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Stroke patients often use trunk to compensate for impaired upper limb motor function
during upper limb rehabilitation training, which results in a reduced rehabilitation
training effect. Detecting trunk compensations can improve the effect of rehabilitation
training. This study investigates the feasibility of a surface electromyography-based
trunk compensation detection (sEMG-bTCD) method. Five healthy subjects and nine
stroke subjects with cognitive and comprehension skills were recruited to participate
in the experiments. The sEMG signals from nine superficial trunk muscles were
collected during three rehabilitation training tasks (reach-forward-back, reach-side-to-
side, and reach-up-to-down motions) without compensation and with three common
trunk compensations [lean-forward (LF), trunk rotation (TR), and shoulder elevation
(SE)]. Preprocessing like filtering, active segment detection was performed and five time
domain features (root mean square, variance, mean absolute value (MAV), waveform
length, and the fourth order autoregressive model coefficient) were extracted from
the collected sEMG signals. Excellent TCD performance was achieved in healthy
participants by using support vector machine (SVM) classifier (LF: accuracy = 94.0%,
AUC = 0.97, F1 = 0.94; TR: accuracy = 95.8%, AUC = 0.99, F1 = 0.96; SE:
accuracy = 100.0%, AUC = 1.00, F1 = 1.00). By using SVM classifier, TCD performance
in stroke participants was also obtained (LF: accuracy = 74.8%, AUC = 0.90, F1 = 0.73;
TR: accuracy = 67.1%, AUC = 0.85, F1 = 0.71; SE: accuracy = 91.3%, AUC = 0.98,
F1 = 0.90). Compared with the methods based on cameras or inertial sensors, better
detection performance was obtained in both healthy and stroke participants. The results
demonstrated the feasibility of the sEMG-bTCD method, and it helps to prompt the
stroke patients to correct their incorrect posture, thereby improving the effectiveness of
rehabilitation training.

Keywords: trunk compensation detection, surface electromyography, stroke, rehabilitation training, support
vector machine

INTRODUCTION

Stroke is one of the leading causes of disability in the world (Burton et al., 2018), and approximately
80% of stroke patients have accompanying upper limb motor dysfunction (such as muscle
weakness, abnormal posture control, and abnormal limb coordinated exercise). Upper limb
motor dysfunction seriously affects a stroke patient’s daily life and work (Hatem et al., 2016).
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Many clinical practices show that rehabilitation training can
effectively promote the recovery of upper limb motor dysfunction
(Zhang et al., 2015). However, during rehabilitation training,
patients often compensate for the impaired upper limb by
recruiting intact trunk muscles and joints (Cirstea and Levin,
2000). This compensatory motion is called trunk compensation.
According to the different motion characteristics of the trunk,
there are three common trunk compensations: lean-forward (LF),
trunk rotation (TR), and shoulder elevation (SE) (Dolatabadi
et al., 2017). Regardless of the type of compensation, the
trunk compensation reduces the effect of rehabilitation training
and hinders the recovery of upper limb motor dysfunction
(Levin et al., 2009).

To improve the effectiveness of rehabilitation training,
measures should be taken to detect trunk compensations. In early
studies, physical constraints (Michaelsen and Levin, 2004; Pain
et al., 2015; Greisberger et al., 2016) were applied to the stroke
patient’s trunk using straps or special wire harnesses, restraining
the patient’s trunk on the chair without compensation. These
limitations on trunk compensation can improve the arm function
of the patient (Wee et al., 2014). However, rehabilitation training
for patients is repetitive and intensive. Long-term physical
constraints can cause discomfort and anxiety. In addition, once
the rehabilitation training exceeds the patient’s range of motion,
it is highly likely that strain to the patient will result. Therefore,
without the restraint of the trunk, detecting trunk compensations
by detection technology is more suitable and effective for
stroke patients.

At present, wearable inertial sensors (Najafi et al., 2003) or
cameras (Bakhti et al., 2018) are mainly used to detect trunk
compensations. Although wearable inertial sensor systems are
often used to assess and monitor upper limb motor ability
in stroke patients (Zhang et al., 2012; Urbin et al., 2015), a
preliminary study shows that compensation strategies can be
identified by inertial sensors (Salazar et al., 2014). For instance,
Ranganathan et al. (2017) used two wearable inertial sensors to
collect motion data for 20 healthy participants when simulating
trunk compensations. Using the naïve Bayesian classifier for
binary classification (whether there is trunk displacement), the
authors obtained an accuracy of 88.6%. In short, the trunk
compensation detection (TCD) method based on inertial sensors
achieves unsatisfactory detection accuracy (<90%) and lacks
TCD in stroke patients. In addition, in order to reduce the
measurement errors, some actions, such as arm horizontal
abduction, are needed to calibrate the inertial sensors, but it is
difficult for stroke patients to perform these actions. Besides,
the position of the inertial sensors may change during motion
due to the flexibility of human skin causing the reduction of the
effectiveness of data acquisition.

