of the insulator layer of
the IMI structure also affects the GH shifts [47]. Even if it deviates from the optimal thickness
(dDSM = 375 nm, dc = 75 nm), the GH shift can still reach a large value of 2520 λ, which is
equivalent to five times that of the ordinary DSM structure, as shown in Figure 6.
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Similarly, because the thickness of the DSM affects the LRSPR, the GH shifts can
also be regulated by adjusting the thickness of the DSM, as shown in Figure 7. When the
thickness of the coupling layer is at a non-optimal thickness, the thickness of the DSM can
also significantly change the magnitude and direction of the GH and slightly change the
angle of the GH shifts to a maximum. When the thickness of the DSM is less than 375 nm,
the GH shift is positive and its reflection phase decreases with the increase in angle; when
the thickness of the DSM is more than 375 nm, the GH shift is negative and the phase
increases with the increase in angle. As the thickness of the DSM increases, the effective
permittivity of its structure also increases, which causes the maximum value of the GH to
shift slightly to a high angle. When the DSM thickness is far from the optimal value, its
GH peak decreases significantly, and the half-peak width increases gradually owing to the
gradual loss of resonance conditions.
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As the optical properties of Dirac semimetals are closely related to the Fermi energy,
we can easily change the Fermi energy of Dirac semimetals by chemical doping, external
gate electric field, etc. [48–50], to adjust the GH shift of the coupling structure. Similarly,
this structure can not only adjust the positive and negative GH through the change in the
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DSM Fermi energy, but also adjust its resonance angle. This is mainly attributed to the fact
that the Fermi energy significantly changes the permittivity of the DSM, which changes the
effective refractive index of the structure. Additionally, the effective refractive index of the
structure significantly affects the resonance angle [51]. As shown in Figure 8a, when the
Fermi energy is less than 0.5 eV, the GH shift is negative, and when it is more than 0.5 eV,
the GH shift is positive. We can define the Fermi energy sensitivity factor as S f = dθ

dE f
, and

it is easy to detect subtle changes in the Fermi level, using the change in the resonance
angle. When the Fermi level is changed from 0.48 eV to 0.52 eV, there is a clear change in
the peak position, which has a sensitivity of more than 100 deg/eV in the range. It is easy
to understand that as the Fermi level increases, the effective refractive index decreases, and
its resonance angle decreases accordingly. It can be seen from Figure 4 that when the Fermi
level is <0.5 eV, the effective refractive index of the IMI structure changes sharply, which
can lead to a large change in the effective refractive index of the entire structure; therefore,
it has a high sensitivity of more than 150◦/eV in the range (in Figure 8b).
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Finally, we found that a slight change in the sensing medium results in a significant
change in the GH displacement; therefore, the refractive index sensor can be designed accord-
ingly. As shown in Figure 9, we compared it with the traditional metal SPR sensor and the
SPR sensor of the DSM. In the traditional Au (Ag) sensor, we used an excitation wavelength of
632.8 nm, Au (Ag) film thickness of 45 nm, and nAu = 0.7900 + 17.3109i, nAg = 0.1675 + 3.4728i.
The parameters are consistent with previous studies [21,52,53]. When the refractive index of
the sensing medium changes ∆ns = 0.002, the GH shifts changed by 51.7 λ (20.0 λ).According
to Equation (12), the sensitivity can be obtained as Sn≈ 2.6× 104 λ

(
1× 104 λ

)
. Additionally,

based on the DSM structure, it has a larger ∆GH = 82.4 λ while changing the smaller refrac-
tive index of the sensing medium (∆ns = 0.5× 10−4). Therefore, it has a higher sensitivity,
Sn ≈ 1.6× 106 λ, relative to the traditional metal sensor. The proposed coupling structure has
large GH shifts compared to traditional metals. While the change in the sensing dielectric con-
stant is very small, its GH shift changes sharply, with the purpose to obtain Sn≈ 2.7× 107 λ.
Compared with traditional metal sensor, it has been improved by three orders of magnitude.

Figure 10 shows the variation in sensitivity Sn with the DSM thickness and coupling
layer thickness. Its GH shift is the greatest near the optimum thickness, which also results
in the greatest sensitivity. As one moves away from the optimum thickness, the sensitivity
decreases; however, it is still is greater than that of the conventional metallic SPR structure
within a certain range, which provides a process tolerance for the actual device.
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(dDSM = 375 nm). The red line in these figures shows the sensitivity of the conventional metal Ag
SPR structure as a comparison.

Table 1 shows the GH shifts and sensitivities of the sensors with different materials,
structures, and wavelengths. Our proposed structure shows significant improvement in
both GH displacement and sensitivity, providing a potential solution for mid-infrared
sensors.
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Table 1. Comparison with the different materials SPR sensor.

Materials Wavelength GH Shift (λ) Sensitivity (λ/RIU) References

Au 632.8 nm 12.5 - [54]
Cu-BlueP/WS2-graphene 632.8 nm 1004 3.2× 106 [55]

Au-MoS2/graphene 632.8 nm 235.8 5.5× 105 [56]
Au-ITO-MoS2/graphene 632.8 nm 801.7 8.02× 105 [57]

Ag-Au-hBN-graphene 632.8 nm 182.1 2.02× 105 [32]
DSM 8.9 um 361.4 - [21]

Graphene-planar waveguide 10.6 um less than −500 - [58]
Graphene-photonic crystals 300 um Less than −2000 - [59]

Graphene-medium-DSM-medium 2.5 um More than 2500 2.7× 107 This work

4. Conclusions

In this paper, we proposed a coupling structure that can greatly enhance GH displace-
ment. In this structure, the direction of the GH displacement can be controlled independently
by adjusting the thickness of the coupling layer. As the angle of GH displacement is closely
related to the Fermi energy of the DSM, the change in the Fermi level can be accurately mea-
sured by the change in the GH displacement angle, and the sensitivity of the Fermi level is
up to. In addition, owing to the extremely large GH displacement of the coupling structure,
it can be designed as an ultra-sensitive refractive index sensor with a sensitivity up to. We
believe that this sensor, based on GH shifts, has the advantages of ultra-high sensitivity and
adjustability, and has potential application prospects in precision measurement, biological
monitoring, etc.
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