S International Journal of
Molecular Sciences

Review

Osteocyte Dysfunction in Joint Homeostasis and Osteoarthritis

Lanlan Zhang ! and Chunyi Wen 1-2/*

check for

updates
Citation: Zhang, L.; Wen, C.
Osteocyte Dysfunction in Joint
Homeostasis and Osteoarthritis. Int. J.
Mol. Sci. 2021, 22, 6522. https://
doi.org/10.3390/ijms22126522

Academic Editor: Yousef Abu-Amer

Received: 19 May 2021
Accepted: 16 June 2021
Published: 17 June 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University,
Hong Kong 999077, China; 18080922d@connect.polyu.hk

2 Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 999077, China
*  Correspondence: chunyi.wen@polyu.edu.hk

Abstract: Structural disturbances of the subchondral bone are a hallmark of osteoarthritis (OA), in-
cluding sclerotic changes, cystic lesions, and osteophyte formation. Osteocytes act as mechanosensory
units for the micro-cracks in response to mechanical loading. Once stimulated, osteocytes initiate the
reparative process by recruiting bone-resorbing cells and bone-forming cells to maintain bone home-
ostasis. Osteocyte-expressed sclerostin is known as a negative regulator of bone formation through
Wnt signaling and the RANKL pathway. In this review, we will summarize current understandings
of osteocytes at the crossroad of allometry and mechanobiology to exploit the relationship between
osteocyte morphology and function in the context of joint aging and osteoarthritis. We also aimed
to summarize the osteocyte dysfunction and its link with structural and functional disturbances
of the osteoarthritic subchondral bone at the molecular level. Compared with normal bones, the
osteoarthritic subchondral bone is characterized by a higher bone volume fraction, a larger trabecular
bone number in the load-bearing region, and an increase in thickness of pre-existing trabeculae.
This may relate to the aberrant expressions of sclerostin, periostin, dentin matrix protein 1, matrix
extracellular phosphoglycoprotein, insulin-like growth factor 1, and transforming growth factor-beta,
among others. The number of osteocyte lacunae embedded in OA bone is also significantly higher,
yet the volume of individual lacuna is relatively smaller, which could suggest abnormal metabolism
in association with allometry. The remarkably lower percentage of sclerostin-positive osteocytes,
together with clustering of Runx-2 positive pre-osteoblasts, may suggest altered regulation of os-
teoblast differentiation and osteoblast-osteocyte transformation affected by both signaling molecules
and the extracellular matrix. Aberrant osteocyte morphology and function, along with anomalies in
molecular signaling mechanisms, might explain in part, if not all, the pre-osteoblast clustering and
the uncoupled bone remodeling in OA subchondral bone.
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1. Introduction

Osteoarthritis (OA) is the most common form of arthritic disease, mainly afflicting
the load-bearing joints, e.g., knee and hip. It is also recognized as a major cause of joint
pain and disability, contributing to a compromised quality of life in older adults [1,2].
Articular cartilage, subchondral bone, and synovium are among the tissues that may
display abnormalities in OA. The radiological features of osteoarthritic subchondral bone
include sclerosis, cyst and osteophyte formation on plain x-radiograph, and bone marrow
lesions (BMLs) on magnetic resonance imaging, all of which have been proven to underline
the anomalies of bone mineralization [3,4]. Such impaired mineralization was noted from
all parts of the trabecular bone, along with compositional changes of the bone matrix,
e.g., a low ratio of mineral/collagen content [5,6]. Sclerotic changes and osteophyte
formation are both believed to arise from elevated bone turnover with an increase in
osteoblastic over osteoclastic activities [7,8]. BMLs and sclerosis are likely associated with
abnormal signaling related to sclerostin, periostin, and dentin matrix protein 1 (DMP-
1) [9-11]. Meanwhile, cysts surrounded by less mineralized bone and osteoid formation
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uncoupled with mineralization may suggest spatially differential regulation of osteoblasts
and osteoclasts by Wnt/ 3-catenin signaling and the OPG/RANKL/RANK pathway [12,13].
Modulation of bone remodeling was able to reduce osteophyte formation and alleviate
cartilage degeneration in experimental models of OA and helped with restricting BMLs in
human OA [14-16]. However, the pathomechanism of osteoarthritic bone remodeling and
the resultant structural disturbances has not been fully understood yet.

Bone resorption and formation are tightly controlled and precisely coordinated by
bone cells during the bone remodeling process to maintain the homeostasis of adult bone
metabolism [17]. The structural and functional disturbances of the osteoarthritic bone are
generally attributed to primary osteoblastic dysfunction [18]. Osteoarthritic osteoblasts
showed blunted responses to the stimulus of cytokines [19,20] and an aberrant ratio of
mineral and collagen production [6]. Meanwhile, osteocyte dysfunction and abnormal
osteoblast-osteocyte differentiation are also recognized as the possible causes of OA [21].
Osteocytes compose 90-95% of bone cells and are responsible for mechano-transduction.
It is known that osteocytes may respond to mechanical stimuli like micro-cracks with
death. Following the deaths of osteocytes, bone remodeling is initiated via activation
of osteoclastogenesis and bone resorption [17]. Osteocytes also act as the key regulators
of osteoblast differentiation through the secretion of sclerostin. Through suppressing
Wnt signaling, sclerostin can inhibit osteoblastic activity and terminate the cycle of bone
remodeling [17,22,23]. There is growing evidence suggesting that osteocytes act as a central
regulator of bone remodeling to maintain bone homeostasis and integrity [24]. However,
the exact pathophysiology of osteocytes and their contributions to the structural and
functional disturbances of the osteoarthritic bone remain unelucidated. Hereby, this review
aimed to discuss the morphology and function of osteocytes and their association with
subchondral bone remodeling in joint homeostasis and OA, along with the molecular
pathways potentially involved in pathogenesis.