Currently, camera-based detection method has gained wide
popularity (Duff et al., 2010; Subramanian et al., 2013). For
example, Taati et al. (2012) used a depth camera to capture
video data from seven healthy participants simulating LF, TR,
SE, and slouch compensation. Using an improved hidden
Markov support vector machine (HM-SVM) classifier for
multiclassification, the authors achieved an average accuracy
of 85.9% per frame. Subsequently, Zhi et al. (2017) captured

video data of not only simulated LF, TR, and SE compensation
for 10 healthy participants but also actual trunk compensations
for 9 stroke participants with a Kinect v2 camera. Using an
SVM and recurrent neural network (RNN) classifier, the authors
achieved similar classification performance. In the simulated
trunk compensation dataset of healthy participants, the detection
performance of LF compensation was the highest (AUC = 0.98,
F1 = 0.82), followed by TR compensation (AUC = 0.77, F1 = 0.57),
and finally SE compensation (AUC = 0.66, F1 = 0.07). In
contrast, lower detection performance was achieved in the
actual trunk compensation dataset of stroke patients, namely:
LF compensation (AUC = 0.77, F1 = 0.17), TR compensation
(AUC = 0.81, F1 = 0.27), and SE compensation (AUC = 0.27,
F1 = 0.07). We found that the detection performance is not
ideal, especially in the detection of stroke participants’ trunk
compensations. In addition, a camera-based detection system
is limited to indoor environments due to dependence on
illumination. What’s more, a camera-based detection system can
lead to privacy issues, especially in regard to stroke patients.
Because of the shortcomings of the above two methods, a
convenient, environment-independent, and accurate detection
method is needed to detect trunk compensations.

Surface electromyography (sEMG) signal is a bioelectrical
signal containing muscle motion information. Compared
to cameras and inertial sensors, the acquisition of sEMG
signals does not depend on an external environment, such
as illumination, nor does it require calibration. Based on
these advantages, sEMG-based pattern recognition technology
emerged and developed rapidly. Feature extraction and
classification are the most critical technologies in sEMG-based
pattern recognition technology. To date, the time domain,
frequency domain, and time-frequency domain features have
been widely used for the analysis and processing of sEMG signals
(Burhan and Ghazali, 2016; Majid et al., 2018; Phinyomark et al.,
2018). In addition, many classifier algorithms have appeared for
classification, such as SVM, artificial neural networks (ANNs),
and linear discriminant analysis (LDA) (Chowdhury et al., 2013;
Nazmi et al., 2016). Due to a variety of features and classifiers,
the sEMG-based pattern recognition technology has been widely
used for upper limb motion pattern recognition (Lucas et al.,
2008; Yang and Chen, 2016; Lu et al., 2017) and upper limb
continuous motion estimation (Liu et al., 2017; Zhang et al.,
2017). However, it has not yet been used in TCD.

Therefore, in this paper, the sEMG-based TCD (sEMG-
bTCD) method is proposed and its feasibility is verified by
experiments. The experiment was divided into two sessions. First,
five healthy participants were recruited to verify the practical
feasibility of the method, and then nine stroke participants
were recruited to verify the clinical feasibility. Specifically,
we selected nine trunk muscles from the trunk muscles that
control the three trunk compensations and collected sEMG
signals from these muscles. Then, we extracted five time
domain features from the acquired sEMG signals, and performed
the TCD by using SVM classifier, and achieved excellent
detection performance. The rest of this article is structured
as follows. The section “Materials and Methods” introduces
the participants and experimental protocols. The section
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“Trunk Compensation Detection Procedure” provides the TCD
procedure in detail, specifically, an improved active segment
detection method. The section “Results and Discussion” analyzes
the experimental results and discussion. Finally, the section
“Conclusion” summarizes the paper.

MATERIALS AND METHODS

Participants
For this paper, 14 participants were recruited to participate in
the experiment, including five healthy subjects (all male, age
25.7 ± 1.8 years, without upper limb motor dysfunction) and
nine stroke subjects. Ethics approval and consent to participate
(i.e., informed consent) was obtained from all the participants to
complete the protocol approved by the Guangzhou First People’s
Hospital Department of Ethics Committee. All the research was
performed in accordance with the Declaration of Helsinki. Stroke
subjects were screened by a rehabilitation therapist. The inclusion
criteria for stroke subjects included: (a) between the ages of
20 and 80 years; (b) the Brunnstrom Scale above stage II to
have upper limb exercise capacity; and (c) having cognitive and
comprehension skills. Finally, nine stroke patients were recruited
to participate in the experiment, as detailed in Table 1.

Experimental Protocols
Rehabilitation Training Tasks and Trunk
Compensations
Each participant performed three basic rehabilitation training
tasks, including the reach-forward-back (T1), reach-side-to-side
(T2), and reach-up-to-down (T3) motions. The T1 motion refers
to the straight forward and backward movement of an upper
limb (e.g., right hand, left hand symmetrical to right hand) in the
sagittal and transverse plane. The starting point is located on the
central axis of the human body, 20 cm away from the participant
as shown in Figure 1A. The range of motion is the distance
(approximately 24 cm) between the center of the five circular
grooves of the wooden flashboard (34 cm × 28 cm × 2 cm). The
T2 motion means that an upper limb moves in a straight line with
adduction and abduction in the transverse plane. The starting

TABLE 1 | Details of the nine stroke subjects.

Subject Age (years) Time since stroke (months) BS FMA-UE

S1 45–50 17 II 30

S2 50–55 7 II 9

S3 50–55 6 II 15

S4 50–55 11 II 15

S5 70–75 5 III 27

S6 50–55 4 II 26

S7 25–30 14 II 22

S8 65–70 1 IV 38

S9 45–50 25 III 48

BS, Brunnstrom Scale, the stage level from I (no movement) to VI (approximately
normal coordinated movement); FMA-UE, Fugl-Meyer Assessment Upper
Extremity, scores from 0 (no movement) to 66 (normal movement).

point is located on the side of the participant’s body, 20 cm away
from the participant as shown in Figure 1B. The range of motion
is also 24 cm. The T3 motion is a shoulder flexion with a range of
0 to the maximum angle of the participant (<180◦) in the sagittal
plane, as shown in Figure 1C.

The rehabilitation training tasks involve the shoulder and
elbow joints, which contribute to the recovery of the motor
function of these two joints. More importantly, these tasks aim
to elicit three common trunk compensations: LF, TR, and SE. LF
compensation happens when a participant’s hip bending angle
is <90◦, as shown in Figure 2A. TR compensation happens
when a participant rotates his trunk in the transverse plane,
as shown in Figure 2B. SE compensation happens when a
participant raises his unilateral shoulder in the coronal plane,
as shown in Figure 2C. Basic motions (tasks) correspond
to trunk compensations. The participant may experience LF
compensation when performing the T1 motion. The participant
may experience TR compensation when performing the T2
motion. In addition, the participant may experience SE
compensation when performing the T3 motion.

sEMG Acquisition System
The collection of the sEMG signals is strictly in accordance
with the recommended standards (Hermens et al., 1999; Konrad,
2005). Combining some references (Larivière et al., 2000;
Ghofrani et al., 2017; Mueller et al., 2017; Varrecchia et al.,
2018) and the physiology, nine superficial trunk muscles were
selected from the numerous trunk muscles involved in the three

FIGURE 1 | Three rehabilitation training tasks. (A) Reach-forward-back, (B)
reach-side-to-side, and (C) reach-up-to-down.

FIGURE 2 | Three common types of trunk compensation. (A) shoulder
elevation, (B) lean-forward, and (C) trunk rotation.
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trunk compensations. These muscles are the left and right rectus
abdominis (LRA and RRA), the left and right obliquus externus
abdominis (LOEA and ROEA), the left and right thoracic erector
spinae (LTES and RTES), the left and right lumbar erector spinae
(LLES and RLES), and a descending part of the trapezius (DT,
on the side of the upper limb of the motion). The DT muscle
plays a major role in the SE compensation. The LOEA and ROEA
muscles play a key role in the TR compensation, while other
muscles help to control the LF compensation. Then, nine pairs
of surface electrodes were used to record the sEMG signals of the
nine trunk muscles. The surface electrode material was AgCl, and
the distance between the electrodes was 2 cm. The direction of the
electrodes was parallel to the muscle fibers. The electrodes were
placed as shown in Figure 3A. The surface electrodes for the LRA
and RRA were placed 2 cm left and right next to the umbilicus.
The surface electrodes for the LOEA and ROEA were placed
15 cm left and right next to the umbilicus. The surface electrodes
for the LTES and RTES were placed 3 cm left and right of the
T10 spinous process. The surface electrodes for the LLES and

FIGURE 3 | (A) Electrodes placement on trunk muscles. DT, descending part
of trapezius; LRA, left rectus abdominis; RRA, right rectus abdominis; LOEA,
left obliquus externus abdominis; ROEA, right obliquus externus abdominis;
LTES, left thoracic erector spinae; RTES, right thoracic erector spinae; LLES,
left lumbar erector spinae; RLES, right lumbar erector spinae. (B) A snapshot
of the experiment setup.