2. Disturbances of Subchondral Bone

The role of subchondral bone in OA progression has been well documented. Dis-
turbances of the subchondral bone are characterized by anomalous bone morphology
at the tissue level, irregular osteocyte activities at the cellular level, and altered protein
expressions at the molecular level. The Wnt/ 3-catenin pathway, which is responsible for
osteogenesis and bone remodeling, is enriched in osteoarthritic subchondral bones [12].
Sclerostin, a major Wnt inhibitor, is expressed in calcified cartilage and subchondral bone.
Its deficiency is often associated with OA development, likely through activating Wnt
signaling [25]. In both OA and sclerostin-deficient models, an increase in bone volume
fraction and trabecular bone thickness were observed in the subchondral bone, along with
aberrant distribution of bone mineral density (BMD) [25-28]. This change is believed to
be load-dependent, as higher bone mass is usually found excessively concentrated in the
load-bearing region, with relatively lower bone mass in the less or non-loading region. For
instance, our data suggested that osteoarthritic bone exhibited unevenly distributed bone
mass from the load-bearing to non-load-bearing regions, such as in the superior portion
of femoral heads underneath the articular cartilage. In contrast, there was no significant
difference in the bone mass organization of the femoral heads from the control group
(Figure 1a,b). In accordance with structural changes, sclerostin levels are also believed
to be modulated by loading. Expression of sclerostin by osteocytes was downregulated
by mechanical loading while upregulated by unloading in mice, suggesting a role in
mechano-transduction [29,30]. Overexpression of SOST, the gene encoding sclerostin, was
found to inactivate Wnt signaling, attenuate bone formation, and reduce mineralization in
response to mechanical stimulation (Figure 1c). Suppressed bone remodeling then resulted
in little to no difference in load-bearing and non-loading regions [30]. Hence, changes in
sclerostin levels likely underlie the occurrence of sclerotic lesions preferentially in load-
bearing regions. It might thus be considered as an adaption to support an abnormal level
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of compressive stress, such as when cartilage tissues are severely eroded [26,31] or when
repetitive loading is applied [32].
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Figure 1. The representative uCT images and data show the comparisons of hip osteoarthritis (OA) with a fracture in two-
(a) and three-dimensional architecture (b). Osteoarthritic bone was characterized by high bone mass disproportionately
concentrated in the load-bearing regions in comparison with hip fracture bone. This is believed to be regulated by periostin
and sclerostin (c). Enhanced periostin and decreased sclerostin expressions upon mechanical loading can activate Wnt/ 3-
catenin signaling through LRP5/6. (-catenin then promotes gene transcription in the targeted cell, such as osteoblasts,
which results in bone formation.
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Subchondral trabeculae are generally well-aligned with the direction of principal
compressive stress, suggesting adaptation to loading conditions [26,27]. Periostin, a matri-
cellular protein produced by osteocytes and osteoblasts, may participate in the regulation
of bone formation and resorption associated with sclerostin. Increased periostin expression
was observed upon mechanical stimulation, which was followed by a decreased sclerostin
expression (Figure 1c) [10,33]. Periostin expression was enhanced in OA in subchondral
bone, synovial fluid, and cartilage [34-36]. It was thought to exacerbate OA by promot-
ing the expressions of pro-inflammatory cytokines, such as interleukin (IL)-6 and -8, and
matrix metalloproteinase (MMP) production, such as through nuclear factor kappa B
(NF«B) signaling [35]. High periostin level was linked with decreased bone surface/bone
volume ratio, increased trabecular number, low structural model index (SMI), and high stiff-
ness [10,11]. Such changes echoed the findings in OA, specifically the drop in bone surface
area, the elevated number of trabeculae bones and their plate-like microarchitecture, as well
as the stiffening of subchondral bones [26,27]. Plate-like trabecular bones were positively
correlated with OA severity [37] and were generally able to sustain higher mechanical
stress [38]. Meanwhile, stiffening of subchondral bone could cause ineffective load transfer
from cartilage to bone. This was proposed as a possible source of cartilage damage and
might explain the exacerbation of OA under excessive loading [39]. Thus, periostin might
also induce cartilage degeneration by disturbing the underlying subchondral bone through
sclerostin-Wnt signaling [11,40]. Interestingly, other characteristics of osteoarthritic bones,
such as decreased trabeculae connectivity and BMD, were identified in periostin-deficient
models [10,11]. Likewise, inhibition of sclerosing activities through antibodies resulted
in higher connectivity density and BMD, which appeared to contradict the findings in
OA [41,42]. Nevertheless, it should be noted that hyper-mineralization of the subchon-
dral bone was also observed in early-stage OA [43]. Therefore, periostin and sclerostin
might first affect bone mineralization in early-stage OA, while impaired mineralization in
end-stage OA could relate to cellular dysfunction. Other signaling pathways might also
be responsible for these sclerotic changes [44], such as transforming growth factor-beta
(TGF-p) signaling [45], whose inhibition increased connectivity density and attenuated
OA, DMP-1, whose deletion in cartilage led to an osteoarthritic phenotype [9,46].

Subchondral bone marrow lesions (BMLs) have been characterized by sclerotic bones
with less mineralization [3] and are believed to predict the progression of OA [47-50]. Our
data also confirmed that the inorganic content of bone plugs from knee OA specimens was
significantly lower (Figure 2a,b). We have also observed osteoid formation near trabeculae
or in the marrow space of OA bone (Figure 3g,i), which were compatible with that of BMLs.
Aberrant mineralization is likely associated with DMP-1. DMP-1 is responsible for the min-
eralization of collagen content, as it is critical for mineral nucleation [51]. Decreased DMP-1
expression and disrupted mineralization of the extracellular matrix (ECM) is accompanied
by the activation of Wnt/ 3-catenin signaling, along with sclerostin deficiency [52]. Altered
DMP-1 signaling might explain why OA bone exhibited higher mass yet with decreased
structural connectivity and reduced mineral density. However, DMP-1 expression by osteo-
cytes was higher in human OA samples [28]. Meanwhile, mechanical loading appeared
to upregulate DMP-1 expression by osteocytes in both bone formation and resorption
sites, while osteoblasts expressed less DMP-1 in the early stage of induction [53]. Hence,
decreased DMP-1 expression in osteoblasts was proposed as a possible cause of low BMD
in OA. This was supported by the results of our research, which showed the formation
of osteoid-like tissues in marrow space together with the clustering of bone cells in OA
(Figure 3i). Low BMD and poor connectivity were associated with decreased strength.
Despite being plate-like and well-aligned, osteoarthritic bones were also weaker than
normal bones with similar morphology [54,55]. Therefore, although the initial attempt
was to increase BMD in response to mechanical loading, bone remodeling in OA might
eventually render the subchondral bone mechanically inferior rather than superior.
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Figure 2. The representative micro-CT images show the microstructure of trabecular bone in the medial plateau of healthy
(a) and osteoarthritic (OA) knees (b). The color-coded images of trabecular bone show the distribution of bone mineral
density (BMD). The red-labeled trabecular bone represented high BMD. Bone mineralization is regulated by sclerostin,
dentin matrix protein 1 (DMP-1), matrix extracellular phosphoglycoprotein (MEPE), and phosphate-regulating neutral
endopeptidase (PHEX) (c). Osteoblast-derived DMP-1 is critical for the mineralization of collagen fibers, while sclerostin can
regulate MEPE and PHEX to control further mineralization of hydroxyapatite (HA) crystals. Mechanical loading regulates
DMP-1 expressions by osteoblasts and osteocytes differently. Abnormally shaped HA crystals can induce osteogenic
differentiation of mesenchymal stem cells (MSCs) or trigger osteoblast dysfunction.
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Figure 3. The representative uCT (a—f) and histological images (g-1) show the comparisons between hip osteoarthritis (OA)
(a,c,e,gik) and fracture (b,d,f/h,j,1). As shown by uCT images, osteoid formation (blue arrow) was found in apposition
to pre-existing trabeculae for both hip OA (c) and fracture (d). The newly formed bone was associated spatially with
bone resorption pits (red arrow) in hip fracture, yet it was not the case for hip OA. It was revealed by histology that bone