RLES were placed 3 cm left and right of the L3 spinous process
(Larivière et al., 2000; Ghofrani et al., 2017). Prior to placing the
surface electrodes, we wiped alcohol on the skin surface to reduce
skin impedance. Then, the 1st–9th channels of the 16-channel
Ultium-EMG sensor system (Noraxon USA Inc., Scottsdale, AZ,
United States) with a sampling frequency of 2000 Hz were used
to collect the original sEMG signals. With the amplitude range
of 100–5000 µV and the frequency component of 0–500 Hz
(Merletti et al., 1992), the sEMG signals were amplified 1000
times and filtered a 10–500 Hz bandpass.

Experimental Sessions
The experimental protocols consisted of two sessions, which
included the healthy group and the stroke group experiment
sessions. First, we investigated the feasibility of the sEMG-
bTCD method with the simulated trunk compensations of
the healthy group. Second, we verified whether the proposed
method could detect the actual trunk compensations in stroke
patients. There are two reasons for using healthy group
simulation data rather than data obtained directly from stroke
patients. On the one hand, this is a novel study that cannot
be used directly on stroke patients. On the other hand, a
previous study (Zhi et al., 2017) has shown that healthy
people can obtain valuable experimental data by simulating
trunk compensations.

The experimental setup is shown in Figure 3B. Each
participant in the healthy group sat on the chair without any
physical restraint on their trunk. A horizontal table was placed
in front of the participants. A wooden flashboard was fixed on
the table to guide the participant’s motions. With a stick, the
participant completed three tasks (T1, T2, and T3 motions)
on the wooden flashboard at a normal speed. Additionally,
the participants simulated three types of trunk compensations
(LF, TR, and SE compensation) according to the guidance and
demonstration of our research team. Unlike the healthy group, all
participants in the stroke group performed three tasks with both
the healthy and affected hands. The data from the healthy hand
performing tasks were used as the data with no compensation.
The data from the affected hand performing tasks represented the
trunk compensation data. Each motion was repeated 10 times.
To prevent fatigue, each participant rested for 10 s between the
two motions and rested for 1 min after the five motions. At least
one rehabilitation therapist participated in the entire experiment
of the stroke group, helping our research team visually observe
whether stroke patients developed trunk compensation and the
type of trunk compensation.

TRUNK COMPENSATION DETECTION
PROCEDURE

The processing of the sEMG signals was implemented
with MATLAB 2017a (The MathWorks Inc., Natick, MA,
United States) (Figure 4), including preprocessing, feature
extraction, and classification. The preprocessing consists
of three parts: filter denoising, analysis window, and active
segment detection.
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FIGURE 4 | Flowchart of the procedures for sEMG processing.

Preprocessing
Filter Denoising
Various external factors during the acquisition process, such
as 50 or 60 Hz power frequency interference, motion artifact,
and ECG interference can easily interfere with the sEMG
signals (Phinyomark et al., 2012; Barrios-Muriel et al., 2016).
To eliminate ECG interference and motion artifacts, a 20–
200 Hz bandpass filtering for sEMG signals was implemented
by using a Butterworth filter with 0.1 dB passband ripple
and 50 dB stopband attenuation. A 50 Hz notch filter
was implemented using a Butterworth filter to eliminate
power frequency interference. These preprocessing methods
were intended to improve the signal-to-noise ratio (SNR) of
the sEMG signals.

Analysis Window
Due to the randomness and non-stationarity of the sEMG
signals, the analysis window, rather than the instantaneous
value, is a useful input in the pattern recognition process
(Smith et al., 2010). In this paper, we used an overlap analysis
window with a window length of 256 ms (512 samples) and
a window sliding step size of 64 ms (128 samples). So, the
sEMG signals collected in 1 s can be divided into 12 analysis
windows. The subsequent active segment detection, feature
extraction, and classification in this paper were based on these
analysis windows.

Active Segment Detection
In this paper, a sample entropy (SampEn) method based
on optimal threshold was proposed to detect the active
segments of sEMG signals. The SampEn is an improved
method for measuring the complexity of time series based
on approximate entropy (ApEn) (Richman and Moorman,
2000). A study has applied SampEn based on a fixed threshold
to the active segmentation of sEMG signals (Zhou and
Zhang, 2013). The fixed threshold is an empirical value
determined by experiments. However, it is very difficult to
choose a general fixed threshold for different participants
or motions. Therefore, we proposed a SampEn method
based on an optimal threshold. The implementation was
divided into three steps: calculating SampEn, detecting
active segments based on a fixed threshold, and calculating
optimal threshold.

In the first step, the SampEn of an analysis window
(M samples, M = 512) is calculated. The time sequence

sEMGsum(k) of the sum of 9-channel signals is constructed
as follows:

sEMGsum(k) =
C∑

i=1

sEMGi(k) (1)

where C is the total number of channels (C = 9), i is the channel
number, and k is the number of points in the analysis window.

Then, the scalar time series sEMGsum(k), k = 1, 2, . . ., M, are
embedded in the delayed m-dimensional space to form a set of
m-dimensional vectors (a data segment of length m) (Zhang and
Zhou, 2012; Yentes et al., 2013):{

sEMGm
sum(j) = [sEMGm

sum(j+ p)]m−1
p=0

j = 1, 2, . . . , M-m+ 1
(2)

The probability Bm(r) of two sequences matching m points
is computed by calculating the average number of vector pairs
whose distance is lower than the similar tolerance r. Similarly,
the probability Am(r) of the m+ 1 dimension can be calculated.
Finally, the SampEn is calculated as:

SampEn (m, r, M) = −ln
(

Am(r)
Bm(r)

)
(3)

The choice of the dimension m and the similar tolerance r
determines the calculation result of SampEn. There are empirical
formulas for these values, which are (Pincus, 1991; Costa et al.,
2002): m = 1 or 2, r = (0.15–0.25) ∗ σ. Where σ is the standard
deviation of the entire data sequence sEMGsum. In this paper,
these values are: m =2, r = 0.25∗ σ.

In the second step, active segment detection based on a
fixed threshold is performed. According to the first step, the
SampEn

(
l
)

of the lth analysis window is obtained. Then, the state
function s(l) of the lth analysis window is calculated:

s
(
l
)
=

{
0, SampEn

(
l
)

< Th
1, SampEn

(
l
)
≥ Th

(4)

where Th is the fixed threshold value. The condition of an active
segment based on the state function is:

s(l1 − 1) = 0 and s(l1) = 1
s
(
l2 − 1

)
= 1 and s(l2) = 0

L = l2 − l1 ≥ L0 = 12× sec
(5)

where l1 and l2 are the starting and ending analysis windows of
an active segment, L is the number of analysis windows between
l1 and l2, sec means time sec seconds, and L0 is the preset number
of analysis windows in an active segment. Only when L is not
less than L0 can this active segment be considered as an effective
active segment. Otherwise, this active segment is still regarded as
a noise. In addition, multiple active segments (such as n) may be
detected in the acquired sEMG signals. In order to distinguish
each active segment, the l1 and l2 of each active segment are stored
in one-dimensional arrays x1 and x2 of length n, respectively.

In the third step, the optimal threshold is calculated by
iteration. The objective function is not only to accurately detect
the known n0 active segments (n0 = 5 in this paper), but also to
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FIGURE 5 | Flowchart for calculating the optimal threshold.

make each active segment as long as possible so as to contain
more motion information. Therefore, the objective function is
realized by two loops, and the flowchart is shown in Figure 5.

The loop variables of the outer loop and the inner loop are,
respectively, the number L0 of the analysis windows in the active
segment (replacing L0 with sec, 10 ≥ sec ≥ 1) and the SampEn
threshold Th (0 ≤ Th ≤ 2). The loop body performs the first two
steps in sequence, and outputs the number n of detected active
segments and determines whether it is equal to n0. If n is equal to
n0, the x1, x2 , and Th values at the moment are output. Taking
a stroke participant performing reach-up-to-down motion as an

example, the active segment detection result of 9-channel sEMG
signals was shown in Figure 6.

Feature Extraction
Compared with the frequency domain and time-frequency
domain features, the time domain features are simple and
less time-consuming. So, we selected five commonly used time
domain features to establish feature vectors. These features are
root mean square (RMS), variance (Varrecchia et al., 2018),
MAV, waveform length (WL), and the fourth order autoregressive
model coefficient (4th-ARMC).
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FIGURE 6 | Active segment detection based on adaptive SampEn threshold algorithm in reach-up-to-down motion. DT, descending part of trapezius; LRA, left
rectus abdominis; RRA, right rectus abdominis; LOEA, left obliquus externus abdominis; ROEA, right obliquus externus abdominis; LTES, left thoracic erector
spinae; RTES, right thoracic erector spinae; LLES, left lumbar erector spinae; RLES, right lumbar erector spinae.

The RMS is the square root of the average power of the sEMG
signals in a given analysis window. It is calculated as:

RMSi(t) =

√√√√ 1
M

M∑
k=1

sEMGt
i(k)2 (6)

where i is the channel number (i = 1, 2, 3, . . ., 9), t is the
analysis window number, k is the number of points in the tth
analysis window.