cell clusters (black arrow) were present close to osteoid formation (block arrow) either in trabecular bone (g) or marrow
space (i). In contrast, bone cell clusters were not found in hip fractures (h,j). The two (k1) and three (e,f) dimensional
morphology of osteocytes lacunae both revealed that the number of lacunae from hip OA bone was higher than that of hip

fracture. In addition, OA osteocytes lacunae were well aligned and more plate-like as compared with hip fracture ones.

(g-j: Hematoxylin and eosin staining with a magnification of 20x).

Crosstalk with Cartilage Degeneration

Disturbances of the subchondral bone have been closely associated with cartilage
degeneration. For example, the size of the tibial subchondral bone might predict the
overlying articular cartilage defect and OA severity [56]. Insulin-like growth factor 1 (Igf1)
deficiency was linked with decreased bone formation, increased osteoid formation, and
delayed and diminished mineral deposition in the subchondral bone (Figure 4) [57]. In OA,
Igfl expression by osteoblasts was upregulated [19,36]. Similarly, the mechanical strain was
believed to increase Igf1 levels in osteocytes [58,59]. Hence, Igfl was thought to facilitate the
drop in sclerostin level upon mechanical loading and thus modulate bone remodeling [60].
In contrast, Igfl expression by osteoarthritic chondrocytes was reduced [61]. This might be
attributed to the presence of stressors, such as reactive oxygen species (ROS) [62], a well-
identified cause of cartilage damage [63]. The addition of Igf1 to articular cartilage could
increase matrix biosynthesis or enhance the stimulating effects of dynamic mechanical
loading [64]. Likewise, matrix degradation in response to static loading could also be
rescued by Igfl, which might suggest a role of Igfl in maintaining the balance of anabolism
and catabolism [65]. Cartilage degeneration is thus likely linked with both decreased
anabolic activities partly due to Igfl deficiency and increased catabolism associated with
elevated expressions of degrative enzymes, such as MMPs [28].
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Figure 4. Insulin-like growth factor 1 (Igfl) signaling in the crosstalk between osteocytes and chondrocytes. Mechanical

loading regulates Igfl expressions by osteocytes and chondrocytes differently. Inhibition of miR-29b-3p production by
osteocytes can increase Igfl expression. Meanwhile, elevated reactive oxygen species (ROS) production by chondrocytes can
suppress Igfl expression. Igfl also regulates sclerostin expression, chondrocyte hypertrophy, and osteogenic differentiation
of MSCs through the PI3K/AKT/mTOR pathway.

Bone remodeling mediated by Wnt signaling is believed to stiffen trabecular bones
and alter their micro-architecture. For instance, in spontaneous OA models of guinea pigs,
changes from rod-like to plate-like morphology were thought to precede or occur simulta-
neously with cartilage degeneration [66,67]. Past experiments also observed subchondral
bone remodeling beneath intact cartilage in human OA, but only significant when cartilage
tissues were damaged [26,66]. Ineffective load transfer due to structural disturbances of
the subchondral bone might increase the strain endured by cartilage. High mechanical
strain could then increase ROS production by chondrocytes, presumably because of mito-
chondrial deformation (Figure 4) [68,69]. Therefore, differential expressions of Igf1 in bone
and cartilage, for instance, could be involved in the progression of OA. Similarly, while
TGEF-f could promote chondrocyte proliferation and exhibited protective effects in articular
cartilage, its elevation in the subchondral bone was associated with cartilage loss and
OA development [45]. The crosstalk between subchondral bone remodeling and cartilage
degeneration was also believed to be regulated by MMP-13, which was less expressed
by osteoarthritic osteocytes. Insufficient expression of MMP-13 was assumed to increase
trabecular bone volume and cause cartilage degeneration independent of other stimuli. A
reduction in osteocyte-derived MMP-13 was associated with disrupted lacuno-canalicular
networks (LCN), which likely affected mechano-transduction and bone remodeling in
early-stage OA. Meanwhile, expressions of proteins responsible for metabolism or ma-
trix degradation, such as MMP-13 expression by chondrocytes, were also induced by
insufficient osteocytic MMP-13 [43]. Hence, bone remodeling might start before cartilage
degeneration and contribute to the aberrant metabolism in cartilage. With accumulated
micro-damage, such as when an excessive load was applied or when cartilage was lost [66],
mechanically inferior bones would be formed predominantly, and OA exacerbated. The
above findings suggested that osteocytes could regulate trabecular bone morphology, bone
mineralization, and ultimately bone and cartilage homeostasis in response to mechanical
loading. Hence, the interplay between cartilage and subchondral bone is worth further
investigation and should be extended to cellular and protein levels.
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3. Osteocyte Dysfunction

Bone remodeling is a complex but precisely coordinated biological process involving
osteoblasts, osteoclasts, and mesenchymal stem cells (MSCs), all of which are likely medi-
ated by osteocytes [17]. Osteoclasts dissolve the minerals and collagens of the bone matrix;
MSCs are recruited to bone formation sites and then differentiate into osteoblasts for colla-
gen deposition and mineralization. Osteocytes are the major source of sclerostin, DMP-1,
and matrix extracellular phosphoglycoprotein (MEPE) in bone [70], which designates its
role in osteogenesis, mechano-transduction [22,71,72], and bone mineralization [9,73,74].
The mechano-sensitivity of osteocytes is facilitated by integrins, cytoskeleton, stretch-
activated ion channels, gap junctions, and the LCN [21,75]. Integrins and focal adhesions
are essential for mediating the response of gap junctions to mechanical stimulation and for
the activation of Wnt signaling and other pathways in osteocytes. It has been proposed
that mechanical deformations can induce ionic fluxes in LCN. The ionic currents can both
amplify tissue strains and produce shear stress to activate osteocytes [13,21]. Osteocytes
can sense the strain on the cytoskeleton. Upon stimulation, they will secrete signaling
molecules to regulate osteoclastic and osteoblastic activities and modulate the recruitment
of mesenchymal progenitors, which eventually results in bone remodeling. Disruption
of microtubules resulted in a blunted decrease in sclerostin expression upon mechanical
loading [76]. Similarly, Kindlin-2, a protein responsible for cytoskeleton organization and
the formation of focal adhesions, was essential to the suppression of sclerostin expression
through inhibiting Smad2/3 signaling [77]. These findings again confirm the role of the
cytoskeleton in mechanical sensing. In OA, osteocyte dysfunction is characterized by
altered lacuna morphology and protein expressions, both of which may be the response to
excessive mechanical loading. The morphological and functional aberrations then cause
dysregulation of bone cells, disruption of bone and cartilage homeostasis, and OA exacer-
bation [21,78,79]. Hence, the cellular and molecular mechanisms behind such anomalies
should be elucidated.