The VAR reflects the extent to which the sEMG signal deviates
from the average and is calculated as:

AVRi(t) = 1
M

M∑
k=1

sEMGt
i(k)

VARi(t) = 1
M

M∑
k=1

(sEMGt
i(k)− AVRi(t))2

(7)

In statistics, the sEMG signal is approximated as a random
signal with a mean of zero. The average value does not reflect
the signal characteristics. Therefore, the absolute value of the
sEMG signal is averaged, which is the definition of MAV. It
is calculated as:

MAVi (t) =
1
M

M∑
k=1

∣∣sEMGt
i(k)

∣∣ (8)

The WL is a simple accumulation of sEMG signal lengths that
can reflect the complexity of the sEMG signal waveform. It is
defined as:

WLi(t) =
M∑

k=1

∣∣sEMGt
i(k+ 1)− sEMGt

i(k)
∣∣ (9)

The AR model is a linear model used for time-series analysis
of sEMG signals. It is defined as:

sEMGt
i(k) =

q∑
j=1

ajsEMGt
i(k− j)+ et

i(k) (10)

where q is the order of AR model (q = 4), aj is the jth order AR
coefficient, and et

i(k) is the white noise residual.
The five time domain features were extracted from each

analysis window in a single channel sEMG signal. In this paper,
9-channel sEMG signals were collected, so 1 ∗ 45 (5 ∗ 9) one-
dimensional feature vector was extracted from each analysis
window. However, the stroke patient’s affected side may be left
hand or right hand. Different affected sides lead to SE and TR
compensations in opposite directions. This results in the opposite
effect of the four pairs of muscles (LRA/RRA, LOEA/ROEA,
LTES/RTES, and LLES/RLES). Correspondingly, the consistency
of feature vectors extracted from the posterior 8-channel sEMG
signals is poor or even contrary, which is not conducive to
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classification. Therefore, in order to reduce the influence of
different affected hands, we reconstructed five time domain
features of the posterior 8-channel sEMG signals as:

feat′i(t) = feati(t)+ feati+1(t)
feat′i+1(t) = abs(feati(t)− feati+1(t))

i = 2, 4, 6, 8
(11)

where i is the ith channel, t is the analysis window number, and
feati(t) stands for any of the above five time domain features
(RMS, VAR, MAV, WL, and 4th-ARMC). Feature reconstruction
only changed the feature values, but did not change the feature
dimension, so each analysis window extracted 1 ∗ 45 dimension
feature vector. In addition, considering the convenience of the
method in clinical application, the number of four pairs of trunk
muscles was continuously reduced, and finally 9, 7, 5, and 3
channels were investigated. Correspondingly, the feature vector
dimensions extracted by each analysis window are 1 ∗ 45, 1 ∗ 35,
1 ∗ 25, and 1 ∗ 15, respectively.

Classification
As the SVM algorithm implements the principle of structural
risk minimization (Burges, 1998), it has unique advantages
in solving small sample, non-linear, and high-dimensional
pattern recognition. Some studies (e.g., Bellingegni et al., 2017;
Quitadamo et al., 2017) have also shown that the SVM has
higher classification performance. Therefore, we choose the
SVM classifier. The purpose of the SVM is to find an optimal
hyperplane to segment samples. The principle of segmentation
is to maximize the interval and finally transform it into a convex
quadratic programming problem (Scholkopf and Smola, 2001),
expressed as: {

min 1
2 ||w||

2

s.t. yt(w∗xt + b)− 1 ≥ 0
(12)

where (xt, yt) is the tth data point and (w, b) is the hyperplane
parameter. The Lagrange multiplier is used to solve the problem.

The TCD model is a four-class model (NC, LF, TR, and SE),
so the one-versus-one strategy is used for multiclassification.
And we used the LIBLINEAR (Fan et al., 2008) toolkit for
SVM classifier. When using L2-regularized L2-loss support
vectorclassification, only the penalty factor C needs to be searched
(Hsu et al., 2003). In this paper, cross-validation was used to
adjust parameter C from small to large. When the increase C
did not change the classification result much, the debugging
was finished and the relatively small C value was selected to
improve the convergence speed of the model (finally, C = 1).
In addition, the hold-out method was used to evaluate classifier
performance. Specifically, in order to maintain the consistency
of data distribution as much as possible, a training subset and
a test subset were randomly divided into 80:20% of each class’s
feature set. The training subsets and test subsets of the four classes
were, respectively, combined to form a training set and a test set.
In addition, we used the 100-time hold-out method to obtain a
stable and reliable evaluation result. Also, we chose classification
accuracy, F1-score, receiver operating characteristic (ROC) curve

and the under the curve (AUC) as model evaluation parameters.
Classification accuracy is the most commonly used classification
model evaluation index, which refers to the ratio of the number
of correctly classified samples to the total sample. The F1-score
is the harmonic mean of precision and recall. The ROC curve is
an evaluation curve in which the false positive rate (FPR) is the
horizontal axis and the true positive rate (TPR) is the vertical axis.
The AUC is defined as the area enclosed by the ROC curve and
the coordinate axis.

RESULTS AND DISCUSSION

Results
Classification Accuracy
To investigate the feasibility of the proposed method, we
established two trunk compensation models based on the healthy
group dataset and the stroke group dataset. First, the impact of
the number of channels on the classification was investigated.
It can be seen from Figure 7 that fewer channels result in
lower average accuracy. Based on the principle of optimal
accuracy, only the detailed detection results of nine channels
were reported below.

The results showed that the healthy group model and the
patient group model achieved an average accuracy of 95.0 and
83.1% (Figure 7). The confusion matrices of the two models were
given as grayscale images (Figure 8). The diagonal elements (n, n)
(n = 1, 2, 3, 4) in the confusion matrix represent the classification
accuracy of each class, while the other elements represent the
error classification rate.

FIGURE 7 | Average accuracy of the healthy and stroke group models
established by different channel numbers.
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FIGURE 8 | Confusion matrix of the trunk compensation detection models. (A) Healthy group. (B) Stroke group. NC, no compensation; LF, lean-forward; TR, trunk
rotation; SE, shoulder elevation.

FIGURE 9 | The ROC curves for the trunk compensation detection models. (A) The healthy group. (B) The stroke group. NC, no compensation; LF, lean-forward;
TR, trunk rotation; SE, shoulder elevation.

ROC and F1-Score
Due to the difference of each participant’s motor function, the
sample distribution of the four classes is slightly unbalanced.
Therefore, we also selected F1-score, ROC, and AUC as model
evaluation parameters. These parameters are often used for
binary classification of unbalanced distribution. However, the
models established in this paper were four-class models, so
the conversion was needed to obtain these parameters. We
considered the current class as the positive class, and the
remaining classes as the negative class. In this way, four classes
of ROC and AUC were obtained (Figure 9). In the ROC
curve, the more convex the curve to the upper left corner,
the better the model performance. The closer AUC is to 1,
the better the model performance is. The AUC for individual
categories in this paper reached 1, indicating that the models
exhibited the desired recognition performance in the detection
of these categories.

The F1-score is the harmonic mean of precision and recall.
The closer the F1-score is to 1, the better the model performance.

We used the same conversion method to calculate the F1-score
per class, and the results are shown in Figure 10.

Discussion
In this paper, the sEMG-bTCD method was proposed, and its
feasibility was verified. To our knowledge, this is the first study
to detect simulated trunk compensations in healthy participants
and real trunk compensations in stroke participants based on
sEMG signals from nine superficial trunk muscles. In addition,
an active segment detection method based on the optimal
SampEn threshold was proposed, and was used to detect the
active segments of the sEMG signals of the healthy and stroke
group, respectively. Five compound time domain features of
each channel in the active segment were extracted to form the
feature vector space, including RMS, VAR, MAV, WL, and 4th-
ARMC. Using the SVM classifier, two four-class models for
detecting three types of trunk compensations (LF, TR, and SE
compensations) and NC motion were established, trained, and
tested, consisting of the healthy detection model and the stroke

Frontiers in Neuroscience | www.frontiersin.org 9 November 2019 | Volume 13 | Article 1250

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01250 November 19, 2019 Time: 15:42 # 10

Ma et al. sEMG-Based Trunk Compensation Detection

FIGURE 10 | The F1-scores for each class of the health and stroke group
models. NC, no compensation; LF, lean-forward; TR, trunk rotation; SE,
shoulder elevation.

detection model. In addition, the effect of channel number on
classification was investigated, and the results showed that the
best accuracy was achieved for both detection models based on
nine channels. Therefore, only the experimental results of nine
channels were analyzed below.

First, the healthy detection model was established based on the
sEMG signals of the healthy group. The testing results showed
that >90% accuracy of each class (average 95.0%) was achieved.
Compared with the accuracy of 88.6 (Ranganathan et al., 2017)
and 85.9% (Taati et al., 2012), higher detection accuracy was
obtained by using the method proposed in this paper. We
also selected the AUC and the F1-score as model evaluation
parameters. The best detection performance was obtained on
the SE compensation (AUC = 1.00, F1 = 1.00), followed by
the TR compensation (AUC = 0.99, F1 = 0.96), and finally the
LF compensation (AUC = 0.97, F1 = 0.94). When compared
with the results (SE: AUC = 0.66, F1 = 0.07; TR: AUC = 0.77,
F1 = 0.57; LF: AUC = 0.98, F1 = 0.82) (Zhi et al., 2017),
the detection performance of SE and TR compensation in this
paper was significantly improved, except for equivalent detection
performance of LF compensation.