3.1. Osteocyte Morphology

Osteocytes can actively change their microenvironment, notably the ECM and the
lacunae where they reside. An altered extracellular environment can facilitate differential
responses to mechanical stress. The morphology and alignment of osteocyte lacunae are as-
sumed to be correlated with mechano-transduction. Notably, changes in the LCN network
may affect the sensitivity of individual osteocytes to matrix deformation [21]. A decrease
in LCN area seen in early-stage OA, for instance, might suggest that MMP-13 deficiency
in osteocytes contributed to the reduced mechano-sensitivity of lacunae (Figure 5a) [43].
The uCT images obtained by the authors’ team revealed altered morphology of osteocyte
lacunae in OA, where their three-dimensional structure appeared more plate-like rather
than rod-like (Figure 3e). Plate-like architecture indicated fragility and reduced sensitivity
to stress, while this change was perhaps due to rearrangement of the cytoskeleton in the
embedded osteocyte [21]. E11/gp38, a protein expressed during the rearrangement of
the cytoskeleton, such in osteoblast-osteocyte differentiation [80], was enriched in OA,
especially in the sclerotic lesions [81]. The elongation of osteocytic dendrites in response to
mechanical strain was believed to be regulated by E11 [80]. Changes in the canaliculi then
followed, which altered the LCN network. Osteocyte lacunae in OA also appeared small,
concentrated, and aligned to the principal stress direction [82]. Osteocytes embedded
in large lacunae were thought to have higher mechano-sensitivity, as they responded to
mechanical loading with a more prominent drop in sclerostin production and significantly
higher (3-catenin expression [83]. Decreased DMP-1 expression was also associated with
large lacunae and a reduced number of canaliculi [84]. As small lacunae again indicated
decreased mechano-sensitivity, local bone remodeling in load-bearing regions might favor
osteocyte lacunae with lower mechano-sensitivity in adaptation to repetitive or excessive
loading [85].
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Figure 5. Regulation of osteocyte morphology (a) and alignment (b). Osteocyte-derived DMP-1 and E11/gp38 can alter
the lacuno-canalicular networks (LCN) and hence mechano-transduction. In OA, matrix metalloproteinase (MMP)-13
production by osteocytes is decreased. This may contribute to increased bone formation in subchondral bone and elevated
MMP-13 expression by chondrocytes (a). Mechanical loading can determine the alignment of collagen fibers, possibly by
degrading the unstrained fibers. Collagen alignment, in turn, affects the alignment of osteocyte lacunae through cytoskeleton
and integrins. Sclerostin expression is more prominent in unaligned osteocytes. Micro-damage may induce dysfunction,
apoptosis, or necrosis of the unaligned osteocytes (b).

Like the trabecular bones, osteocytes are also well-aligned in OA, likely in response
to the cumulative mechanical loading. Osteocyte lacunae align themselves with collagen
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fibers, which are produced by the ancestral osteoblast [13]. Contractions of actin filaments
of the cytoskeleton are believed to introduce intracellular tension in osteocytes. This allows
the cell to sense the stress exerted by the extracellular collagen matrix [86]. Collagen
orientation is in turn controlled by the dominant loading orientation, either longitudinally
with tensile stress or transversely with compression [87-89]. Degradation of unloaded
collagen fibers by MMPs and preservation of loaded fibers are proposed to mediate colla-
gen alignment (Figure 5b) [90,91]. Meanwhile, fibronectin and integrins are involved in
collagen synthesis along with other molecules, which may suggest interactions between
cells and ECM to regulate alignment [92]. Sclerostin inhibition was also correlated with
high collagen alignment [93], consistent with findings suggesting that periostin was re-
sponsible for aligning osteocyte lacunae. However, periostin had no significant effect on
lacunae volume [94], which could suggest that it was not the cause of sclerostin-induced
modifications of the LCN network. It should also be noted that in contrast to the highly
aligned osteocyte lacunae and low BMD observed in end-stage OA, collagen fibers were
disorganized, while the subchondral bone was hyper-mineralized in early-stage OA [43].
This could indicate that mineral deposition, rather than the realignment of osteocytes,
was the initial response to excessive loading and that there existed dissimilar responses to
mechanical loading throughout OA progression.

Another cause of sclerostin deficiency and well-aligned osteocyte lacunae may be
osteocyte death. Osteocyte lacunae respond to load from perpendicular and parallel direc-
tions differently. In the case of tensile load, osteocytes are more susceptible to microdamage
when aligned perpendicularly to the loading direction, while the opposite is true for com-
pression [88,89]. Thus, the pre-existing osteocytes not aligned properly with the principal
stress direction are subject to microfracture. Microfractures are believed to induce ionic flux
that can activate osteocytes [13] or cause osteocyte apoptosis in the damaged region [17].
Selective osteocyte apoptosis may hence indicate that bone remodeling in accordance with
the loading orientation will be preferred. Induced apoptotic osteocytes have shown abnor-
mal gene expression resembling that seen in OA [95], which supports the role of osteocyte
apoptosis in overload-induced OA progression. Therefore, in addition to stress-induced
sclerostin inhibition, osteocyte apoptosis may also contribute to sclerostin deficiency, which
in turn affects osteoblast differentiation and consequently collagen production [96,97].
Recent studies have also revealed similarities between OA and osteonecrosis, especially
in the spatial distribution of osteocytes [98]. Increased osteocyte apoptosis was detected
with TUNEL staining [28], while the proportion of osteocytes stained positive for activated
Caspase-3 was similar to that of normal bones [99]. This might suggest that necrosis, in
addition to apoptosis, was responsible for osteocyte death in OA [100]. Past findings also
supported that microfracture could induce osteocyte necrosis [101] and contribute to bone
remodeling. Upon damage, osteocytes might release damage-associated molecular patterns
(DAMPs), which then activated osteoclasts through Mincle, a DAMP sensor. In this way,
osteoclasts could sense osteocyte necrosis and initiate bone resorption independent of
the sclerostin-RANKL pathway [102]. Hence, osteocyte death induced by overload or
microfracture might explain the thinning of the subchondral bone in early-stage OA and
the uncoupled osteoblastic and osteoclastic activities [8].