In addition, with the same process as the healthy group,
the stroke detection model was established based on the sEMG
signals of the healthy group. The results showed that the average
accuracy of this model was 83.1%. Specifically, high accuracy
(over 90%) was achieved in NC and SE compensation, followed
by LF compensation (74.8%), and finally TR compensation
(67.1%). Using the AUC and the F1-score to evaluate the model,
the results showed that the NC detection performance was the
best (AUC = 1.00, F1 = 1.00), followed by SE compensation
(AUC = 0.98, F1 = 0.90), then LF compensation (AUC = 0.90,
F1 = 0.73), and finally TR compensation (AUC = 0.85, F1 = 0.71).
Similarly, nine stroke subjects were recruited to participate in
the experiment (Zhi et al., 2017). Compared with their results
(SE: AUC = 0.27, F1 = 0.07; LF: AUC = 0.77, F1 = 0.17; TR:

AUC = 0.81, F1 = 0.27), it was found that the AUC and F1 values
for the three types of trunk compensation are generally higher.

Overall, using the sEMG-bTCD method, we obtained better
TCD performance in both the healthy and stroke groups.
The results suggested the feasibility and effectiveness of this
method. However, we found that TCD performance of the
stroke detection model was generally lower than those from
the healthy group. There may be many reasons for this result.
First, actual trunk compensations in the stroke group are
the joint motion of multiple muscle groups, which makes
it more difficult to distinguish trunk compensations. Second,
grasping the stick on the wooden flashboard for rehabilitation
training, the stroke patients use the proximal (shoulder)
muscles to assist because of the weakness of the distal
(wrist) muscles. This action makes the DT muscle abnormally
activated in various rehabilitation training tasks not just in
the SE compensation. In addition, despite skin pretreatment,
the collection of sEMG signals (especially from LRA, RRA,
LOEA, and ROEA muscles) was affected by sensor location
and soft fat tissue of human body. This observation may
be one of the reasons for the low detection performance
of LF and TR compensation. Moreover, stroke patients who
recover better or are slightly injured have enough motion
ability to produce less compensation, which is not conducive
to the detection of trunk compensation. Finally, the motor
strategies of the stroke patients cannot be precisely controlled
may lead to simultaneous multiple trunk compensations
rather than a single type of compensation simulated by
the healthy group.

Future work should focus on improving the detection
performance of stroke patients. Given that stroke patients may
perform multiple trunk compensations at the same time, a multi-
label classification model will be established, trained, and tested.
In addition, a closed-loop approach, such as the use of a slider
rail mechanism rather than an open-loop wooden flashboard, can
reduce or even eliminate the effects of the stick on the proximal
muscles of stroke patients. What’s more, multiple sensors, such
as sEMG, cameras, and inertial sensors, should be fused for
TCD. Finally, although lower detection accuracy was achieved
with fewer channels, we will try to adopt some new methods,
such as deep learning to ensure accuracy while reducing the
number of muscles.

Future work should also realize the potential medical value
of the proposed method and provide feedback for postural
correction. Studies have shown that sEMG signals can be used for
quantitative assessment of muscle spasticity (Zhang et al., 2019)
and as feedback control for robot (Koh et al., 2017) or prosthesis
(Zhai et al., 2017). Therefore, the future work should use sEMG
signals for quantitative assessment of trunk compensations and
as a feedback control for robotic rehabilitation training to
correct posture.

CONCLUSION

In this paper, we proposed the sEMG-bTCD method and
investigated the feasibility of the method. The healthy group
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(five subjects) and stroke group (nine subjects) were recruited
to participate in the experiment. All subjects performed
three rehabilitation training tasks. The sEMG signals from
nine superficial trunk muscles were collected during three
rehabilitation training tasks without compensation and with
three common trunk compensations. Preprocessing like filtering,
active segment detection was performed and five time domain
features were extracted. The four-class model obtained by using
SVM classifier has excellent detection performance in healthy
participants (LF: accuracy = 94.0%, AUC = 0.97, F1 = 0.94; TR:
accuracy = 95.8%, AUC = 0.99, F1 = 0.96; SE: accuracy = 100.0%,
AUC = 1.00, F1 = 1.00). Good detection performance was
also achieved in stroke participants (LF: accuracy = 74.8%,
AUC = 0.90, F1 = 0.73; TR: accuracy = 67.1%, AUC = 0.85,
F1 = 0.71; SE: accuracy = 91.3%, AUC = 0.98, F1 = 0.90). The
results indicate that the sEMG-bTCD method is feasible. This
method helps to prompt the patient to correct the wrong posture,
thereby improving the effectiveness of rehabilitation training.
To enhance the detection performance in stroke patients, the
compound trunk compensation should be detected instead of a
single trunk compensation. Additionally, multiple sensors, such
as sEMG, cameras, and inertial sensors, should be fused for TCD.
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