3.2. Regulation of Osteoblasts

One of the major functions of osteocytes is acting as the key regulator of osteoblast
differentiation. Through the secretion of sclerostin, osteocytes modulate osteoblastic activi-
ties and maintain bone homeostasis and integrity [96,97]. Sclerostin can inhibit LRP5/6,
the activators of Wnt/ 3-catenin signaling for mechano-transduction (Figure 1c) [103,104].
The percentage of sclerostin-positive osteocytes is significantly lower in OA [105], whereas
the fraction of osteocalcin-positive cells is higher, indicating increased osteoblastic activi-
ties [106]. While the number of osteocyte lacunae increases upon mechanical loading, the
small individual lacuna size and the low level of sclerostin secretion both indicate the status
of immature osteocytes [13,99]. Hence, decreased sclerostin expression in early-stage OA
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may arise from high mechano-sensitivity of osteocytes and osteocyte death, while the erro-
neous regulation of osteoblast differentiation may contribute to the low level of sclerostin
at end-stage OA. Sclerostin deficiency is believed to activate Wnt signaling pathways and
thus increase subchondral bone formation, eventually aggravating OA [13,25]. Mature os-
teocytes secret sclerostin to negatively regulate the differentiation of osteoblasts lineage and
then terminate the cycle of bone remodeling [17,22-24]. Immature osteocytes with reduced
sclerostin expression in OA would inhibit the negative feedback to MSCs, which were
recruited and committed to osteoblast differentiation and bone formation [107]. This was
supported by the significantly large number of osteoblasts and osteocytes in osteoarthritic
subchondral bone, and by the presence of Runx-2-positive or osterix-positive bone cell
clusters in marrow space or adjacent to trabeculae. Osteocalcin, Runx-2, or osterix-positive
cells from the subchondral bone were also seen to cluster in the load-bearing regions of OA
joints. This suggested upregulated activities of both osteoblasts and pre-osteoblasts [108],
possibly in response to the increased demand for bone formation due to excessive mechani-
cal loading and osteocyte death. Igf1 is believed to be involved in osteoblast differentiation
mediated by miR-29b-3p (Figure 4). Its expression could be reduced by miR-29b-3p, whose
production by osteocytes is downregulated upon mechanical loading. Therefore, increased
osteoblast differentiation is closely linked with altered secretion of signaling molecules by
osteocytes [109].

Osteoblasts and the matrix they deposit can determine the initial size and shape of
the descendant osteocyte lacunae [110,111]. Notably, osteocytes derived from dynamic
osteogenesis (DO), where migrating osteoblasts differentiate into osteocytes in apposition
to pre-existing trabeculae, are smaller and ellipsoidal [13,112]. As DO occurs commonly
in response to mechanical deformation and produces osteocytes aligned with the princi-
pal loading direction [113], one may assume that the direct recruitment of osteoblasts, in
addition to mesenchymal progenitors, is responsible for subchondral bone remodeling
in OA. Hence, the abundance of immature osteocytes in OA can also arise from a prob-
lematic transformation from the recruited osteoblasts to osteocytes [71]. Cytoskeleton and
the distribution of actin filaments and microtubules are believed to affect the differenti-
ation from osteoblasts to osteocytes [114]. Cytoskeletal rearrangement normally allows
osteocytes to adopt different shapes and become more sensitive to mechanical stress and
strain. Compared with osteoblasts, osteocytes exhibit decreased stiffness and are more
dependent on actin filaments instead of microtubules, though both are critical for mechano-
transduction [21,75]. Increased expressions of cytoskeletal proteins in osteocytes were
induced by shear stress, along with elevated integrin, E11/gp38, and Runx-2 levels [115].
Hence, cytoskeletal arrangement and thus osteoblast differentiation may be disrupted by
an abnormal level of stress in OA (Figure 6a). Meanwhile, osteocyte dysfunction induced
by advanced glycation end products (AGEs) showed increased production of sclerostin
and RANKL [95]. This process was mediated by FOXO1, a regulator of osteoblast dif-
ferentiation. FOXO1 can enhance Runx-2 activities [116], while Runx-2 can upregulate
sclerostin level [117], inhibit osteoblast-osteocyte differentiation, but promote osteoblast
differentiation [118]. Hence, osteocyte dysfunction is linked with erroneous osteoblast
differentiation in both mechanically and chemically induced OA. DMP-1 is also considered
essential in both osteoblast differentiation and the transformation from osteoblasts to os-
teocytes [84]. Its release by osteoblasts into the ECM is critical to bone mineralization and
osteoblast differentiation [51]. Hence, DMP-1 deficiency in osteoblasts upon mechanical
loading [53] may explain the arrested differentiation, though it remains unelucidated how
the osteocyte-derived DMP-1 may affect this process.
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Figure 6. Osteoblast differentiation and osteoblast-osteocyte transformation (a) and the regulation by TGE-f3 signaling (b).
Mechanical loading can promote osteogenic differentiation of MSCs. This is regulated by sclerostin and Wnt signaling and
likely involves Runx-2 expression. Rearrangement of the cytoskeleton and DMP-1 are both believed to regulate osteoblast
to osteocyte transformation (a). Osteoblast differentiation can also be regulated by TGF-f3 signaling and phosphorylation of
Smad2/3. Mechanical loading can suppress Smad2/3 expression or their phosphorylation, which can lead to sclerostin
deficiency and impact osteoblast differentiation (b). Chondrocyte hypertrophy is believed to be regulated by factors
including Runx-2, BMP-2, TGF-$3, and sclerostin, which is possibly enhanced by mechanical loading. Hypertrophic
chondrocytes are speculated to possess the potential to trans-differentiate into osteoblasts.

In addition to aberrant protein and RNA expressions, anomalies of the content in the
ECM may be equally crucial to the pathophysiology of OA. For instance, morphological
changes of bone mineral particles and disorganization of collagen fibers are likely involved
in osteoblast and osteocyte dysfunction [119]. Hydroxyapatite (HA) is the major type
of bone mineral. HA crystals are formed by phosphate and calcium ions, synthesized
by osteoblasts and chondrocytes, and regulated by osteocalcin [120]. Osteocytes are also
believed to be responsible for bone mineral control through periosteocytic osteolysis, which
can be more prominent in pathological conditions [111]. Osteocyte-derived sclerostin can
modulate osteoblast-osteocyte differentiation through enhancing phosphorylated MEPE
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or suppressing phosphate-regulating neutral endopeptidase (PHEX) expression. Cleaved
phosphorylated MEPE can bind to HA crystals and halt mineralization, while PHEX can
inhibit this process and promote mineralization [121]. Hence, sclerostin deficiency can
also affect HA crystals, leading to increased mineralization. Meanwhile, decreased DMP-1
expression associated with Wnt signaling will likely impact the formation of HA crystals,
as DMP-1 is essential for the mineralization of collagen [52]. Examinations of HA crystals
by our team suggested that bone mineral particles could directly contribute to OA develop-
ment. In OA bone, HA crystals were predominantly in a cigarette-like shape, while those
extracted from the control group appeared bean-like (Figure 7). Abnormal collagen and
mineral production might reflect osteoblastic dysfunction, indicate erroneous osteoblast
differentiation, and directly or indirectly correlate with osteocyte dysfunction [6,21,80].
When mixed with MG-63 mature osteoblasts, HA nanoparticles derived from OA bone
showed a significant inhibitory effect on proliferation [122] and alkaline phosphatase
(ALP) activities. Therefore, malformed HA nanoparticles in OA bone might further impair
mineral deposition and disrupt matrix maturation by interfering with osteoblastic and
pre-osteoblastic activities [123]. Aberrant mineralization could thus exacerbate osteocyte
dysfunction and eventually result in the undermined strength of OA trabecular bone.
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Figure 7. The representative SEM images show the differentially shaped HA nanoparticles of the trabecular bone from

donors with (a) knee OA or (b) osteoporosis at different magnifications. In osteoporosis patients, HA crystals present with a

bean-like shape. In contrast, HA nanoparticles from OA patients presented with a cigarette-like shape.

3.3. Regulation of Mesenchymal Progenitors

The recruitment of mesenchymal progenitor cells in joint tissues has long been be-
lieved to be involved in OA progression. It was reported that mesenchymal progenitor
cells were present at the destruction site of the osteoarthritic cartilage and populated
in the superficial layer of the articular cartilage [124,125]. They could also be isolated
from the synovium and synovial fluids in OA joints [126,127]. Osteocytes regulate bone-
marrow-derived cells through sclerostin, as altered sclerostin expression was found to
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affect adipogenesis and osteogenesis [79]. TGF-f signaling is associated with the increased
number of MSCs in the bone marrow. Enhanced osterix expression in induced OA is re-
lated to the phosphorylation of Smad2/3 through TGF-f signaling (Figure 6b) [45]. Osterix
normally regulates osteoblast differentiation and promotes sclerostin production [117].
However, increased osterix expression, but not sclerostin expression, has been observed
in sclerotic bones. This might be explained by the suppression of TGF-3 signaling upon
mechanical loading [128]. Suppressed TGF-f3 signaling could have inhibited the phospho-
rylation of Smad2/3, decreased sclerostin deficiency, and activated Wnt signaling [129].
MSCs recruitment and osteoblast differentiation were hence enhanced, leading to increased
osterix expression by osteoblasts and MSCs, but could not rescue sclerostin deficiency.
Osteoblastic differentiation of MSCs is also mediated by Igf1 through the activation of the
PI3K/AKT/mTOR pathway [130]. Increased Igfl production in induced OA models [36]
might induce osteogenic differentiation of MSCs and eventually facilitate the maturation of
osteoblasts. Osteocytes at the bone formation sites expressed immature markers like E11 in
OA samples [81], indicating incomplete differentiation. These findings further suggested
that MSCs acted as a reservoir of osteoblasts and were regulated by the newly synthesized
immature osteocytes. Hence, microfracture of the subchondral bone by mechanical loading
could induce osteocyte death, causing compromised sclerostin expression. Abnormal pro-
duction of signaling molecules then activated and recruited marrow or periosteum-derived
progenitor cells to the boundary of subchondral bone and articular cartilage for tissue
repair [131].

It has been well documented that the content of the ECM can either induce or inhibit
bone formation. For example, the size of bone matrix particles and the structure of collagen
fibrils were found to affect the lineage commitment of MSCs [132]. Meanwhile, the shape,
crystallinity, surface charge, solubility, and mechanical properties of HA nanoparticles
could also influence osteoblastic activities and the osteogenic potential of MSCs [133-137].
It was theorized that MSCs were recruited to osteoclast-mediated bone resorption pits
and contacted with the debris after resorption. HA nanoparticles were postulated to be
one of the major components of the debris. Differentially shaped HA nanoparticles were
suggested to provide dissimilar geometric cues and determine the fate of osteoblasts and
MSCs. This was supported by findings suggesting that cigarette-like HA nanoparticles
in OA bones could promote cytoskeletal changes of human MSCs and enhance their
osteogenic potentials [122]. As there were no significant differences between the HA
nanoparticles in healthy and OA bone except for their shape, it is possible that the physical
property of HA, rather than the chemical property, is deterministic for controlling the fate
of MSCs in bone remodeling. Hence, osteocyte dysfunction may also indirectly promote
osteogenic differentiation of MSCs through inducing aberrant mineralization by osteoblasts.

In summary, altered sclerostin expression may cause osteoblast dysfunction and
consequently abnormal mineral production, which can directly or indirectly facilitate
osteogenic differentiation of MSCs. It was thus conceptualized that the accumulated
microdamage to the subchondral bone by mechanical overload would promote tissue
repair, and eventually, bone sclerosis, by which bone turnover was enhanced and resulted
in disease deterioration [138]. The increased MSCs recruitment and osteoblastic activities
appear to suggest an adaptation to compensate for osteocyte dysfunction and death upon
mechanical loading, though this may, in fact, exacerbate the anomalies in tissue morphology
and protein production as mature and functional osteocytes are depleted.

3.4. Regulation of Cartilage Tissues

Recently, chondrocytes were proposed to be another source of osteoblasts in addi-
tion to MSCs, especially since chondrocytes in OA and MSCs appeared to share the fate
of hypertrophic differentiation followed by ossification [139-141]. Runx-2 and osterix,
the regulators of osteoblast differentiation, were assumed to be involved in the possible
trans-differentiation from chondrocytes to osteoblasts. Runx-2 could induce chondrocyte
hypertrophy, while osterix was expressed by hypertrophic chondrocytes [118,140]. Hy-
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pertrophic chondrocytes also express DMP-1, suggesting commitments to the osteogenic
lineage and possibly the status of pre-osteoblasts [9,142]. Wnt/{3-catenin signaling en-
hances Runx-2 production and promotes the expression of type X collagen, a hypertrophic
marker [143]. Activation of Wnt signaling can be regulated by either TGE-{3, BMP-2, with
BMP-2 promoting and TGF-f3 inhibiting chondrocyte hypertrophy (Figure 6a). Previous
studies reported that sclerostin was found in chondrocytes of calcified cartilage tissues in
normal joints and non-calcified cartilage in OA [25,144]. Sclerostin was hence speculated
to be secreted either by chondrocytes themselves or by osteocytes in the subchondral
bone and then entered cartilage tissues [145]. Therefore, osteocytes might also function
as a regulator of chondrocyte hypertrophy and even trans-differentiation, which could be
another possible reason why cell cluster was found at deep and calcified cartilage [28]. It is
believed that sclerostin could also inhibit the Wnt/ 3-catenin signaling pathway and thus
downregulate Runx-2, type X collagen, and MMP expressions in cartilage tissue [144,146].
Thus, decreased sclerostin expression might contribute to increased chondrocyte hypertro-
phy and cartilage degeneration in OA. Notably, sclerostin expression has been observed in
cartilage to peak at early-stage chondrogenic differentiation but was decreased at late-stage
chondrogenic differentiation [144]. This was echoed by the time-course variation of scle-
rostin level in both calcified cartilage and subchondral bone seen in induced murine OA
models [25]. Differential regulations of sclerostin expressions might explain the increase in
chondrocyte sclerostin level observed in mid-stage but not end-stage human OA and could
suggest that osteocyte dysfunction preceded or occurred simultaneously with chondrocyte
hypertrophy, causing increasingly severe disturbances to the subchondral bone and car-
tilage as OA progressed [145]. Hence, the disrupted negative feedback to chondrocytes
due to a reduction in sclerostin level may contribute to or at least aggravate chondrocyte
hypertrophy, though whether trans-differentiation from chondrocytes to osteoblasts and
OA progression are mediated by osteocytes and sclerostin requires further investigation.

3.5. Regulation of Osteoclasts

Osterix-positive pre-osteoblasts are often spatially disassociated with TRAP-positive
osteoclasts in OA bone remodeling, which might explain why bone formation in OA is
not coupled with bone resorption pits [28]. Upregulation of osteoclastic activities in OA is
believed to be controlled by osteocytes through sclerostin and the OPG/RANKL/RANK
system (Figure 8) [13]. This was supported by the elevation in RANKL expression in
induced murine OA models [95]. Osteocytes are the major source of RANKL in bone
and are responsible for osteoclastogenesis and bone resorption [147]. Osteocyte-derived
sclerostin can promote osteoclastogenesis, which is enhanced by RANKL and suppressed
by OPG [148]. The PHEX/MEPE/ASARM-PO4 pathway partially regulated by sclerostin
was also found to modulate RANKL/OPG expressions. ASARM-PO4, a phosphorylated
peptide derived from MEPE, could inhibit RANKL expression but upregulate OPG, while
PHEX mostly promoted RANKL expression [149]. Hence, sclerostin deficiency might cause
reduced ASARM-PO4 production and increased PHEX signaling [121], thus upregulating
the RANKL/OPG ratio. However, a high RANKL/OPG ratio did not guarantee osteoclas-
togenesis, which might suggest that PHEX/MEPE/ASARM-PO4 signaling could regulate
osteoclastic activities through other pathways. For pathological conditions associated with
aberrant bone mineralization and protein production, such as hypophosphatemic rickets,
the addition of exogenous PHEX might also contribute to higher OPG levels [149]. This
might suggest that osteoblastic and osteoclastic activities were also affected bone mineral-
ization. Inflammatory factors commonly found in arthritis could also increase RANKL and
decrease OPG expressions, thus upregulating the RANKL/OPG ratio. This effect could be
attenuated by mechanical loading [150], which might suggest that osteoclastic activities
were favored by inflammation but suppressed by mechanical stress. Similarly, mechanical
loading itself could cause a reduction in osteoclastogenesis through increasing MEPE
expression [151]. Interestingly, both RANKL and OPG transcriptions were upregulated
by mechanical loading, though the RANKL/OPG ratio was decreased. The release of
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OPG by osteocytes was upregulated soon after mechanical loading, while the release of
RANKL was delayed [152], which could suggest a return to homeostasis or regulation by
other pathways. Fatigue loading associated with microdamage and increased osteocyte
apoptosis, however, appeared to promote osteoclastogenesis, especially near the site of
damage [153]. Hence, damage and osteocyte death are likely critical to induce osteoclas-
togenesis. In the absence of cell and tissue injury, mechanical loading may preferentially
enhance osteoblastic activities.

Micro-damage

o \\

Sclerostin
. . Death / . / G

ASARM PO4
Osteocyte

Qleavage
Osteoclast DAMPs
Mechanical /

/ loading

Figure 8. Regulation of osteoclasts. Osteoclastogenesis is regulated through the
OPG/RANKL/RANK system and sometimes by damage-associated molecular patterns (DAMPs).
The RANKL/OPG ratio can be regulated by PHEX, MEPE, and sclerostin. Sclerostin deficiency may
suppress MEPE but enhance PHEX expressions and increase the RANKL/OPG ratio. Osteoclastic
activities are associated with mechanical loading and osteocyte death, with osteoclasts more likely to
be recruited to the site of micro-damage.

Past studies reported that MSCs and immature osteocytes also expressed OPG, the
RANKL inhibitor, while RANKL expression was not affected [81]. As RANKL expression
is strongly correlated with osteocyte death, one may assume that osteocyte dysfunction
or apoptosis is required to trigger RANKL expression [154], while OPG expression is pre-
dominant in osteoblasts and early osteocytes. Thus, temporally and spatially differential
regulation of osteoclastogenesis can be achieved depending on the status of osteocytes [17].
Meanwhile, osteoclastic activities can also be mediated by RANKL-independent pathways,
such as by DAMPs released during osteocyte necrosis [102], which promotes osteoclastic
activities; or by cysteine-rich protein 61 (CYR-61), which inhibits osteoclastogenesis [155].
Localization of living osteocytes in OA suggested that cells were absent from the cores of
the enlarged trabeculae but present in the newly formed bone structure in apposition to
pre-existing dead trabeculae [98]. Thus, osteocyte death in trabecular cores and osteocyte
activities in the surroundings might be correlated with the disassociation between osteoclas-
tic and osteoblastic activities. Likewise, RANKL expressions were generally closer to the
site of damage and apoptotic osteocytes, while OPG-positive cells were farther away [153].
These might also partially explain our findings regarding bone remodeling in hip OA.
Osteoid formation in apposition to pre-existing trabeculae was not accompanied by bone
resorption, while osteoid formation in the control group was closely associated with bone
resorption pits spatially (Figure 3c). Meanwhile, in induced murine OA models, bone
loss was more prominent at early-stage OA, while bone formation became significant at
end-stage OA [156]. Therefore, there appeared to be both spatial and temporal differences
in osteoclastic and osteoblastic activities, with osteoclastic activities seemingly preceding
osteoblastic activities and showing different site preferences. Hence, OA development
may be the result of temporally and spatially differential regulations of osteoblastic and
osteoclastic activities by osteocytes in response to mechanical loading and other stimuli.
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4. Allometry

Allometry, or biological scaling, refers to the process where one organismal trait
varies with another, typically with an emphasis on the correlation between cell size and
mass, shape, growth rate, or metabolic rate [157]. In most mammalian cells, cell size and
growth rates are believed to be controlled by metabolism, where mitochondrial activities
are postulated as the potential sensing mechanism of cell size. Increased cell size is often
accompanied by compromised mitochondrial metabolism and upregulation of cytoskele-
tal genes [158,159], while the optimal cell size is normally of intermediate volume and
yields maximal functionality [160]. Chondrocyte hypertrophy, for instance, is known to
be associated with OA development. Hypertrophic chondrocytes secreted MMP-13 but
expressed fewer cartilage makers, which was linked with increased catabolic activities and
reduced anabolic signaling [63,161]. As free energy was required for protein synthesis,
a preference for catabolism over anabolism might imply compromised metabolic activ-
ities, which was consistent with the observed metabolic inefficiency in other oversized
cells [159,160]. Hence, changes in the protein expression profile of an enlarged chondrocyte
might correlate with its inability to maintain the metabolic efficiency of a healthy cell. It
should also be noted that the variation in metabolism and thus protein synthesis could
be phase-dependent, as three distinct phases were previously identified in chondrocyte
hypertrophy. Only the second phase was characterized by a drop in dry mass density and
presumably low metabolic rates [58]. Meanwhile, the third phase of chondrocyte enlarge-
ment was found to be regulated by Igfl (Figure 4), which was usually secreted by hepatic
cells and bone cells, including osteocytes. Upregulation of Igfl production by osteocytes
was observed in response to mechanical loading, especially in the loaded region [58,59].
As Igfl expression by osteoarthritic chondrocytes themselves were reduced [61], this might
suggest that chondrocyte hypertrophy was regulated through osteocyte-derived Igfl and
that Igfl overexpression by osteocytes could link cartilage degeneration by MMP-13 with
excessive loading.

In addition to chondrocytes, osteocytes could also change the size of their lacunae
even after being embedded into the bone matrix. This might at least partially explain
the morphological and functional changes in osteocytes in response to stimuli [88]. For
example, in avian bones, mechanical loading appeared to induce osteocytes responsible
for sensing compressive stress to grow along the longitudinal axis, though this effect was
modest and did not affect the overall lacuna size. The volume of osteocytes was found
to scale with mass-specific basal metabolic rate, though their correlation was relatively
weak [110]. An abnormally small lacuna size and an increased number of osteocytes were
observed both under excessive mechanical loading and in OA bones [21]. The altered
protein expression patterns, such as sclerostin deficiency, might be associated with aberrant
metabolism, which then disrupted the regulation of bone cells and joint homeostasis.
Meanwhile, the ellipsoidal osteocytes predominantly produced under mechanical loading
might suggest elevated metabolism. Elongated cells are often linked with a higher surface-
to-volume ratio and metabolic rate compared with spherical cells of the same volume, as the
intracellular distances traveled by biomolecules are reduced [160]. Hence, future studies
should investigate whether there exists a link between signaling molecule production,
cellular metabolic rate, and cell size and whether mechanical loading can alter osteocyte
function by changing osteocyte morphology and impacting cell metabolism.

Overall, in addition to increased osteocyte apoptosis upon damage and osteoblast
differentiation for bone repair, mechanical loading may also contribute to osteocyte dysfunc-
tion, chondrocyte hypertrophy, and thus OA development through acting on cell volume
and metabolism directly or indirectly. Future research should also elucidate whether
osteocytes display abnormal metabolic rates under mechanical loading and whether the ob-
served morphological and functional changes can contribute to OA before or independent
of osteocyte death.
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5. Conclusions

In a healthy individual, bone remodeling occurs continuously and actively to maintain
homeostasis, notably of the articular joint [17]. This process is believed to be regulated
by osteocytes, which recruit and activate osteoblasts, osteoclasts, and progenitors with
an osteogenic potential to designated sites for bone formation or absorption. Sclerostin
expressed by osteocytes, bone minerals deposited by osteoblasts, and MMPs are among
the molecules proposed to affect cellular activities and joint integrity [96,97]. A balance of
osteoblastic and osteoclastic activities ensures the mechanical strength and uniform distri-
bution of trabeculae at the tissue level, which enables the joint to withstand compressive
forces. If disrupted, bone pathologies such as OA or OP may manifest. The pathomecha-
nism of OA is involuted and likely involves exogenous and indigenous factors, such as
trauma and age-related oxidative stress [63,162]. In this review, we attempt to provide a
possible mechanism of OA development, with an emphasis on the role of mechanical load-
ing in pathogenesis. At the molecular level, excessive loading can affect protein synthesis,
notably inhibiting sclerostin expression, which may partially explain the observed drop in
sclerostin level in OA [71]. This process interacts with various signaling pathways, possibly
including periostin, DMP-1, and TGF-f3 signaling, and may be associated with aberrant
metabolic activities [29,74,128]. Meanwhile, the low level of sclerostin expression may also
arise from the deaths of pre-existing osteocytes due to microdamage and their replacement
by the newly synthesized immature or dysfunctional osteocytes. Sclerostin deficiency then
activates the Wnt signaling pathways and regulates the OPG/RANKL/RANK system,
which recruits osteoclasts and osteoblasts in a time-and-space-dependent manner [13]. It is
hypothesized that osteoclasts will first absorb the existing bones in early-stage OA, while
osteoblasts will deposit collagens and minerals to align the osteocytes along the principal
loading direction and enhance the osteogenic potential of mesenchymal progenitors in
end-stage OA [98]. Thus, the spatially and temporally uncoupled bone remodeling renders
the trabecular bone mechanically inferior and results in structural disturbances of the
subchondral bone. Abnormal bone microarchitecture may undermine the ability of the
joint to sustain compression and gradually contribute to cartilage degeneration.

In summary, as mechano-sensors, osteocytes display aberrant and altered protein
secretion under excessive mechanical loading, which is believed to link osteocytes with the
pathophysiology of arthritis, including ankylosing spondylitis and osteoarthritis [82,163].
Thus, osteocyte dysfunction and the relevant signaling pathways may serve as a potential
therapeutic target for OA treatment, especially if induced by cumulative or repetitive
loading [18]. However, whether osteocytes and their secretions remain to be the central
regulator and an essential signaling molecule in other means of pathogeneses of OA is not
fully elucidated and should be further investigated in the future.
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